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diagram
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“A theory is something nobody believes, 
except the person who made it. 
An experiment is something everybody 
believes, except the person who made it.”



Lecture 1

• Introduction 
• Phase transitions 
• Ensembles 
• Phase diagrams 
• Ising model 
• Cumulants are derivatives of  
•

ln Z ∼ P
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Phase diagrams
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TABLE II. Comparison of values of the nuclear phase transi-
tion critical temperature T (N )

c (MeV), the critical baryon number
density n(N )

c (fm−3), pressure at the critical point Pc (MeV fm−3),
and incompressibility K0 (MeV) as obtained in experiment [40] and
in various models, where “W” denotes the Walecka model [31],
“QVdW” denotes the quantum Van der Waals model [47], “VDF
N” denotes the VDF model with nuclear phase transition only (two
interaction terms), and “VDF N+Q” denotes the VDF model with
both nuclear and “quark-hadron” phase transitions (four interaction
terms). For the last case, the values of Pc and K0 are given as averages
calculated across all obtained EOSs for quark-hadron critical tem-
peratures T (Q)

c ∈ {50, 100, 125} (MeV) and critical baryon number
densities n(Q)

c ∈ {3.0, 4.0, 5.0} (n0). Values marked with an asterisk
are input parameters of the models.

Experiment W QVdW VDF N VDF N+Q

T (N )
c 17.9 ± 0.4 18.9 19.7 18* 18*

n(N )
c 0.06 ± 0.01 0.070 0.072 0.06* 0.06*

Pc 0.31 ± 0.07 0.48 0.52 0.311 0.3066 ± 0.0014
K0 230-315 553 763 282 273.5 ± 5.1

nuclear matter in the transition region. We expect that this
correct description would manifest itself through agreement
of simulation results with experimental data.

C. Results: Phase diagrams

The phase diagrams for the EOSs corresponding to the
characteristics listed in Table I are shown in Fig. 4. Solid and
dashed lines represent the boundaries of the coexistence and
spinodal regions, respectively. The coexistence and spinodal

regions of the nuclear phase transition, depicted with black
lines, are common for all used EOSs by construction.

It is immediately apparent that the QGP-like coexistence
curves on the phase diagrams all look alike. This is a conse-
quence of our choice to employ only interactions depending
on vector baryon number density, as in this case the depen-
dence of the thermal part of the pressure on temperature T
and effective chemical potential µ∗ is just like that of an
ideal Fermi gas, as can be seen from Eq. (30). Consequently,
all VDF EOSs display similar behavior with increasing tem-
perature T . This can be especially easily seen on the T -µB
phase diagram (right panel of Fig. 4), where the coexistence
lines exhibit the exact same curvature. An exception from
this behavior shown on the plot is the curve calculated for
a system with both nucleons and thermally produced ! reso-
nances (denoted with a red line), which bends more forcefully
towards the µB = 0 axis as the temperature increases. This
is to be expected as including an additional baryon species
lowers the value of the baryon chemical potential for a given
baryon number density. Including more baryon species would
strengthen this effect.

Another feature, easily discerned on the T -nB phase dia-
gram (left panel of Fig. 4), is that the spinodal regions [ηL, ηR]
(and likewise the coexistence regions [nL, nR]) are always
approximately centered around the critical baryon number
density, n(Q)

c . This is again an effect related to having only
the ideal-gas-like contribution to the thermal pressure in case
of vector-like interactions (for details see Appendix D). As a
result, the critical baryon number density, n(Q)

c , and the bound-
aries of the spinodal region, ηL and ηR, are not independent. In
consequence, we have effectively one less free parameter. For
example, once we set the ordinary nuclear matter properties,
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FIG. 4. Phase diagram in the T -nB (left panel) and T -µB (right panel) planes for sets of characteristics listed in Table I. Solid and dashed
lines represent the boundaries of the coexistence and spinodal regions, respectively. In the legend, the critical temperature of the QGP-like
phase transition T (Q)

c is given in MeV, while the critical baryon number density n(Q)
c and the boundaries of the spinodal region, ηL and ηR, are

given in units of saturation density, n0 = 0.160 fm−3. The coexistence and spinodal regions of the nuclear phase transition, depicted with solid
black and dashed black lines, respectively, are common to all sets of characteristics. Also shown are chemical freeze-out points obtained in
experiment and a parametrization of the freeze-out line from [48].
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Lecture 2

• Spinodal instability 
• Cumulants and correlations (factorial cumulants) 
• Remarks phase diagram (liquid gas?) 
• Measuring the phase diagram
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Simple density functional model
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Figure 3.1: An example of the fitting procedure used for the VDF model. Pressure is plotted

as a function of baryon number density at three significant temperatures (T = 0, nuclear

critical temperature T
(N)
c , and quark-hadron critical temperature T

(Q)
c ) for an EOS with

characteristics from set I, see Table 3.1 or the legend (where T
(Q)
c is given in MeV, while the

critical density n
(Q)
c and the boundaries of the spinodal region at T = 0, ⌘L and ⌘R, are given

in units of saturation density, n0 = 0.160 fm�3). Specific points at which the parameters of

the EOS are fixed are indicated on the plot; see text for more details. Figure from [177].

3.2. VDF model results: Pressure, the speed of sound, and

energy per particle

We illustrate the fitting procedure in Fig. 3.1, where we show pressure as a function of baryon

number density at three significant temperatures (T = 0, nuclear critical temperature T
(N)
c ,

and quark-hadron critical temperature T
(Q)
c ) for an EOS with characteristics from set I (see

Table 3.1) and where we also indicate the location of key features that determine the fit
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nuclear matter in the transition region. We expect that this
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characteristics listed in Table I are shown in Fig. 4. Solid and
dashed lines represent the boundaries of the coexistence and
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lines, are common for all used EOSs by construction.
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and effective chemical potential µ∗ is just like that of an
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lowers the value of the baryon chemical potential for a given
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(and likewise the coexistence regions [nL, nR]) are always
approximately centered around the critical baryon number
density, n(Q)

c . This is again an effect related to having only
the ideal-gas-like contribution to the thermal pressure in case
of vector-like interactions (for details see Appendix D). As a
result, the critical baryon number density, n(Q)

c , and the bound-
aries of the spinodal region, ηL and ηR, are not independent. In
consequence, we have effectively one less free parameter. For
example, once we set the ordinary nuclear matter properties,
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FIG. 4. Phase diagram in the T -nB (left panel) and T -µB (right panel) planes for sets of characteristics listed in Table I. Solid and dashed
lines represent the boundaries of the coexistence and spinodal regions, respectively. In the legend, the critical temperature of the QGP-like
phase transition T (Q)

c is given in MeV, while the critical baryon number density n(Q)
c and the boundaries of the spinodal region, ηL and ηR, are

given in units of saturation density, n0 = 0.160 fm−3. The coexistence and spinodal regions of the nuclear phase transition, depicted with solid
black and dashed black lines, respectively, are common to all sets of characteristics. Also shown are chemical freeze-out points obtained in
experiment and a parametrization of the freeze-out line from [48].
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Spinodal instability
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Exponential growth!!!  
   cut off by finite range interaction (see Randrup et al)γ ∼ k

Sound Dispersion relation: ω = csk

    in Spinodal regionc2
s =

dP
dρ

< 0

    imaginary⇒ cs = c2
s ≡ ± iγ

Small disturbance: ϕ = ϕ0eiωt = ϕ0e
±γkt



Spinodal decomposition 
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From Wikipedia 

https://en.wikipedia.org/wiki/Spinodal_decomposition


Spinodal decomposition 
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From Wikipedia 

  
Experiment (INDRA @ GANIL) Theory (Boltzmann-Langevin)

Spinodal decomposition in nuclear multifragmentation

Borderie et al, PRL 86 (2001) 3252

32 MeV/A Xe + Sn (b=0)

(select events with 6 IMFs)

Chomaz, Colonna, Randrup, …

Bin wrt

J. Randrup

https://en.wikipedia.org/wiki/Spinodal_decomposition
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Phase-transition dynamics: Density clumping

With phase transition: Without phase transition: Density enhancement:

Evolution of density moments

Insert the modified pressure into existing 
ideal finite-density fluid dynamics code

Use UrQMD for pre-equilibrium stage 
to obtain fluctuating initial conditions

Simulate central Pb+Pb collisions at ≈3 GeV/A beam kinetic energy on fixed target, 
using an Equation of State either with a phase transition or without (Maxwell partner):

Phase  
transition 

Phase coexistence:  surface tension Introduce a gradient term:

Phase separation: instabilities
=>

J. Steinheimer & J. Randrup,  
 PRL 109, 212301(2012) 
 PRC 87, 054903 (2013)

ELab=3 GeV



Approaching the critical point
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Sloooow going!  A.k.a critical slowing down



Critical point: Good luck?
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Ising Critical Exponents in Real Fluids: An Experiment

R. Hocken* and M. R. Moldover
Equation of State Section, Heat Division, National Bureau of Standawds, Washington, D. C. 20294

(Received 1 March 1976)
%'e report precise optical measurements of the equations of state of Xe, SF6, and CO2

very near their critical points (jT—T,~/T & 5X1G ). We find that the critical exponents
of these fluids in this region are close to the exponents calculated from the three-dimen-
sional Ising model.

Theoretical insight into the critical behavior of
fluids has been gained through a combination of
phenomenology, ' ' model calculations, ' and, more
recently, the renormalization- group approach. '
Phenomenology and the renormalization-group
approach have recently converged to an approxi-
mate form for a universal critical equation of
state. ' Three theoretical approaches" ' have
resulted in numerically similar values for the
critical exponents in this equation of state. In
contrast, experiments and recent data correla-
tionsa have suggested that although fluid expo-
nents are nearly universal, they differ from the
values predicted by theory. It has been speculat-
ed that this difference was due to the Iong-range
nature of fluid potentials and might vanish if ex-
periments approached the critical point still more
closely.
We have conducted experiments on three fluids,

Xe, SF„and CO„extremely close to their criti-
cal points (-1.5X10 '& e& 5X10 '). An analysis
of the results yields, for all three fluids, expo-
nents and "universal" amplitude ratios' that are
close to the predicted Ising values.
In these experiments we used the optical tech-

nique developed by Wilcox and co-workers, "'"
which is best described by Estler et a/. " In this
method the Fraunhofer pattern from density pro-
files in a thin slab of fluid is photographed and
analyzed to obtain equation-of- state inf ormation.
Three tluantities are measured: (1) the fringe
number, which is closely related to the quantity
p -Krp; (2) the fringe angle, which determines
the reduced isothermal compressibility, K~; and
(3) the temperature. Here p and p are in the cus-
tomary reduced units. "
All experiments were done with the same cell

(thickness =0.311 cm). It was constructed entire-
ly of sapphire and metal and had a well-defined
geometry. '2 We cleaned the disassembled cell
using ultrasound and U.S.P. methanol and as-
sembled it immediately under a stream of helium.
The cell was then baked (200'C) under vacuum for

24 h. This treatment is essential to avoid slow
contamination of the samples by "out-gassing"
water from the cell walls. In a separate exyeri-
ment we monitored this "outgassing" using a re-
sidual gas analyzer associated with a National
Bureau of Standards (NBS) gas thermometer. Af-
ter the cell was baked, its valve was opened only
during filling.
The gas samples were obtained with specified

purity 99.99% or better. They were further puri-
fied by freezing and pumping off the residual vola-
tile components. The cell was filled using the ap-
paratus and techniques described by Moldover. "
Despite these precautions an apparent drift of the
Quid's critical temperature relative to our ther-
mometers was still observed. However, this
drift was sufficiently small (for all three sub-
stances it was between 5 and 14 nK/min) that we
cannot say whether the fluid's critical tempera-
ture, our thermometers, or both, were drifting.
The filled cell was enclosed in a seven-stage

cylindrical thermostat, two stages of which were
active and five passive. The cell was mechanical-
ly attached and thermally coupled to the inner-
most stage (a 25-kg cylinder of copper). This
block was passive. Its temperature was controlled
by controlling the temperature of the thermally
decoupled heater shell which surrounded it. This
inner stage was purposely isolated to reduce tem-
perature gradients and integrate temperature os-
cillations. It has a time constant of six hours
with respect to heater-shell temperature changes.
The thermal equilibrium of the sample was as-
sessed from the temporal stability of the Fraun-
hofer pattern. Two isotherms per day were taken
far from T„but the rate became one per day or
less as T, was approached.
Our primary thermometer was an "aged" ther-

mistor embedded in the inner block. A capsule
platinum resistance thermometer calibrated by
the NBS Temperature Section was also embedded
in the inner block. It was used to calibrate the
more sensitive thermistor in situ and to check
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Looking for signs of a transition
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Cumulants of (Baryon) Number
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Simple model
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Cumulants of (Baryon) Number
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Measuring cumulants (derivatives) 
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Z = tr e�Ê/T+µ/TN̂B

Kn =
�n

�(µ/T )n
ln Z =

�n�1

�(µ/T )n�1
�N�

K2 = �N � �N��2 =

�
d3xd3y ���(x)��(y)� ; ��(x) = �(x) � �̄
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Susceptibility:

4 8.1 Hadronic Fluctuations and Correlations

One can define and study higher order susceptibilities or cumulants, by differentiating multiple
times with respect to the appropriate chemical potentials

χ(ni,nj ,nk) ≡ 1
V T

∂ni

∂(µi/T )ni

∂nj

∂(µj/T )nj

∂nk

∂(µk/T )nk
log Z. (5)

Higher order cumulants up to the sixth [11, 14] and even eighth [12] order have been calculated
in Lattice QCD which, as we will discuss in section 8.1.3, provide useful information about the
properties of the matter above the critical temperature. In Fig. 2 we show the Taylor expansion
coefficients obtained in two flavor LQCD [14] which are proportional to the susceptibilities defined
in Eq. 5. The upper row in Fig. 2 shows the flavor-diagonal susceptibilities up to sixth-order,

cu,u
2 =

1
2T 2

χu,u

cu,u
4 =

1
24T 2

∂2

∂(µq/T )2
χu,u

cu,u
6 =

1
144T 2

∂4

∂(µq/T )4
χu,u. (6)

whereas the lower row shows the flavor off-diagonal susceptibility

cu,d
2 =

1
2T 2

χu,d (7)

and its derivative with the quark number chemical potential µq = µu + µd

cu,d
4 =

1
24T 2

∂2

∂(µq/T )2
χu,d

cu,d
6 =

1
144T 2

∂4

∂(µq/T )4
χu,d. (8)

We should point out that the results shown in Fig. 2 are based on simulation with rather
large quark masses. Recently, new results for three flavor QCD with almost physical light quark
masses have been reported [9, 15]. In this case, the second order susceptibilities are consistent
with the Stefan-Boltzmann limit of free, uncorrelated massless quarks right above the transition
temperature Tc, while the results shown here (upper left panel) exhibit a 20% suppression. The
phenomenological consequences of this and other physics interpretations of these susceptibilities
will be discussed in the following section.

As already mentioned, susceptibilities are related to intergrals of equal time correlation functions
of the appropriate charge-densities. Here we will restrict ourselves to the second order suscepti-
bilities keeping in mind that the higher order susceptibilities can also be expressed in terms of
appropriate (higher order) correlation functions.

Consider a density fluctuation δρi(x) = ρi(x)− ρ̄i at location x, where ρ̄i denotes the spatially
averaged density of the charge Qi. Then the susceptibilities are given by the following integral
over the density-density correlation functions:

χi,j =
1

V T

∫
d3xd3y 〈δρi(x) δρj(y)〉 =

1
T

ρ̄iδi,j +
1
T

∫
d3rCi,j(r). (9)

The correlation functions

Ci,j(%r) = 〈δρi(%r) δρj(0)〉 − ρ̄iδi,jδ(%r) ∼
exp [−r/ξi,j ]

r
(10)

are characterized by typical correlation lengths ξi,j . The correlation length provides a measure for
the strength and type of the correlation. For example, in case of a second order phase transition
the correlation length diverges with a characteristic critical exponent, usually denoted as ν.
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�(2) i,j =
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V T 3

�
d3xd3y ���i(x)��j(y)� =

1

T 3
�̄i�i,j +

1

T 3

�
d3rCi,j(r)
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Static correlation function;  
“Yukawa” potential with mass: m � 1

�
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� 1

m2
�
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C(r) � exp[�r/�]

r
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simple “sigma” exchange

Critical point (second order)
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Correlation function in Ising Model ?

ξ ∼
1
| t |

Correlation length:

second order cumulant: K2 ∼ χ2 ∼ ξ2 ∼
1

| t |

diverges at critical point

diverges at critical point
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First approximation: 
count σ propagators



Critical point
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• Second order phase transition 
• Fluctuations at all length scales 

• Critical opalescence 



Finite size scaling
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Aoki et al, Nature 43:675-678,2006

Figure 3: Continuum extrapolated susceptibilities T 4/(m2∆χ) as a function of 1/(T 3
c V ). For true phase tran-

sitions the infinite volume extrapolation should be consistent with zero, whereas for an analytic crossover the
infinite volume extrapolation gives a non-vanishing value. The continuum-extrapolated susceptibilities show no
phase-transition-like volume dependence, though the volume changes by a factor of five. The V→∞ extrapo-
lated value is 22(2) which is 11σ away from zero. For illustration, we fit the expected asymptotic behaviour for
first-order and O(4) (second order) phase transitions shown by dotted and dashed lines, which results in chance
probabilities of 10−19 (7 × 10−13), respectively. Error bars are s.e.m with systematic estimates.

Figure 4: The line of constant physics. We show our choice for ms (strange quark mass) and 20mud (u,d quark
masses) in lattice units as functions of 6/g2.

7

large volume small volume

�
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2

II. CUMULANTS AND CORRELATIONS FUNCTIONS

VK: VK: need to check if the ”coupling” is expected to increase with order of cumulant at critical
point. I thought so, this is where the scaling with the correlation length comes from. VK: I think
for this paper we should skip this discussion and concentrate on the signs, centrality and rapidity
dependence

Let us start by introducing the correlation functions, beginning with two particles. The two particle density for
particles with momenta p1 and p2, fl2 (p1, p2), is given by

fl2(p1, p2) = fl1(p1)fl1(p2) + C2(p1, p2), (1)

where fl1 (p) refers to the one particle density, and C2(p1, p2) represents the two-particle correlation function. Inte-
grating over the momenta we get

F2 © ÈN (N ≠ 1)Í =
ˆ

dp1dp2 fl2(p1, p2) = ÈNÍ2 +
ˆ

dp1dp2 C2(p1, p2), (2)

so that in the absence of correlations, C2 = 0, the particle number follows Poisson statistics,
+
N

2,
≠ ÈNÍ2 = ÈNÍ. In

general the two particle density and correlation function depend on the momenta of both particles. In the following,
we will restrict ourselves to correlations in rapidity and adopt the following notation

fl2 (y1, y2) =
ˆ

dpt,1d„1dpt,2d„2fl2 (p1, p2) ,

C2 (y1, y2) =
ˆ

dpt,1d„1dpt,2d„2C2 (p1, p2) ,

C2 =
ˆ

dy1dy2C2 (y1, y2) , (3)

and similarly for higher order particle densities and correlation functions.
The three particle density depends on the one and two-particle densities as well as the two and three-particle

correlation functions

fl3(y1, y2, y3) = fl1(y1)fl1(y2)fl1(y3) + fl1(y1)C2(y2, y3) + fl1(y2)C2(y1, y3)
+ fl1(y3)C2(y1, y2) + C3(y1, y2, y3). (4)

and is related to the third order factorial moment F3 = ÈN (N ≠ 1) (N ≠ 2)Í via

F3 =
ˆ

dy1dy2dy3fl3 (y1, y2, y3) = F
3
1 + 3F1C2 + C3, (5)

where C3 is the integrated genuine three-particle correlation function. Similarly the higher order factorial moment
are given by1

F4 = F
4
1 + 6F

2
1 C2 + 4F1C3 + 3C

2
2 + C4, (6)

F5 = F
5
1 + 5F1C4 + 10F

2
1 C3 + 10F

3
1 C2 + 15F1C

2
2 + 10C2C3 + C5, (7)

F6 = F
6
1 + 6F1C5 + 15F

2
1 C4 + 20F

3
1 C3 + 15F

4
1 C2 + 60F1C2C3 + 45F

2
1 C

2
2 + 15C2C4 + 10C

2
3 + 15C

3
2 + C6. (8)

At the same time, the particle number cumulant, Kn, can be expressed in terms of the factorial moments [6],

K1 © ÈNÍ = F1,

K2 © È(”N)2Í = F1 ≠ F
2
1 + F2,

K3 © È(”N)3Í = F1 + 2F
3
1 + 3F2 + F3 ≠ 3F1(F1 + F2), (9)

and

K4 © È(”N)4Í ≠ 3È(”N)2Í2

= F1 ≠ 6F
4
1 + 7F2 + 6F3 + F4 + 12F

2
1 (F1 + F2) ≠ 3(F1 + F2)2 ≠ 4F1(K1 + 3F2 + F3), (10)

1 See, e.g., Ref. [XXX] for explicit definitions of higher order correlation functions.

C2: Correlation Function

d2N
dp1dp2

≡ ρ2(p1, p2)
dN
dp1

≡ ρ1(p1)
d3N

dp1dp2dp3
≡ ρ3(p1, p2, p3)
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II. CUMULANTS AND CORRELATIONS FUNCTIONS

VK: VK: need to check if the ”coupling” is expected to increase with order of cumulant at critical
point. I thought so, this is where the scaling with the correlation length comes from. VK: I think
for this paper we should skip this discussion and concentrate on the signs, centrality and rapidity
dependence

Let us start by introducing the correlation functions, beginning with two particles. The two particle density for
particles with momenta p1 and p2, fl2 (p1, p2), is given by

fl2(p1, p2) = fl1(p1)fl1(p2) + C2(p1, p2), (1)

where fl1 (p) refers to the one particle density, and C2(p1, p2) represents the two-particle correlation function. Inte-
grating over the momenta we get

F2 © ÈN (N ≠ 1)Í =
ˆ

dp1dp2 fl2(p1, p2) = ÈNÍ2 +
ˆ

dp1dp2 C2(p1, p2), (2)

so that in the absence of correlations, C2 = 0, the particle number follows Poisson statistics,
+
N

2,
≠ ÈNÍ2 = ÈNÍ. In

general the two particle density and correlation function depend on the momenta of both particles. In the following,
we will restrict ourselves to correlations in rapidity and adopt the following notation

fl2 (y1, y2) =
ˆ

dpt,1d„1dpt,2d„2fl2 (p1, p2) ,

C2 (y1, y2) =
ˆ

dpt,1d„1dpt,2d„2C2 (p1, p2) ,

C2 =
ˆ

dy1dy2C2 (y1, y2) , (3)

and similarly for higher order particle densities and correlation functions.
The three particle density depends on the one and two-particle densities as well as the two and three-particle

correlation functions

fl3(y1, y2, y3) = fl1(y1)fl1(y2)fl1(y3) + fl1(y1)C2(y2, y3) + fl1(y2)C2(y1, y3)
+ fl1(y3)C2(y1, y2) + C3(y1, y2, y3). (4)

and is related to the third order factorial moment F3 = ÈN (N ≠ 1) (N ≠ 2)Í via

F3 =
ˆ

dy1dy2dy3fl3 (y1, y2, y3) = F
3
1 + 3F1C2 + C3, (5)

where C3 is the integrated genuine three-particle correlation function. Similarly the higher order factorial moment
are given by1

F4 = F
4
1 + 6F

2
1 C2 + 4F1C3 + 3C

2
2 + C4, (6)

F5 = F
5
1 + 5F1C4 + 10F

2
1 C3 + 10F

3
1 C2 + 15F1C

2
2 + 10C2C3 + C5, (7)

F6 = F
6
1 + 6F1C5 + 15F

2
1 C4 + 20F

3
1 C3 + 15F

4
1 C2 + 60F1C2C3 + 45F

2
1 C

2
2 + 15C2C4 + 10C

2
3 + 15C

3
2 + C6. (8)

At the same time, the particle number cumulant, Kn, can be expressed in terms of the factorial moments [6],

K1 © ÈNÍ = F1,

K2 © È(”N)2Í = F1 ≠ F
2
1 + F2,

K3 © È(”N)3Í = F1 + 2F
3
1 + 3F2 + F3 ≠ 3F1(F1 + F2), (9)

and

K4 © È(”N)4Í ≠ 3È(”N)2Í2

= F1 ≠ 6F
4
1 + 7F2 + 6F3 + F4 + 12F

2
1 (F1 + F2) ≠ 3(F1 + F2)2 ≠ 4F1(K1 + 3F2 + F3), (10)

1 See, e.g., Ref. [XXX] for explicit definitions of higher order correlation functions.

d2N
dp1dp2

≡ ρ2(p1, p2)
dN
dp1

≡ ρ1(p1)
d3N

dp1dp2dp3
≡ ρ3(p1, p2, p3)

∫Acc
dp1 ρ1(p1) = < N > ∫Acc

dp1dp2 ρ2(p1, p2) = < N(N − 1) >

∫Acc
dp1dp2dp3 ρ3(p1, p2, p3) = < N(N − 1)(N − 2) >

Integrate: 

< N(N − 1) > = < N >2 + ∫Acc
dp1dp2 C2(p1, p2) ≡ < N >2 + C2

K2 = < N2 > − < N >2 = < N > + C2

Relation to cumulant
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Simple Algebra leads to relation between correlations Cn and Kn

Defining integrated correlations function

or vice versa

3

where ”N = N ≠ ÈNÍ. Formulas for the higher order cumulants can be found in Ref. [XXX].
Now we can relate the cumulants in terms of the correlation functions and the mean particle number ÈNÍ = F1

K2 = F1 + C2, (11)
K3 = F1 + 3C2 + C3, (12)
K4 = F1 + 7C2 + 6C3 + C4, (13)

and vice versa,with K1 = F1 = ÈNÍ

C2 = ≠K1 + K2, (14)
C3 = 2K1 ≠ 3K2 + K3, (15)
C4 = ≠6K1 + 11K2 ≠ 6K3 + K4, . (16)

Before we apply the above equations to extract the correlation strength from the STAR data, let us make a few
more remarks concerning these correlation functions.

Frequently in the literature, one refers to correlation function where the trivial dependence on the particle den-
sity/multiplicity is removed

cn (y1, ..., yn) = Cn (y1, ..., yn)
fl1 (y1) · · · fl1 (yn) , (17)

which we shall refer to as reduced correlation functions or simply couplings. For example in terms of the reduced
correlation functions the two particle density would be given as

fl2 (y1, y2) = fl1 (y1) fl2 (y2) [1 + c2 (y1, y2)] . (18)

The advantage of the reduced correlation functions is that they are directly sensitive to the dynamics, and should
remain constant if the only change is that of the particle abundances. This will prove helpful when studying for
instance the centrality dependence of the correlations.

Also, the correlation functions Cn are often referred to as “factorial cumulants” [7]
Integrating over rapidity we obtain

Ck = ÈNÍk
ck (19)

where ÈNÍ =
´

�Y dN/dy depends on the rapidity interval �Y and we denote

ck =
´

fl1 (y1) · · · fl1 (yk) ck (y1, ..., yk) dy1 · · · dyk´
fl1 (y1) · · · fl1 (yk) dy1 · · · dyk

. (20)

Using above definition we can write

K2 = ÈNÍ + ÈNÍ2
c2 (21)

K3 = ÈNÍ + 3 ÈNÍ2
c2 + ÈNÍ3

c3 (22)
K4 = ÈNÍ + 7 ÈNÍ2

c2 + 6 ÈNÍ3
c3 + ÈNÍ4

c4 (23)

and analogously for K5 and K6.

Finally we should point out that direct relation between correlation functions and cumulants can not be established
if one considers for example net-proton cumulants. In this case the additional knowledge of various factorial moments
is required. The relevant formulas are given in the Appendix

A. Comments

Before we analyze the existing data several comments are warranted.
(i) First it would be interesting to see how couplings scale with multiplicity if the correlations originate from several

independent sources of correlations. Suppose we have Ns sources of particles, each characterized by the multiplicity

Factorial cumulants capture the leading divergencies

Factorial cumulant
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Moment generating function

Cumulant generating function

g(t) = ln[h(t)] = ln

�
�

n

P (n)ent

�
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n
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dk
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n

P (n)nk =
�
nk

�
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Factorial moment generating function

Factorial cumulant generating function

ḡ(z) = ln[h̄(z)] = ln

�
�

n

P (n)zn

�
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z=1

�

n

P (n)n(n � 1) . . . (n � k + 1)

= �n(n � 1) . . . (n � k + 1)� = fk(n)
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ḡ(z)

����
z=0

=
h̄��(0)

h̄(0)
� h̄�(0)2

h̄(0)2
= �(n(n � 1)� � �n�2

<latexit sha1_base64="A5i/dDz1t24aUH2b+/hJb37G4uQ="></latexit>



Interlude: generating functions

34

Relation between factorial cumulants and cumulants

h(t) =
�

n

P (n)ent

h̄(z) =
�

n

P (n)zn
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h(t) = h̄(z = et); g(t) = ḡ(z = et)
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Cumulant Factorial cumulant

and so on… Mathematica does this for you easily
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Assume we have exactly one particle in each event:

P (n) = �n,1
<latexit sha1_base64="v7xji9J5jrgnGfSpJqzkAOqrBRk="></latexit>

C2 = �K1 + K2 = �1

C3 = 2K1 � 3K2 + K3 = 2

C4 = �6K1 + 11K2 � 6K3 + K4 = �6
<latexit sha1_base64="WXNmzw/1yCStjOu5WHXZeN/viKQ="></latexit>

K1 = �N� = 1
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�
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Kn = 0; N > 1
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Cn = (�1)n�1(n � 1)!
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In general:

(n>1)-particle correlations with one particle only!!!!

Factorial cumulants “measure” deviation from Poisson !
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Poisson distribution: P(N ) = eΛ ΛN

N!

Properties: Sum distribution of two Poissonian is again Poisson

P(N = N1 + N2) = ∑
N1,N2

P1(N1)P(N2)δN,N1+N2
= eΛ1+Λ2

(Λ1 + Λ2)N

N!

1 2
No correlations;  all factorial cumulants vanish Cn = 0 n > 1

Cumulants: Kn = < N >
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Binomial Distribution P(n; N ) =
N!

n!(N − n)!
pn(1 − p)N−n

 (Bernoulli) probability of success in one throw of “coin”p
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6

maximum number of participants, Nmax
part (394 for Au+Au

collisions), suppresses the initial volume fluctuations.
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FIG. 3. Centrality dependence of the proton cumulant ratios
for Au+Au collisions at p

sNN = 3.0 GeV. Protons are from
�0.5 < y < 0 and 0.4 < pT < 2.0 GeV/c. Systematic uncer-
tainties are represented by gray bars. Statistical uncertainties
are smaller than marker size. CBWC is applied to all cumu-
lant ratios. While open squares represent the data without
correction, blue triangles and red circles are the results with
VFC using the hNparti distributions from the UrQMD and
Glauber models, respectively.
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FIG. 4. Similar to Fig. 3: Rapidity and transverse mo-
mentum dependence of the proton cumulant ratios for 0–5%
central collisions. Black-squares, red-dots and blue-triangles
stand for data without and with the VFC using Glauber and
UrQMD, respectively.

Figure 4 depicts the cumulant ratios as a function of
rapidity y and transverse momentum pT in 0–5% central
collisions without and with the VFC. It is expected [45–

47] that the cumulant ratios approach the Poisson base-
line in the limit of small acceptance. For C3/C2, the ra-
tios with the VFC (UrQMD) and without the VFC devi-
ate from the Poisson baseline at the narrow rapidity win-
dows. The VFC (Glauber) ratio approaches unity as the
acceptance is decreased. For the C4/C2 ratio, the VFC
has a negligible effect in the most central bin. Therefore,
C4/C2 is reported without VFC in the discussions below.
In the central 0–5% collisions, as shown in Fig. 4, one ob-
tains C4/C2 = �0.85 ± 0.09 (stat.) ± 0.82 (syst.) in the
kinematic acceptance of �0.5 < y < 0 and 0.4 < pT < 2.0
GeV/c. The UrQMD model qualitatively reproduces the
acceptance dependence of the data, see Fig. 6 in the sup-
plemental material [37].

FIG. 5. Collision energy dependence of the ratios of cumu-
lants, C4/C2, for proton (squares) and net-proton (red circles)
from top 0–5% Au+Au collisions at RHIC [14, 15]. The points
for protons are shifted horizontally for clarity. The new re-
sult for proton from p

sNN = 3.0 GeV collisions is shown as a
filled square. HADES data of psNN = 2.4 GeV 0–10% colli-
sions [48] is also shown. The vertical black and gray bars are
the statistical and systematic uncertainties, respectively. In
addition, results from the HRG model, based on both Canon-
ical Ensemble (CE) and Grand-Canonical Ensemble (GCE),
and transport model UrQMD are presented.

A non-monotonic energy dependence of the net-proton
C4/C2 was reported for 0–5% central Au+Au collisions
at p

sNN = 7.7–200 GeV [14, 15]. A similar energy de-
pendence of the C4/C2 of protons is also evident (open
squares in Fig. 5). Though a minimum appears around
20 GeV, both the C4/C2 ratio of protons and net-protons
at 7.7 GeV are close to unity, albeit the large statistical
uncertainties. Meanwhile, the C4/C2 value for Au+Au
collisions at psNN = 3.0 GeV is around �1. The negative
value of the proton C4/C2 is reasonably reproduced by
the transport model UrQMD [17, 49].

The study of cumulant ratios in heavy-ion colli-
sions has motivated several QCD inspired model cal-
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FIG. 22. Au + Au data: Efficiency and N2LO volume-corrected
proton cumulant ratios plotted as a function of the width of the
rapidity bin defined by y ∈ y0 ± !y and 0.4 ! pt ! 1.6 GeV/c.
Shown are ω = K2/K1 (top), γ1 × σ = K3/K2 (middle), and γ2 ×
σ 2 = K4/K2 (bottom) for various 5% centrality selections. Error
bars are statistical only, and dashed lines connect the data points
belonging to a given centrality. With decreasing !y, all ratios tend
toward unity (indicated also by a horizontal line); i.e., they approach
the Poisson limit where K1 = K2 = K3 = K4.

we show in Fig. 22 for a few centrality selections the ratios
of fully corrected cumulants (ω = K2/K1, γ1 × σ = K3/K2,
γ2 × σ 2 = K4/K2, where Kn are cumulants) as a function of
the width of the rapidity bin, namely y ∈ y0 ± !y, centered
at midrapidity y0 = 0.74 and with 0.4 ! pt ! 1.6 GeV/c.
These ratios were derived from the reduced cumulant ex-
pansions obtained by fitting one of Eqs. (9) or (10) to the
efficiency-corrected and centrality-selected data points.19 In

19For very narrow phase space, the NLO and N2LO fits give very
similar results.

this procedure, the modified volume cumulants Vn obtained
from the experimental Nhit distributions, as laid out in Sec. V,
were inserted while the values of the κn, κ ′

n, and κ ′′
n were

adjusted. Error bars shown in Fig. 22 are statistical; they were
obtained with the sampling techniques discussed in Sec. VI.
As phase space closes more, ever fewer correlated particles
contribute and one expects their distribution to approach the
Poisson limit [7] where the Kn converge, i.e., Kn = 〈Nprot〉 for
all n. From the figure, it is apparent that the data follow indeed
in all centrality selections such a behavior, with the cumulant
ratios approaching unity within their statistical errors.

Turning to rapidity bites substantially larger than ±0.1,
we found that NLO volume effects do not suffice anymore
to give a good description of the observed proton cumulants,
meaning that N2LO volume terms must be included. This is
demonstrated in Fig. 23, which, for y ∈ y0 ± 0.2, compares
the effect of the volume correction at successive levels of
sophistication. Shown are the reduced cumulants κ1, κ2, κ3,
and κ4 as a function of Npart when using 5% centrality bins:
either not volume corrected (open triangles), or with only the
leading order (LO) correction of Eq. (7) applied (open circles),
or with the full N2LO correction applied (full squares). To
not clutter the pictures too much, the NLO corrected points
are not displayed explicitly but both fit curves are shown:
NLO (dashed curve) done with Eq. (9) and N2LO (solid
curve) done with Eq. (10). The corresponding statistical and
systematic errors were obtained with the procedures described
in Sec. VI. Figure 23 illustrates that the LO scheme proposed
in Refs. [77,78] removes in our case only about 50–70% of
the volume fluctuations. While using instead NLO corrections
does improve the description, it still does not lead to a
fully satisfactory fit of the cumulants. One can see that the
linear fit of κ2, in particular, misses the data points which
definitely display a substantial curvature. When enlarging the
accepted phase space further, curvature terms become even
more important, as shown in Fig. 24, which compares volume-
corrected reduced proton cumulants and fits in the two rapidity
bins, y ∈ y0 ± 0.2 and y ∈ y0 ± 0.4. Consequently, all results
presented in the following were obtained by consistently
applying the full N2LO volume corrections.

Comparing furthermore the measured reduced proton cu-
mulants of Fig. 24 with their transport calculation coun-
terparts, as shown in Fig. 16, one can notice a qualitative
agreement for the y ∈ y0 ± 0.2 rapidity bite. In particular, the
IQMD model seems to capture the basic trends of κn with
Npart, including the presence of a curvature in κ2. However,
in our simulations, all three codes used (IQMD, UrQMD, and
HSD) generally miss the absolute magnitudes of κn, κ ′

n, and
κ ′′

n . In the present study, we refrained, however, from a more
detailed comparison of our data with model calculations.

From the reduced cumulants κn, the full proton cumulants
Kn = Npart κn as well as their ratios are readily obtained.
Cumulant ratios are shown as a function of Npart in Fig. 25
for rapidity bites y ∈ y0 ± 0.2 and y ∈ y0 ± 0.4. In contrast
to the narrow midrapidity bin y ∈ y0 ± 0.05 (cf. Fig. 22),
the deviation from the Poisson limit—where all Kn would
be equal—is blatantly apparent: Except for the notable re-
gion around Npart = 150, cumulant ratios at all orders differ
strongly from unity and they display, overall, a highly non-
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