Fluctuations and the QCD phase diagram

"A theory is something nobody believes, except the person who made it. An experiment is something everybody believes, except the person who made it."

Lecture 1

- Introduction
- Phase transitions
- Ensembles
- Phase diagrams
- Ising model
- Cumulants are derivatives of $\ln Z \sim P$

Phase diagrams

"Pressure"

$$
t<0 ; t=-1
$$

Lecture 2

- Spinodal instability
- Cumulants and correlations (factorial cumulants)
- Remarks phase diagram (liquid gas?)
- Measuring the phase diagram

Simple density functional model

A. Sorensen and VK PRC 104, 034904 (2021)

Spinodal instability

Sound Dispersion relation: $\omega=c_{s} k$

$$
\begin{aligned}
& c_{s}^{2}=\frac{d P}{d \rho}<0 \quad \text { in Spinodal region } \\
& \Rightarrow c_{s}=\sqrt{c_{s}^{2}} \equiv \pm i \gamma \quad \text { imaginary }
\end{aligned}
$$

Small disturbance: $\phi=\phi_{0} e^{i \omega t}=\phi_{0} e^{ \pm \gamma k t}$

Exponential growth!!!
$\gamma \sim k$ cut off by finite range interaction (see Randrup et al)

Spinodal decomposition

From Wikipedia

Spinodal decomposition in nuclear multifragmentation

$32 \mathrm{MeV} / \mathrm{A} \mathrm{Xe}+\mathrm{Sn}(\mathrm{b}=0)$
(select events with 6 IMFs) \quad Bin wrt $\left\{\begin{array}{l}\langle Z\rangle: \text { average IMF charge } \\ \Delta Z: \text { dispersion in IMF charge }\end{array}\right.$

ΔZ
Experiment (INDRA @ GANIL)
Borderie et al, PRL 86 (2001) 3252

Δz
Theory (Boltzmann-Langevin)
Chomaz, Colonna, Randrup, ...

Phase-transition dynamics: Density clumping

$\begin{aligned} & \text { Phase } \\ & \text { transition }\end{aligned}=>\left\{\begin{array}{l}\text { Phase coexistence: surface tension } \\ \text { Phase separation: instabilities }\end{array}\right.$

Insert the modified pressure into existing ideal finite-density fluid dynamics code

Use UrQMD for pre-equilibrium stage to obtain fluctuating initial conditions

Simulate central $\mathrm{Pb}+\mathrm{Pb}$ collisions at $\approx 3 \mathrm{GeV} / \mathrm{A}$ beam kinetic energy on fixed target, using an Equation of State either with a phase transition or without (Maxwell partner):

With phase transition:

Without phase transition:

Density enhancement:

Evolution of density moments

$$
\left\langle\rho^{N}\right\rangle \equiv \frac{1}{A} \int \rho(\boldsymbol{r})^{N} \rho(\boldsymbol{r}) d^{3} \boldsymbol{r}
$$

J. Steinheimer \& J. Randrup, PRL 109, 212301(2012) PRC 87, 054903 (2013)

Approaching the critical point

Sloooow going! A.k.a critical slowing down

Critical point: Good luck?

Ising Critical Exponents in Real Fluids: An Experiment

R. Hocken* and M. R. Moldover

Equation of State Section, Heat Division, National Bureau of Standards, Washington, D. C. 20234 (Received 1 March 1976)
We report precise optical measurements of the equations of state of $\mathrm{Xe}, \mathrm{SF}_{6}$, and CO_{2} very near their critical points $\left(\left|T-T_{c}\right| / T_{c}<5 \times 10^{-5}\right)$. We find that the critical exponents of these fluids in this region are close to the exponents calculated from the three-dimensional Ising model.

The filled cell was enclosed in a seven-stage cylindrical thermostat, two stages of which were active and five passive. The cell was mechanically attached and thermally coupled to the innermost stage (a $25-\mathrm{kg}$ cylinder of copper). This block was passive. Its temperature was controllec by controlling the temperature of the thermally decoupled heater shell which surrounded it. This inner stage was purposely isolated to reduce temperature gradients and integrate temperature oscillations. It has a time constant of six hours with respect to heater-shell temperature changes. The thermal equilibrium of the sample was assessed from the temporal stability of the Fraunhofer pattern. Two isotherms per day were taken far from T_{c}, but the rate became one per day or less as T_{c} was approached.

Looking for signs of a transition

Cumulants of (Baryon) Number

$K_{n}=\frac{\partial^{n}}{\partial(\mu / T)^{n}} \ln Z=\frac{\partial^{n-1}}{\partial(\mu / T)^{n-1}}\langle N\rangle$
$K_{1}=\langle N\rangle, K_{2}=\langle N-\langle N\rangle\rangle^{2}, K_{3}=\langle N-\langle N\rangle\rangle^{3}$
Cumulants scale with volúme (extensive): $\quad K_{n} \sim V$

Volume not well controlled in heavy ion collisions

$$
\text { Cumulant Ratios: } \frac{K_{2}}{\langle N\rangle}, \frac{K_{3}}{K_{2}}, \frac{K_{4}}{K_{2}}
$$

Simple model

Change degrees of freedom at phase transition

$$
\langle N\rangle=\operatorname{dof}(\mu) e^{\mu / T} \int d^{3} p e^{-E / T}
$$

Cumulants of (Baryon) Number

$K_{n}=\frac{\partial^{n}}{\partial(\mu / T)^{n}} \ln Z=\frac{\partial^{n-1}}{\partial(\mu / T)^{n-1}}\langle N\rangle$
$K_{1}=\langle N\rangle, K_{2}=\langle N-\langle N\rangle\rangle^{2}, K_{3}=\langle N-\langle N\rangle\rangle^{3}$
Cumulants scale with volúme (extensive): $\quad K_{n} \sim V$

Volume not well controlled in heavy ion collisions

$$
\text { Cumulant Ratios: } \frac{K_{2}}{\langle N\rangle}, \frac{K_{3}}{K_{2}}, \frac{K_{4}}{K_{2}}
$$

Measuring cumulants (derivatives)

$$
K_{2}=\langle N-\langle N\rangle\rangle^{2}=\sum_{N} P(N)(N-\langle N\rangle)^{2}
$$

$$
K_{3}=\langle N-\langle N\rangle\rangle^{3}=\sum_{N} P(N)(N-\langle N\rangle)^{3}
$$

$$
P(N)=\frac{N_{\text {events }}(N)}{N_{\text {events }}(\text { total })}
$$

Cumulants: a closer look

$$
Z=\operatorname{tr} e^{-\hat{E} / T+\mu / T \hat{N}_{B}}
$$

$K_{n}=\frac{\partial^{n}}{\partial(\mu / T)^{n}} \ln Z=\frac{\partial^{n-1}}{\partial(\mu / T)^{n-1}}\langle N\rangle$
Cumulants are extensive: $K_{n} \sim V$
$K_{2}=\langle N-\langle N\rangle\rangle^{2}=\int d^{3} x d^{3} y\langle\delta \rho(x) \delta \rho(y)\rangle ; \quad \delta \rho(x)=\rho(x)-\bar{\rho}$
Susceptibility:
$\chi_{(2) i, j}=\frac{1}{V T^{3}} \int d^{3} x d^{3} y\left\langle\delta \rho_{i}(x) \delta \rho_{j}(y)\right\rangle=\frac{1}{T^{3}} \bar{\rho}_{i} \delta_{i, j}+\frac{1}{T^{3}} \int d^{3} r C_{i, j}(r)$
Correlation function (in configuration space!):
$C_{i, j}(\vec{r})=\left\langle\delta \rho_{i}(\vec{r}) \delta \rho_{j}(0)\right\rangle-\bar{\rho}_{i} \delta_{i, j} \delta(\vec{r}) \sim \frac{\exp \left[-r / \xi_{i, j}\right]}{r}$
Correlation length (in configuration space!): $\xi_{i, j}$
Relation to cumulant: $\quad K_{2}=V T^{3} \chi_{(2) i, i}$

Correlation length

$$
\begin{aligned}
& C(r) \sim \frac{\exp [-r / \xi]}{r} \quad \begin{array}{l}
\text { Static correlation function; } \\
\text { "Yukawa" potential with mass: } m \sim \frac{1}{\xi}
\end{array} \\
& \chi \sim \int C(r) d^{3} r \sim \xi^{2} \sim \frac{1}{m^{2}} \\
& \text { Critical point (second order) } \\
& m_{\sigma} \rightarrow 0, \xi \rightarrow \infty
\end{aligned}
$$

Correlation function in Ising Model ?

Correlation length: $\xi \sim \frac{1}{\sqrt{|t|}}$
second order cumulant: $K_{2} \sim \chi_{2} \sim \xi^{2} \sim \frac{1}{|t|}$
diverges at critical point
diverges at critical point

Higher moments (cumulants) and ξ

- Consider probability distribution for the order-parameter field:

$$
\begin{gathered}
P[\sigma] \sim \exp \{-\Omega[\sigma] / T\}, \\
\Omega=\int d^{3} x\left[\frac{1}{2}(\nabla \sigma)^{2}+\frac{m_{\sigma}^{2}}{2} \sigma^{2}+\frac{\lambda_{3}}{3} \sigma^{3}+\frac{\lambda_{4}}{4} \sigma^{4}+\ldots\right] . \Rightarrow \xi=m_{\sigma}^{-1}
\end{gathered}
$$

- Moments (connected) of $\boldsymbol{q}=0$ mode $\sigma_{V} \equiv \int d^{3} x \sigma(x)$:

$$
\begin{aligned}
& \kappa_{2}=\left\langle\sigma_{V}^{2}\right\rangle=V T \xi^{2} ; \quad \kappa_{3}=\left\langle\sigma_{V}^{3}\right\rangle=2 V T^{2} \lambda_{3} \xi^{6} ; \\
& \kappa_{4}=\left\langle\sigma_{V}^{4}\right\rangle_{c} \equiv\left\langle\sigma_{V}^{4}\right\rangle-3\left\langle\sigma_{V}^{2}\right\rangle^{2}=6 V T^{3}\left[2\left(\lambda_{3} \xi\right)^{2}-\lambda_{4}\right] \xi^{8} .
\end{aligned}
$$

- Tree graphs. Each propagator gives ξ^{2}.

- Scaling requires "running": $\lambda_{3}=\tilde{\lambda}_{3} T(T \xi)^{-3 / 2}$ and $\lambda_{4}=\tilde{\lambda}_{4}(T \xi)^{-1}$, i.e.,

$$
\kappa_{3}=\left\langle\sigma_{V}^{3}\right\rangle=2 V T^{3 / 2} \tilde{\lambda}_{3} \xi^{4.5} ; \quad \kappa_{4}=6 V T^{2}\left[2\left(\tilde{\lambda}_{3}\right)^{2}-\tilde{\lambda}_{4}\right] \xi^{7} .
$$

Critical point

- Second order phase transition
- Fluctuations at all length scales
- Critical opalescence
side view:

T> T_{c}
$T \approx T_{c}$
$\mathbf{T}=\mathrm{T}_{\mathrm{c}}$

Finite size scaling

Second order (critical point)
Cross over

$\xi \sim V^{2 / 3}, \quad \chi \sim V^{4 / 3}$
$\xi=$ const,$\quad \chi=$ const
(mean field)
NB: 1st order: $\chi \sim V$

QCD at $\mu=0$ is cross-over

Aoki et al, Nature 43:675-678,2006

small volume

Particle Correlations

$$
\frac{d N}{d p_{1}} \equiv \rho_{1}\left(p_{1}\right) \quad \frac{d^{2} N}{d p_{1} d p_{2}} \equiv \rho_{2}\left(p_{1}, p_{2}\right) \quad \frac{d^{3} N}{d p_{1} d p_{2} d p_{3}} \equiv \rho_{3}\left(p_{1}, p_{2}, p_{3}\right)
$$

$\rho_{2}\left(p_{1}, p_{2}\right)=\rho_{1}\left(p_{1}\right) \rho_{1}\left(p_{2}\right)+C_{2}\left(p_{1}, p_{2}\right), \quad \mathbf{C}_{2}$: Correlation Function

$$
\begin{aligned}
& \left.\left.\rho_{3}\left(p_{1}, p_{2}, p_{3}\right)=\rho_{1}\left(p_{1}\right) \rho_{1}\left(p_{2}\right) \rho_{1}\left(p_{3}\right)+\rho_{1}\left(p_{1}\right) \underline{C_{2}\left(p_{2}, p_{3}\right.}\right)+\rho_{1}\left(p_{2}\right) \underline{C_{2}\left(p_{1}, p_{3}\right.}\right) \\
& +\rho_{1}\left(p_{3}\right) \underline{C_{2}\left(p_{1}, p_{2}\right)}+\underline{C_{3}\left(p_{1}, p_{2}, p_{3}\right)}
\end{aligned}
$$

Particle Correlations

$$
\begin{aligned}
& \frac{d N}{d p_{1}} \equiv \rho_{1}\left(p_{1}\right) \quad \frac{d^{2} N}{d p_{1} d p_{2}} \equiv \rho_{2}\left(p_{1}, p_{2}\right) \quad \frac{d^{3} N}{d p_{1} d p_{2} d p_{3}} \equiv \rho_{3}\left(p_{1}, p_{2}, p_{3}\right) \\
& \int_{A c c} d p_{1} \rho_{1}\left(p_{1}\right)=<N>\quad \int_{A c c} d p_{1} d p_{2} \rho_{2}\left(p_{1}, p_{2}\right)=<N(N-1)> \\
& \int_{A c c} d p_{1} d p_{2} d p_{3} \rho_{3}\left(p_{1}, p_{2}, p_{3}\right)=<N(N-1)(N-2)>
\end{aligned}
$$

Integrate: $\quad \rho_{2}\left(p_{1}, p_{2}\right)=\rho_{1}\left(p_{1}\right) \rho_{1}\left(p_{2}\right)+C_{2}\left(p_{1}, p_{2}\right)$.
$<N(N-1)>=<N>^{2}+\int_{A c c} d p_{1} d p_{2} C_{2}\left(p_{1}, p_{2}\right) \equiv<N>^{2}+C_{2}$
Relation to cumulant

$$
K_{2}=\left\langle N^{2}\right\rangle-\langle N\rangle^{2}=\langle N\rangle+C_{2}
$$

From Cumulants to Correlations (no anti-protons)

Defining integrated correlations function

$$
C_{n}=\int d p_{1} \ldots d p_{n} C_{n}\left(p_{1}, \ldots, p_{n}\right) \quad \text { Factorial cumulant }
$$

Simple Algebra leads to relation between correlations C_{n} and K_{n}

$$
\begin{aligned}
& C_{2}=-K_{1}+K_{2} \\
& C_{3}=2 K_{1}-3 K_{2}+K_{3} \\
& C_{4}=-6 K_{1}+11 K_{2}-6 K_{3}+K_{4},
\end{aligned}
$$

or vice versa

$$
\begin{aligned}
& K_{2}=\langle N\rangle+C_{2} \\
& K_{3}=\langle N\rangle+3 C_{2}+C_{3} \\
& K_{4}=\langle N\rangle+7 C_{2}+6 C_{3}+C_{4}
\end{aligned}
$$

Factorial cumulants capture the leading divergencies

Interlude: generating functions

Moment generating function

$$
\begin{aligned}
h(t) & =\sum_{n} P(n) e^{n t} ; \quad h(0)=1 \\
\frac{d^{k}}{d t^{k}} h(t) & =\sum_{n} P(n) n^{k} e^{n t} \underset{t=0}{\longrightarrow} \sum_{n} P(n) n^{k}=\left\langle n^{k}\right\rangle
\end{aligned}
$$

Cumulant generating function

$$
\begin{aligned}
& g(t)=\ln [h(t)]=\ln \left[\sum_{n} P(n) e^{n t}\right] \\
& K_{n}=\left.\frac{d^{k}}{d t^{k}} g(t)\right|_{t=0} \\
& K_{2}=\left.\frac{d^{k}}{d t^{2}} g(t)\right|_{t=0}=\frac{h^{\prime \prime}(0)}{h(0)}-\frac{h^{\prime}(0)^{2}}{h(0)^{2}}=\left\langle n^{2}\right\rangle-\langle n\rangle^{2}
\end{aligned}
$$

Interlude: generating functions

Factorial moment generating function

$$
\begin{aligned}
\bar{h}(z) & =\sum_{n} P(n) z^{n} ; \quad \bar{h}(1)=1 \\
\frac{d^{k}}{d z^{k}} \bar{h}(z) & =\sum_{n} P(n) n(n-1) \ldots(n-k+1) z^{n-k} \underset{z=1}{\longrightarrow} \sum_{n} P(n) n(n-1) \ldots(n-k+1) \\
& =\langle n(n-1) \ldots(n-k+1)\rangle=f_{k}(n)
\end{aligned}
$$

Factorial cumulant generating function

$$
\begin{aligned}
& \bar{g}(z)=\ln [\bar{h}(z)]=\ln \left[\sum_{n} P(n) z^{n}\right] \\
& C_{n}=\left.\frac{d^{k}}{d z^{k}} \bar{g}(z)\right|_{z=\varnothing} ^{1} \\
& C_{2}=\left.\frac{d^{k}}{d z^{2}} \bar{g}(z)\right|_{z=\varnothing}=\frac{\bar{h}^{\prime \prime}(\bar{\emptyset})}{\bar{h}(\emptyset)}-\frac{\bar{h}^{\prime}(\bar{\emptyset})^{2}}{\bar{h}(\emptyset)^{2}}=\left\langle(n(n-1)\rangle-\langle n\rangle^{2}\right.
\end{aligned}
$$

Interlude: generating functions

Relation between factorial cumulants and cumulants

$$
\begin{aligned}
& h(t)=\sum_{n} P(n) e^{n t} \\
& \bar{h}(z)=\sum_{n} P(n) z^{n} \\
& h(t)=\bar{h}\left(z=e^{t}\right) ; \quad g(t)=\bar{g}\left(z=e^{t}\right) \\
& \frac{d}{d t} g(t)=\frac{d}{d z} \bar{g}(z) \frac{d}{d t} z=e^{t} \frac{d}{d z} \bar{g}(z)
\end{aligned}
$$

Cumulant
Factorial cumulant and so on... Mathematica does this for you easily

Correlations?

Assume we have exactly one particle in each event:

$$
P(n)=\delta_{n, 1}
$$

$$
\begin{aligned}
& K_{1}=\langle N\rangle=1 \\
& K_{2}=\left\langle\left(N-\langle N\rangle^{2}\right)\right\rangle=0 \\
& K_{3}=\left\langle\left(N-\langle N\rangle^{2}\right)\right\rangle=0 \\
& K_{n}=0 ; \quad N>1
\end{aligned}
$$

$$
\begin{aligned}
& C_{2}=-K_{1}+K_{2}=-1 \\
& C_{3}=2 K_{1}-3 K_{2}+K_{3}=2 \\
& C_{4}=-6 K_{1}+11 K_{2}-6 K_{3}+K_{4}=-6
\end{aligned}
$$

In general: $\quad C_{n}=(-1)^{n-1}(n-1)$!
($\mathrm{n}>1$)-particle correlations with one particle only!!!!
Factorial cumulants "measure" deviation from Poisson !

Common distributions

Poisson distribution:

$$
P(N)=e^{\Lambda} \frac{\Lambda^{N}}{N!}
$$

Properties: Sum distribution of two Poissonian is again Poisson

$$
\begin{array}{rl}
P\left(N=N_{1}+N_{2}\right)= & \sum_{N_{1}, N_{2}} P_{1}\left(N_{1}\right) P\left(N_{2}\right) \delta_{N, N_{1}+N_{2}}=e^{\Lambda_{1}+\Lambda_{2}} \frac{\left(\Lambda_{1}+\Lambda_{2}\right)^{N}}{N!} \\
2 & 2 \\
1 &
\end{array}
$$

No correlations; all factorial cumulants vanish $C_{n}=0 n>1$
Cumulants: $K_{n}=\langle N\rangle$

Common distributions

Binomial Distribution

$$
P(n ; N)=\frac{N!}{n!(N-n)!} p^{n}(1-p)^{N-n}
$$

p (Bernoulli) probability of success in one throw of "coin"

Data

STAR: arXiv:2112.00240

HADES: arXiv:2002.08701
$\sqrt{s}=2.4 \mathrm{GeV}$

