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I. BASIC THERMODYNAMIC PROPERTIES

Problem:
The pressure for non-interacting fermions (upper sign) and bosons (lower sign) is given by

P = ±T
∫

d3k

(2π)3
ln
[
1± e−(Ek−µ)/T

]
, Ek =

√
k2 +m2 . (1)

1. Show that for fermions

s = −
∫

d3k

(2π)3
[(1− fk) ln(1− fk) + fk ln fk] (2)

and derive the analogous expression for bosons

2. Derive expressions for the specific heat for bosons and fermions,

cV = T
∂s

∂T
(3)

and evaluate them

(a) for T � m,µ (fermions and bosons), using∫ ∞
0

dx
x4

coshx+ 1
=

7π4

15
,

∫ ∞
0

dx
x4

coshx− 1
=

8π4

15
(4)

(b) for T � µ and m = 0 (only fermions), using∫ ∞
0

dx
x2

coshx+ 1
=
π2

3
(5)

Solution:

1. We abbreviate

x ≡ Ek − µ
T

,

∫
k

≡
∫

d3k

(2π)3
. (6)

Then, for fermions, we have

fk =
1

ex + 1
, (7)

from which we obtain the useful relation ex = (1− fk)/fk. Then we find

sfermions =
∂P

∂T
=

∫
k

[
ln(1 + e−x) + xfk

]
= −

∫
k

[(1− fk) ln(1− fk) + fk ln fk] . (8)
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For bosons, we have

fk =
1

ex − 1
, (9)

and thus ex = (1 + fk)/fk. This yields

sbosons =
∂P

∂T
= −

∫
k

[
ln(1− e−x)− xfk

]
=

∫
k

[(1 + fk) ln(1 + fk)− fk ln fk] . (10)

2. We compute for fermions (upper sign) and bosons (lower sign)

cV = T
∂s

∂T
= T

∫
k

x
∂fk
∂T

=

∫
k

x2ex

(ex ± 1)2
=

∫
k

x2

ex + e−x ± 2
=

1

2

∫
k

x2

coshx± 1
, (11)

(a) For sufficiently large temperatures, we can neglect m and µ, such that

cV '
1

4π2

∫ ∞
0

dk k2
k2

T 2

1

cosh k
T ± 1

=
T 3

4π2

∫ ∞
0

dy
y4

cosh y ± 1
=


7π2T 3

60
(fermions)

2π2T 3

15
(bosons)

(12)

(b) For small temperatures we use the fact that the main contribution to the integral comes from the Fermi
surface (the Fermi momentum for massless fermions simply is µ),

cV =
1

4π2

∫ ∞
0

dk k2
(k − µ)2

T 2

1

cosh k−µ
T + 1

' µ2

4π2

∫ ∞
0

dk
(k − µ)2

T 2

1

cosh k−µ
T + 1

. (13)

Introducing the new integration variable y = (k − µ)/T yields

cV '
µ2T

4π2

∫ ∞
−µ/T

dy
y2

cosh y + 1
' µ2T

4π2

∫ ∞
−∞

dy
y2

cosh y + 1
=
µ2T

2π2

∫ ∞
0

dy
y2

cosh y + 1
=
µ2T

6
. (14)
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II. NON-INTERACTING NUCLEAR MATTER

Problem:

1. Show that electrically neutral, non-interacting nuclear matter (n,p,e) at zero temperature and in β-equilibrium
(assuming µν ' 0)

(a) must contain protons in general, np 6= 0

(b) has a proton fraction
np

nB
= 1

9 in the ultra-relativistic limit

(c) obeys
np

nB
< 1

9 except for very small densities (requires numerical evaluation)

2. Show that non-interacting, pure neutron matter in the non-relativistic limit has a following ”polytropic” equation
of state,

P (ε) = Kεp , (15)

and compute K and p.

Solution:

1. (a) Neutrality requires ne = np and thus

kF,e = kF,p (16)

With µ =
√
k2F +m2 and the condition from β-equilibrium µe + µp = µn we have√

k2F,e +m2
e +

√
k2F,p +m2

p =
√
k2F,n +m2

n . (17)

Suppose the system contains no protons (and then, because of neutrality, no electrons either), kF,p = 0.
Then, this equation becomes,

k2F,n = (me +mp)
2 −m2

n . (18)

The right-hand side is negative, because the neutron is slightly heavier than electron and proton together
[that’s why a neutron in vacuum decays into a proton and an electron (and an anti-neutrino)]. Hence there
is no solution for kF,n and we conclude that protons must be present.

(b) In the ultra-relativistic limit, me ' mn ' mp ' 0, Eq. (17) becomes

2kF,p = kF,n (19)

Since n ∝ k3F , this is equivalent to

8np = nn , (20)

and thus
np

nB
= 1

9 with nB = nn+np. That’s why dense nuclear matter is neutron rich and hence the name
neutron star.

(c) For the numerical solution we replace kF,e and kF,p in Eq. (17) by (3π2np)
1/3 and kF,n by [3π2(nB−np)]1/3,

and solve the resulting equation numerically for np for given nB . The result for a large range of nB is
shown in Fig. 1, and we see that np ≤ nB/9 with the upper limit approached asymptotically for nB →∞.
We also see that there is an onset density for neutrons below which the system only contains electrons and
protons.

2. The non-relativistic limit is given by m� kF . We can thus approximate the energy density as

ε =
1

π2

∫ kF

0

dk k2
√
k2 +m2 ' m

π2

∫ kF

0

dk k2
(

1 +
k2

2m

)
=
mk3F
3π2

+O(k5F ) . (21)
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FIG. 1: Proton and neutron densities as a function of the total baryon number density, all given in units of nuclear saturation
density, n0 ' 0.15 fm−3 ' 1.15 × 106 MeV3. Dense matter in neutron stars only covers a small part of this logarithmic plot,
nB ∼ (1− 10)n0. The dashed line is nB/9.

The pressure becomes

P =
1

π2

∫ kF

0

dk k2(µ−
√
k2 +m2) ' 1

π2

∫ kF

0

dk k2
[
m

(
1 +

k2F
2m

)
−m

(
1 +

k2

2m

)]

=
1

2mπ2

∫ kF

0

dk k2(k2F − k2) =
1

2mπ2

(
k5F
3
− k5F

5

)
=

k5F
15mπ2

, (22)

where µ =
√
k2F +m2 ' m

(
1 +

k2F
2m

)
has been used.

Putting these two results together yields the equation of state given in Eq. (15) with

p =
5

3
, K =

(
3π2

m

)5/3
1

15mπ2
. (23)


