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I. INTRODUCTION AND OUTLINE

We shall discuss systems in equilibrium at finite temperatures and chemical potentials. In most parts we will follow
the book by Kapusta [1], see also the book by Le Bellac [2] or the online lecture notes by Laine [3] for additional
reference. We will focus on the functional integral approach, for a different approach using second quantization
see the book by Fetter and Walecka [4]. We shall learn the tools of functional integration, Matsubara summation,
perturbation techniques, and discuss important theoretical concepts such as spontaneous symmetry breaking and
restoration thereof at large temperatures. Applications, to be discussed after learning these techniques, are

e early universe, cosmology

— inflation, T ~ 10'° GeV
— electroweak phase transition T ~ 102 GeV
— QCD phase transition, T ~ 102 MeV (for comparison, this is ~ 1012 K)

— baryogenesis
e QCD phase transitions

— heavy-ion collisions (“little bang” vs. “big bang”)
— chiral symmetry (spontaneous breaking thereof)
— lattice QCD

e compact stars, T < 10 MeV, p, ~ 400 MeV

— dense nuclear matter
— neutrino emissivity

— quark matter, color superconductivity

The physics of compact stars are discussed in a separate lecture, for the lecture notes see Ref. [5] (some methods of
thermal field theory are also used in my lectures about superfluids, see Ref. [6]). For a review of the basic features of
thermal field theory with emphasis on heavy-ion collisions, see Ref. [7]; for a review of more advanced techniques, in
particular in the context of QCD, see Ref. [8].

[End of 1st lecture, Oct 7th, 2013.]

II. BASICS OF STATISTICAL QUANTUM MECHANICS

This chapter serves as a quick reminder of the main ingredients of statistical quantum mechanics and its relation
to thermodynamic quantities. A good textbook about statistical physics is the book by Nolting [9]. The goal of
this reminder is to explain the meaning and form of the partition function which, in later chapters in the functional
integral representation, plays a central role in thermal field theory.

A. Statistical operator

We start by recalling that statistical quantum mechanics involves probabilities on two levels. First, on the funda-
mental level, quantum mechanics itself involves some kind of statistics, i.e., we can only give probabilities to measure
a certain value of an observable. Let A be an observable with a set of complete orthogonal eigenstates |n) and
eigenvalues a,,,

Aln) = anln), (1)

with (m[n) = dmn, Y, |n)(n] = 1. We can expand any state [¢) in terms of these eigenstates,

) =3 caln). (2)

n
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The probability to measure the value a,, in the state [)) is |¢,|? with ¢, = (n|¢)). Then, the expectation value of A
in the state |¢) is

<A> = Z|Cn|2an
= > nlv)an

= Y () (w|An)

n

= (PlA[p). (3)

Second, and independent of the quantum probability interpretation, there is a level of uncertainty for macroscopic
systems of which we don’t know (and are not interested in) the microscopic details. We now consider many possible
(orthogonal) quantum mechanical states |iy,) each of which we find with a probability p,,, 0 < p,, < 1. Then, the
expectation value for A is not only given by the quantum mechanical averaging but also by averaging over the possible
states |1, i.e.,

If we define the statistical operator
p= me|wm><1/)m| ) (5)
we can write the expectation value as
() = Te(p A). (6)
Proof:
<A> = me<wm|‘4|wm> = Z pm<wm|¢z><¢z|‘4|¢3><¢]|wm>
m ©,5,m
= Y piidiy =Te(p A). (7)
0,J
We obviously have pf = p and
Trp=1 (8)

(which is clear from setting A=1 above). The meaning of p can also be understood from the analogy to classical
statistical mechanics. In this case, there is a probability distribution p(p, ¢) in the 6 N-dimensional phase space (N be
the number of particles which each moves on a trajectory in phase space); then, d*Npd®N g p(p, q) is the probability
to find the system in the small region d*¥pd3N ¢ in phase space. An observable A has a value A(p, q) if the system
sits on the point (p, ¢) in phase space, and its expectation value is given by

_ 1 3N, 3N
) = G | A a0(0.0) A, )
where the factor N! in the normalization refers to the exchange of particles and the factor (27h)3" is included to
do the transition to a quantum mechanical system. Comparing Eq. (6) with Eq. (9) shows the formal similarity
between the quantum and classical expectation values (the trace is replaced by the phase space integral). This formal
correspondence goes further, e.g., the Liouville equation for the classical probability distribution

op

o =—{t.p). (10)



where H is the Hamilton function of the system and {—,—} the Poisson bracket, is very similar to the Heisenberg
equation for the statistical operator
0p i,
— =——[H,p 11
L 2,4, (11)

with the Hamilton operator H. Here we shall be mostly concerned with equilibrium situations and thus [lfI ,p] = 0.

B. Grand canonical ensemble

Let us now recall the different ensembles in statistical physics (both classical and quantum mechanical). One should
in the following always think of an ensemble as a collection of many different systems with the same fixed macroscopic
properties but different microscopic configurations. Which macroscopic properties are fixed depends on the ensemble:

e microcanonical ensemble (E, N, V)
e canonical ensemble (T, N, V)
e grand canonical ensemble (T, u, V')

with the volume V', the energy E, the particle number (charge) N, the temperature T, and the chemical potential
u (associated with the charge N); in general, there can be more than one conserved charge and chemical potential.
We shall mostly be concerned with the grand canonical ensemble. Therefore, let us give a brief derivation of the
statistical operator in the grand canonical ensemble. Consider a system 3 with fixed energy E, charge NV, and volume
V. We are interested in a small subsystem X(1) such that ¥ = £ U X®) and such that () and X(?) are separated
by walls through which charge and energy can be exchanged. Let us denote the energy, charge, and volume of the
subsystems by E(®), N V(i)A. We then have £ = EW 4+ E@ N =NO 4 N®_ We assume that the Hamilton and
charge operators commute, [H 0 N (i)] = 0, and thus that there is a set of simultaneous eigenstates |Fy,,n) for the
subsystem X1,

HY\Ep,n) = Ep|Em,n), (12a)

NY|E,,,n) = n|En,n). (12b)
We can write the statistical operator as

5= Dol B 0Bl (13)

We are interested in the probability py, , to find the system (M in the state |Epn,n) with energy E,, and charge
N = p. This probability is proportional to the number of states I' available in the complementary system (2,

P < TO(E - E,, N —n,V®). (14)

The system (2 acts as a heat and particle bath for ¥(V) and thus E,, < E, n < N. We can then expand the
logarithm of T,

E,, 85® n 05®
0 kg ON Em=n=07

InT@(E - E,,N-n,V®)~ i5<2>(E, N, V@)

ko kg OF | (15)

=n=
where we have used the definition for the entropy S = kg InT" where kp is the Boltzmann constant. Now we can use
the thermodynamic relations 0S/0FE = 1/T, 9S/ON = —u/T (in fact, one can view the derivatives in Eq. (15) as the
definitions of temperature and chemical potential) to obtain

P X e~ B(Em—pn) , (16)
with

B

1



(Later we shall always use units where i = ¢ = kg = 1 such that £ is simply the inverse temperature, § = 1/T.) Here
we have dropped the contribution S /kp which only depends on the system X(?) and thus can be absorbed in the
normalization, to be determined below. Inserting this into the statistical operator (13) yields

poc Y e BB ) (B | = e A 0N ST B ) (B | = e PS8 (18)

m,n m,n

Here we have used that the exponential of an operator is defined via the expansion in powers of the operator,
a(

i Al . i Al A
et =3, ‘2—!. Therefore, one has for instance e|n) = ", %|n> = > ¢ 7tIn) = e|n). We have also used that H®
—pN M) _ 6_6H(1)€6HN(1>.

and N commute, such that we can factorize the exponential, e—BHY
To fulfill the normalization (8) we find (dropping the superscript “(1)”, from now on we are only talking about the
subsystem (1))

e BH-pN)
= (19)
where
Z = Tre PH-1N) (20)

is the partition function of the system. This means that, with Eq. (6), the expectation value of an observable Ais
given by

Tr[fle_ﬁ(g_“m]

() - Bl

(21)

We can derive all thermodynamic quantities from the partition function, which thus is the central quantity in statistical
physics. For instance we have the grand canonical potential (sometimes called the thermodynamic potential)

T, u, V)= —% InZz. (22)

This function is related to the other thermodynamic quantities via
QO=—-PV=E—-uN-TS5, (23)

where P is the pressure. From the partition function we immediately get, in accordance with (23),

oy 10lnZ
o B ou
_ Loz
- BZop
Tr N e—BH—pN)
S —
= —(N)=-N, (24)
and
90 Tr [(ﬁ — uN)e*ﬁ(H’“N)

8—T:—1HZ—5 = (Inp) = —(5), (25)
since Inp = In e~ BH=-1N) _1n 7 = —B(H—puN)—InZ.

Let us compute the partition function for the simplest cases before we turn to the field theoretical description.
Let us first consider a single energy state with energy w which we can fill with bosons. Remember that this simple
many-particle system resembles the one-particle harmonic oscillator because the Hamiltonian is H = w(N + 1/2),



where we drop the zero-point energy w/2. Since arbitrarily many bosons can populate the state, the partition function
is

oo . oo 1
_ —Bw=w)N |y — —B(w=—p)n —
z=3 (ol =3 () = ——— (26)
n= n=

where, for the last step, we have assumed p < w, such that we can apply the formula for the geometric series
ZZOZO q" = 1%(1 for 0 < ¢ < 1. The thermodynamic potential is thus

Q= -ThZ=Th [1 - e*ﬂ@’*ﬂ)} (27)

and the particle number

00 1

N=—5,~ w1

(28)
One can already see from this simple example that something interesting happens if the chemical potential approaches
the energy w, since in this case the particle number seems to diverge. This is a first hint of Bose-Einstein condensation
which we shall discuss later. We also see that the chemical potential cannot assume values larger than w in order to
avoid negative N. This is a restriction for non-interacting systems.

For fermions we get a similar expression, with the difference that we can only put one fermion at most into the
energy state. Consequently, the sum only runs over n = 0,1, and we get

1
7 = Z<n|e—6(w—u)N|n> =14 Blo—p) , (29)
n=0

where the n = 0 term yields the 1 from the expansion of the exponential (which is obvious from writing e~ (w=pN —
1— B(w—p)N +...). In this case, the thermodynamic potential is

Q= -ThZ=-Th [1 + e Blo—n) (30)

and the particle number

00 1

N=—5, = w1

(31)
In this simple case of just one single energy w, the particle number at vanishing temperature is N = 0 for 4 < w and
N =1 for p > w. At nonzero temperature, N assumes values in between 0 and 1.

Next we allow for a dispersion of the particles, i.e., the energy may depend on the (modulus of the) momentum,
wp = w(p). We start with a box with size L in all three dimensions. The box size must be an integer times half of the
wavelength A, L = nA/2. With the de Broglie relation for the wavelength p = 2w/ (we set A = 1) we have p = nw/L.
The log of the full partition function is the sum over all partition functions of the single modes,

nZ — Z InZ :V/ d’p InZ ::FVZ/ dp 1n[13Fe—ﬁ(wp—eu)] (32)
2=V B =F L | Gy |

nz(nmanyanz)

Here we have employed the infinite volume limit L — oo where we can replace the sums over n; by integrals floo dn;.
Then, we have used dn; — L/mdp; from the above de Broglie relation and have doubled the range of the three
momentum integrals, hence the the factor 22 in the denominator. Also, we have defined the volume V = L3. In
the second step, we have inserted the above expressions for the log of the partition function for a single mode for
bosons (upper sign) and fermions (lower sign). Finally, we have added a sum over e = 4 accounting for particles and
antiparticles which differ in the sign of their chemical potential. The conserved charge is thus

d3p 1
N=V> e / G P T 1 (33)

We shall often consider the charge density n = N/V instead. In the case of bosons (upper sign) we see that we have
to require —minw, < p < minw, in order to have positive occupation numbers.
[End of 2nd lecture, Oct 14th, 2013/]



III. PARTITION FUNCTION IN THE PATH INTEGRAL FORMALISM

Here we derive the expression for the partition function in quantum field theory as opposed to usual quantum
mechanics. Remember that in usual quantum theory, the projection of an eigenstate (x| of the position operator %
onto the eigenstate |p) of the momentum operator p is given by a plane wave,

(x|p) = €. (34)
In quantum field theory, the discrete sum p - x = ), p;x; becomes an integral,

<¢)|7r> _ eifd?’z m(x)p(x) ) (35)

Here, ¢(x) and 7(x) are eigenvalues (better: eigenfunctions) of the field operator (at ¢t = 0) ¢(x,0) and its conjugate
momentum operator 7(x,0). We have the following completeness and orthogonality conditions,

[ dotl66l =1, (616 = dl6u(x) = 640 (36a)
JEZL mr =1 ralm) = 8Tra) = mx). (36D)

The Hamiltonian H of the system is given by the Hamilton density # which can be expressed in terms of the field
operators,

H= /d?’xH(fr(x, t), b(x,1)). (37)

In the following we shall write the partition function in terms of the fields ¢ and 7 and get rid of all operators. To
this end, we first compute a transition amplitude with identical initial and final state, say ¢, at times ¢ = 0 and
t = ty. The initial state evolves in time upon applying the unitary operator et assuming that H does not depend
explicitly on ¢. (We are not interested in the general case with time-dependent H since eventually we want to compute
the partition function; the statistical operator has the form e ## for all H.) We divide the time interval [0, ¢ ] into
N pieces with length At. Then we can write the transition amplitude as

li <¢a|e—mme—mm o e—iﬁAt|¢a>

im
N —o00

(bale™ 17 |6,)

= [ T 20 ) b vl 2 g o ) 2 e~ )
i=1 T

N—o00 2

X oo x {galmy) (mi e A b1) (1] da) (38)

where we inserted each of the completeness relations in Eqs. (36) IV times alternatingly. Now, for the scalar products
of the form (¢;1|m;) we use Eq. (35). For the factors involving the Hamiltonian we use

. ) 3 —
(mi|e A )~ e AL E e H(Dimi) (71
_ e—iAtdez H((bi,m)e*ifdsmmd’i , (39)

where we have approximated e~#At ~ 1 _ iAIAt and used that the Hamiltonian at a given time labelled by i
is a sum of powers of the fields ¢; and m;. This is needed to replace the operators in the exponential by their
eigenfunctions, by applying all field operators ¢ to |¢;) and all momentum operators # to (m;|. Moreover, we have

used that (7|¢) = (p|m)*, hence the minus in the exponent compared to the scalar product in Eq. (35). From the last



T 1
t=0 =0 =
q) a i 2nT

FIG. 1: Left: illustration of the functional integration over fields with identical inital and final states at times t = 0 and t = ty.
In thermal field theory, we work with imaginary time where the field is periodic in the interval with boundaries 7 = 0 and

= (. The integral is performed over all ¢, each of them with the shown periodicity. Right: due to this periodicity, space-time
in thermal field theory can effectively be viewed as a cylinder whose radius is proportional to the inverse temperature. For zero
temperature, the radius goes to infinity and the flat topology is recovered.

factor in the integrand in Eq. (38) we obtain (¢1]|¢s) = §(¢a — ¢1). Consequently,

(bale™ 17 |6,)

. dmi(x ifd*z[rn(p—dN)+TN_1(dN—DN_1 m1(d2—¢1
tim_ [ TT 506,606, (x) — 1l 7 mx(0mom)smnslonon ) tcmaamo)

% e—iAtfd3x[H(¢N77TN)+---+H(¢17771)]

i [ f:[d”;—fj‘)m)éwa() 61(0)] exp Zm [ [ BT e m)| o

N —oc0

where we have denoted ¢n1 = ¢o. We can now take the limit N — oo to obtain

(Bale™ At |§,) = /Dw /:(W):%(X) Do exp {z‘/otf dt/d3x [7(x,)0:p(x, 1) —H(¢(x,t),7r(x,t))]} . (41)

(x,0)=¢a(x)

We have denoted the continuum limit of the functional integration as

/H dri(x /p7T /ilf[ld@(x) ~ /qu. (42)

We can now use the result (41) to compute the partition function. To this end we compare Eq. (41) with Eq. (20).
We see that the trace looks like a transition amplitude with identical initial and final states,

A Tre*ﬁ(ﬁflﬂ\?)

[ o tge2i-)

/ Dr /p e D¢ exp l /0 ’ dr / dBx (imdrd — H 4 uN) | . (43)

Here, we have, upon comparing with Eq. (41), identified the inverse temperature with “imaginary time”

T=it, (44)

such that the integration over 7 goes from 0 to the inverse temperature 5 = 1/T. The term “periodic” for the ¢
integral means that all functions ¢ have to be periodic in the imaginary time direction, ¢(x,0) = ¢(x, ). The integral
over d¢ integrates over all boundary values which are fixed in Eq. (41). We are left with a partition function which
is given entirely in terms of the fields, all operators are gone.



IV. REAL NON-INTERACTING SCALAR FIELD

We now compute the partition function (43) for the simplest case, a real non-interacting scalar field which is
described by the Lagrangian

L= % OV ) %m%ﬁ =5 [(09)* = (V) —=m*¢”] . (45)

N | =

Here and throughout the lecture our convention for the Minkowski metric is g** = diag(1, —1, —1, —1). In the case of
a real scalar field there is no continuous symmetry of the Lagrangian, hence there is no conserved charge and thus no
chemical potential. We shall introduce the chemical potential for a charged complex field in the subsequent section.

For the partition function (43) we need the combination 79y — H. First we compute H. Remember that £ and
H are connected via a Legendre transformation which changes the independent variable dp¢ (velocity ¢ in classical
mechanics) to the conjugate momentum 7 (momentum p in classical mechanics), i.e., L = L(9p¢, d, Vo), while
H = H(m, ¢, V). In order to perform the Legendre transform we need the conjugate momentum

oL
W:a(ao¢):80¢. (46)
Therefore, the Hamiltonian is
H(m, ¢, Vo) = [w00d — L(Dod, d, V) gy ser = % (7% + (Vo)? + m?¢°] (47)

and thus

oo — H

76— 3 [+ (Vo) +m*¢?]

= 5 [(@09)? ~ (Vo) — m*?] — 5 (r — 000)”
= L— %er, (48)

with the shifted momentum 7 = 7m — Jdp¢p. If we use this shifted momentum as our new integration variable, the
integration over the field ¢ separates from the integration over the momentum 7, and we obtain

/Dfr exp <—%/X7~1'2(7’,X))/D¢ exp/Xc

- N/quexp/xﬁ, (49)

where we have absorbed the result of the Gaussian momentum integral into an irrelevant constant!', and where we

have abbreviated
B
/ E/ dT/d3a:. (52)
X 0

Z

1 This constant is infinite, but indeed independent of temperature, as one can see by introducing the Fourier components for the conjugate

momenta,
T )
AX)=4/=> e HXr(K). (50)
2>

Then, with Eq. (56),

/Dfr exp (—% /Xer) = /Dfr exp {—% ZK:fr(—K)fr(K) . (51)

This integral can formally be computed by using Eq. (61).
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It remains to perform the integral over the Lagrangian which can be done exactly for a non-interacting field. We
denote four-momenta by capital letters,

X = (t,x) = (—ir,x), K = (ko, k) = (—iwn, k), (53)

where w,, are the “Matsubara frequencies” which we explain now. The Fourier transform of the field is

_ L e K- ez(“’” )

with the Minkowski scalar product K - X = kgzg — k- x. Note that in terms of w,, 7, the scalar product is Euclidean.
The sum is over discrete values ko, k (the summation over k will become an integral over continuous k when we
take the thermodynamic limit below). The normalization is chosen such that the Fourier-transformed fields ¢(K) are
dimensionless. We know from the previous section that the field has to be periodic, ¢(0,x) = ¢(8,x). To fulfill this
periodicity requirement we need e*~% =1, i.e., w, 3 has to be an integer multiple of 27, or

wp = 2mnT, nez. (55)

[End of 3rd lecture, Oct 21st, 2013.]
With the Fourier transform (54), and the relation

. \%4
K- X ¥
/Xe = T5K70, (56)

we have

_1 2 2 1202
£ = =5 [ 1007+ (Vop+mie?]

-1
= a2 ), (57)
K

with the free (hence the subscript “0”) inverse propagator in momentum space
DM (K)=w? + k> 4+ m? = -K>+m?. (58)

Explicitly, we have for example for the first term,

2 i t(wnT+k-x) H(wm T+q-x)
[eor = o5 [ > b B )0re 4(Q)]

/X > wnwme EFDXG(K))(Q)

K,Q

1
= 73 2 wnd(~K)9(K). (59)
K
Since ¢(X) is real we have ¢p(K) = ¢*(—K) and thus
1 . Dyt K

Z=N / Do exp [—5 >0 (K)%M)] . (60)

K

We can evaluate this integral by using the general formula
/de B (2m)P/2(det A)~Y/2 (61)

for a hermitian, positive definite matrix A. This identity is a generalization of the one-dimensional gaussian integral

2T

/ dre~39% — —, (62)

o
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and can easily be shown by writing the bilinear x - Ax in terms of the eigenvalues of A and then using Eq. (62).
Consequently,

1/2

Z=N' <det%) : : (63)

where we have absorbed the constant factor into the new constant N’, and where the determinant is taken over
momentum space (in which the inverse propagator is diagonal). Hence the log of the partition function is, up to a

constant,
1 Dy ' (K) 1 Dy ' (K)
an = —§lndetT :—§TI'1HT
1 Dq ' (K)
= 5l 7w
K
1 Dy H(K)
K
Next we perform the summation over Matsubara frequencies (recall that the sum over K is a sum over kg = —iw,

and over k; the latter will become an integral in the thermodynamic limit).

A. Summation over bosonic Matsubara frequencies

Here we prove the identity

2 .2

wpt € _ €k —e/T

Zln T2 —T—l-Zln(l—e . )—l—const7 (65)
n

where, in our case, €7 = k* + m? (however, for the following calculation we only need that €y is a real number), and

where const is an (infinite) number independent of temperature and momentum. First, in order to get rid of the log,

we write

w2 —I—ei (ex/T)? ) 1 )
We now perform the sum in the integrand which, denoting €, = Tz, we write as a contour integral,
1 1 1 1 1 1 w
T;(an)Q—l—mQ zn:w%—i—ei 27ri?{c wa—eiZCO 2T (67)
The second identity follows from the residue theorem,
1
o P @)= Z Res [(2)].—., - (68)

where z,, are the poles of f(z) in the area enclosed by the contour C. If we can write the function f as f(z) = ¢(2)/¢(2),
with analytic functions ¢(2), ¥(z), the residues are

Res (2., = S22 (69

The contour C' in Eq. (67) encloses all poles of cothw/(27")] (and none of 1/(w? — €3)), as shown in Fig. 2. The
denominator of cothw/(27T)] is e*/?T — ¢=“/2T which vanishes when w/2T is an integer multiple of i, i.e., when
w = iw, with the Matsubara frequencies w,,. Hence, in the above notation,

1 6(;.)/(QT) 4 efw/(QT)

) = g P =l eleT)
] 1
L plwn)  p 1 (70)
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Imw A Imo
ioo—m o0+ 1
® ]
integration poles of coth ——
2T deformed
contour C . .
integration g
contour
]
\
° * - * L * -
“Ek €k Re o “Ek ‘ €k Re ®
]
]
]
—ioo —7 —ico +m

FIG. 2: Left: integration contour in the complex w plane used in Eq. (67). Right: deformed integration contour from Eq. (71).

from which Eq. (67) follows immediately. Next, we deform the contour (which consists of infinitely many circles
surrounding the poles) and obtain

Z 1 1 [t J L1 w 1 [ J L1 w
—_ = —— W ————coth — — — W ——— = coth —
— w? + e 210 J ooy w2 — €2 2T 270 Jioo—p w? — €32 2T
1 100+n 1
= —— dwﬁcothi, (71)
270 J jooqy W€ 2T

where we have changed the integration variable w — —w in the second integral of the first line. We now use the
residue theorem a second time: we can close the contour in the positive half plane and pick up the poles w = +e¢y.
(in our simple case €; > 0, but we can keep the result general in order to use it later for the case of a nonvanishing
chemical potential),

1 1 €k 1 —€g
) P  coth £~ O(—ep)=— coth —&
zn:w,%—l—ei @(Ek)ZekCO 2T o Ek)ZekCO 2T
1 €k
-  coth &
2%, Ot oT
1
= it (72)
€k

(note minus sign from clockwise contour integration) with the Bose distribution function

fa(e) = e/%l . (73)

We thus have found

1 1 1 /1 1
— - -z ) 74
Tzn:(2mr)2+x2 Tx (2+ez—1) (74)
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Now we insert the result into the original expression (66) and integrate over x? to obtain (with const denoting

T-independent constants)
2, .2 (en/T)?
w, +€ 21 (1 1
En In ”T2 /1 dx - (5 + ] + const

6—k—|—2ln 1—e /T + const, 75
T

which is the result we wanted to prove.

Exercise 1: Show via contour integration that

1 e1ea 1
T E =— E 1+ e1wg) + eswy)], 76
[(po — ko)? — w2](k§ — wi) o) ety dWrg Po — 1wk — ezwq[ Jo(erwn) + Jo(eay)] (76)

with ko = —iwn, po = —iwy, bosonic Matsubara frequencies and wy,wq > 0.
B. Pressure of a scalar field

Inserting the result from the Matsubara sum into Eq. (64) and taking the thermodynamic limit yields the (log of)
the bosonic partition function,

d31€ €k —e/T
1nzf—V/(27T>3 {ﬁ—kln (1-e=m)]. (77)
Consequently, the thermodynamic potential (density) is
Q T d3k €k —e/T

The first term on the right-hand side is infinite. We have to renormalize the potential by subtracting the zero-
temperature result,

Qren Q- QT:O d3k _
- —7 [ L, (1— ek/T) : 79
% % / 2np T\ (79)
where we have used limr_,o T In (1 — e’ﬁk/T) = —€,0(—¢€x) = 0. We have thus recovered the result from Eq. (32).
We can compute the potential analytically for T' > m, in which case we can approximate ¢, /T ~ k/T,
Q T o Tt [ w274
o [k (1= e ) = o [ deatn (- et) = - T
v 2 J, n e 577 |, z2’In (1 —e™ %) %0 (80)
_m
45

This result gives the pressure of a noninteracting scalar field for large temperatures T > m (for all temperatures if
the field is massless, m = 0),
w274

0
== . 1
V90 (81)

[End of 4th lecture, Oct 28th, 2013.]

V. COMPLEX NON-INTERACTING SCALAR FIELD

Next we discuss a complex bosonic field. Although we still neglect interactions, this will already lead to new physics
compared to the real field, namely Bose-Einstein condensation. We start from the Lagrangian

L= 0,0 0"p —m?|¢* — Ao|*. (82)
We set the coupling to zero, A = 0.
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A. Conserved charge and chemical potential

We see that £ is invariant under U (1) rotations of the field,
b — e . (83)

Since this rotation leaves £ only invariant if « is constant, the symmetry is called global (= the same rotation is
applied at every point of space-time). We know from Noether’s theorem that a system with a continuous symmetry
has a conserved current. This is in contrast to the previous case of a real scalar field, where there was only a discrete
Zo symmetry ¢ — —¢. The conserved current will allow us to introduce a chemical potential associated with the
corresponding charge.

To identify the conserved current we formally extend the symmetry to a local symmetry a(z) and transform the
Lagrangian,

L= L+ |p[20,00"a + id,0(6" 0" — O ¢"). (84)

Now we write down the equation of motion for a. We see that the transformed Lagrangian does not depend on «,
but only on its derivative. Consequently, the quantity

oL
9(0,00)

=2|¢[?0"a +i(¢" 0" — ¢ 0" ¢™) (85)

is conserved. If we now go back to constant o we see that we have the conserved current

(9" 0" —90"9"),  Ouj" =0. (86)

J*
The conserved charge (density) is thus
j° =i(¢*8°¢ — $8°¢"). (87)

This is needed to introduce a chemical potential y. In the following we want to see how the chemical potential enters
the Lagrangian. One might think that we simply have to add a term pj° to £, because j° = A is the charge density
and the Lagrangian has the form H — u/N. However, we need to be more careful. We know that the partition function
is (in a straightforward generalization from the real scalar field)

B
7 = /Dwa*/ DpDp* exp [/ dT/d3a: (7" 0o + O™ — H + uN) | (88)
periodic 0

It is convenient to introduce real and imaginary parts of ¢ and the conjugate momentum ,

6= —pr+id), 7= %(m tims). (89)

Then, the Lagrangian becomes
L= 5 (0161 + Bun0"6r —m*(6% + )] (90)

and the conjugate momenta are
™= g = (91)

Now, with Eqgs. (87), (89), and (91) we find j° = ¢om; — ¢17m2. This yields the Hamiltonian

H—puN = w0001 + m20op2 — L — pN

5 [/ 473+ (Vo0 + (V2)* + (63 + )] — p(goms — o1ma). (92)
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For the partition function (88), using 7*9p¢ + 70yd* = w1001 + m200 P2, We need

1001 + m200d2 — H + pN = m0od1 + m20od2 — % (77 + 73 4+ (V1)? + (Vo) +m* (47 + ¢3)] + p(pam — 1)

[(Bo¢1)? + (Bog2)® — (V1)? — (Vo) + (1> — m?) (7 + ¢3) + 21u(d2001 — ¢10062)]

N =

5 (.~ Bods — pa)? + (w2 — By + )’

1
= L' — (7] +73), (93)

with the shifted momenta 7 = 71 — Jyp1 — pp2, T2 = mo — Jop2 + pp1, and the new Lagrangian that now includes
the chemical potential,

L=

N | =

[(0061)® + (Bog2)® — (V1)® — (V2)? + (1® — m?) (7 + 83) + 2pu(d280¢1 — d180¢2)] - (94)
In terms of the complex field ¢, the Lagrangian reads
L= (0 —ip)ol* = [V —m?|of*. (95)

Thus we see that the effect of the chemical potential is to add, besides the expected term pj°, the additional term
w2 (¢34 ¢2)/2. As a result, the chemical potential enters the Lagrangian in the same way as the temporal component
of a gauge field.

In order to compute the partition function, we Fourier transform the fields ¢1, ¢2 as discussed for the scalar field.
However, anticipating Bose-Einstein condensation, we separate the zero-momentum mode ¢; = ¢;(K = 0),

i(X) =G+ \/%_V D e XK. (96)

K+#£0

The condensate ¢; plays the role of a vacuum expectation value of the field. It breaks the U (1) symmetry spontaneously.
We can choose any of the degenerate directions in the complex plane, for instance (o = 0 and will denote ¢ = (3.
Moreover, we assume ¢ to be constant in space-time. With the Lagrangian (94) the action then becomes

_YEom? s 1 _ ey Do E) (6 (K)
I e Dy e e t (o7
with the 2 x 2 inverse propagator
K%+ m? — 2 —2i kg
Dg'(K) = : (98)
2ipko —K?24+m?—u?

In deriving the action (97) we have used that the integrals over mixed terms, i.e., over a product of the condensate ¢
and the momentum sum (excluding the mode K = 0), vanish. We see that the chemical potential induces off-diagonal
terms in the propagator.

Now from the partition function

Z=N / D1 Do exp /X c, (99)
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we obtain, dropping the constant terms,

2 _ 2 —1
InZ = Ku@ — lln (detw)
T 2 2

V p?—m? 1 1
= T%CQ - §IHH ﬁ[(—KQ—FmQ — %)% — 44 k]

=75 ¢ ——IHHT4 e — 1)® — 2(ex + p)* — k3]

2 _ 2 _ 2 _ 1.2 2 _ 1.2
_ V/'[/ m C2_12|:1n (€k /'[/) kO +h’l (6k+;u’) ko (100)

T2 ’

where we defined

e =V +m?. (101)

We can now use the result of the Matsubara summation from above, Eq. (65), to obtain

2 _ 2
nZ = %L 2m 2 - V/ % [€T’“ +1n (1 - e_(e’“_“)/T) +1n (1 - e—(€k+ﬂ>/T>} . (102)
T
This gives the thermodynamic potential
Q 2 d*k
B [ [ en(i- o ()]

We see that in order to avoid complex values of the potential we need to require
—-m<pu<m. (104)

This restriction for p is a consequence of neglecting any interaction. Had we included an interaction term, the
condensate would have had an effect on the dispersion relations €;. In our non-interacting system, they are not
affected.

As discussed for the case of the scalar field, we need to renormalize the potential by subtracting the “vacuum
contribution”, in this case

Qr—_u—o d*k
Poo = ——=0 = [ 22y 1

where we used that ¢(u = 0) = 0 (which we shall show below), and limr_,o T'In(1 — e #/T) = —EOQ(—E). Conse-
quently,

Q‘];n _ 2 QVT:“:O = m® 2_ s G+ T/ (Z?)T]; [1n (1 - e*(e’“f“)/T) +1In (1 - e*(e’“Jr“)/T)] . (106)

In the following we shall drop the subscript “ren” again since for all physical purposes the renormalized potential is
used and thus no confusion is possible. As for the scalar field, we may compute the pressure P = —{)/V at sufficiently
large temperatures T' > m, i (where ¢ = 0),

A3k T4 oo 7274
P~ 9T 1 (1— *’C/T):—2— dra?ln (1—e ) =2 . 1
/(2#)3 n e 277 J, z2’In (1 —e™ %) %0 (107)

The additional factor 2 compared to Eq. (81) is due to the two degrees of freedom of the complex field.
The charge density is

100
@=—vg, = +Z / 3 olenm eu)/T ' (108)
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We may approximate the thermal part for small and large temperatures. We first introduce the new integration
variable z = k/T to obtain
dx 2*
o2 /

Now we expand for small T, \/x2 + (m/T)? ~ m/T + Tx?/(2m). Then, with the new integration variable y =

/T/(2m) z, we have
(m=—p)/T  o=(m+p)/T
Q =~ sz/ dz z? [ T2/ (2m) eTx?/(zm)]

3/2 3
_ ()T [emtmmrT _ omtmtor] Y dy eV
T 272 o

3/2m3/2
_ mPPTYR [e—(m—u)/T _ e—<m+u>/T] 7 (110)

2\/57.‘-3/2

where we have used that the remaining y-integral evaluates to /7/4. We see that the density is exponentially
suppressed for small temperatures. This exponential suppression for massive particles is also typical for other quantities
such as the specific heat.

For large temperatures we can use Eq. (109) and neglect the terms m/T and p/T in the integrand to obtain

1 - ! ] . (109)

VT /TR —w/T _ 1 o\ /e2Hm/T)2+u/T _ 4

T3 0 2 C(S)T3
Q.}.—Q_—ﬁ/o' d.]?em_l— ) 5 (111)
~—_—————

2¢(3)

where @4+ and @_ are the particle and antiparticle contributions, respectively. We see that they become identical
for large T and thus the total charge Q = Q4+ — — vanishes. This is easy to understand: the difference in energies
between particles and antiparticles is 2 for all momenta. If T is sufficiently large, i.e., T' > pu, then this difference is
not “resolved” and particle and antiparticle states become practically equally populated. For T' of the order of u or
smaller, the chemical potential induces an asymmetry between particles and antiparticles, favoring particles for p > 0
and antiparticles for p < 0.

Exercise 2: Compute the specific heat (at constant chemical potential) ¢y = TIS/IT, where S = —0Q/0T
is the entropy, and find analytic approrimations for the limits of small and large temperatures. Compare these
approzimations with the full result in a numerical plot.

[End of 5th lecture, Nov 4th, 2013.]

B. Bose-Einstein condensation

Let us now discuss the condensate. The condensate ¢ has to be determined from minimizing the potential,

o0,

0= ¢ = (m* = ). (112)

We see that ¢ =0 for |u| < m. In this case, there is no Bose condensation and all particles sit in the thermal states.
For |u| = m, ¢ remains undetermined. This is due to our neglecting the interactions. From usual ¢* theory at zero
temperature we know that the interactions may lead to a nonvanishing vacuum expectation value (“mexican hat
potential”). But for now we have dropped the ¢* term for simplicity. In this case, we can determine ¢ by fixing the
density. This may or may not correspond to the physical situation one is interested in.

For the charge density @, there is a zero-temperature contribution pu¢? coming from the bosons in the zero-
momentum state. For a given density, the system populates as many thermal states as possible until there is no
more “space”. Note that the contribution of the thermal integral is bounded with its maximum at p? = m?. This
maximum value defines a critical density for a given temperature 1. For densities larger than this critical density,
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the condensate gets populated. The population is “macroscopic”, i.e., proportional to the volume. The value of the
condensate is given by

1 3k 1
o= m (Q - 26/ (27)3 elex—em)/T — 1) ' (113)

The critical temperature T, for a given charge density @ is then given by the implicit equation

d*k 1
Q= 26/ @ e (114)

In the nonrelativistic limit v/k2 +m?2 — p is replaced by % — 1 (note that this defines a “nonrelativistic p” which
includes the rest energy m), and condensation occurs for g = 0. In this case, 7. can be computed as

B d3k 1
Q= (2m)3 ek?/(@mTe) — 1

272 J, WK Ty 1

(2mT.)*? /7

= T 1 (3/2), (115)
which implies
o 0\
=" (@) (10

In the ultrarelativistic limit it is instructive to compute particle and antiparticle contributions separately. With . = m
and e, Fm ~ k Fm + O(m?) we have

T3 [ 72
Q4+ ~ 92 /0 dx Py T (117)
Up to first order in m /T, we have
1 etm/Te 1 m m/T.
= o~ 1+ — |+ —"—F+. 118
ex¥Fm/Te _ 1 et — extm/Te et — 1 ( Tc) (ez _ 1)2 ( )

Consequently,

T3 o] x2 sz e} ,1:2 o) x2
~ 2e | g + e [ d d 7}
@ 27r2/0 Ter — 17 on2 /0 xex—1+/0 Tlem —1)2

2
T 20)
T3 mm?
= 35 {24(3)1 3TJ : (119)

We see that the antiparticles have an interesting effect: had we neglected antiparticles, i.e., @ = @4, the critical
temperature would have been T, er/ 3 In the full result Q = Q4+ — Q_, however, the leading term cancels and we

get the very different result

_ /3@
e=y/ (120)
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Bose-Einstein condensation is a phenomenon occurring in a huge variety of systems. It was first directly observed with
bosonic atoms in 1995, awarded with the Nobel prize 2001. It often has spectacular phenomenological consequences,
such as in superfluid He-4. It can also occur for excitons in semiconductors, and for mesons such as pions and kaons
in neutron stars. One can even think of superconductivity in fermionic systems as a Bose-Einstein condensate, since
Cooper pairs of fermions can be viewed as bosons. Very recent experiments have shown that this picture indeed is
valid, i.e., there is a crossover from a superfluid (at weak coupling) to a Bose-Einstein condensate (at strong coupling),
not a phase transition.

We will come back to Bose-Einstein condensation in Sec. IX, where we include interactions and discuss the Goldstone
mode that appears due to the spontaneous breaking of a global symmetry.

Exercise 2a: Repeat ezercise 2, but now at a fived density (as opposed to a fized chemical potential). This allows
you to include Bose-Finstein condensation. Plot the full result for cy for all temperatures and show that cy is
continuous, but not differentiable* at the critical temperature T.. (Hint: find the derivative Ou/OT with the help of
the implicit function theorem.)

VI. NON-INTERACTING FERMIONS

We shall now turn to fermions and compute their partition function. We shall see that there are two important
differences to the bosonic case. Firstly, the fields over which we integrate in the functional integral are anticommuting,
which yields a different result for the functional integration. Secondly, we shall have antiperiodicity instead of
periodicity in the fields, which yields different Matsubara frequencies. Both differences are related to the Pauli
principle.

A. Grassmann Algebra and antiperiodicity in 8 for fermion fields

We start by defining the so-called Grassmann Algebra: on an r-dimensional vector space with basis vectors 7y, ..., 7,
we define an anticommuting product

nifj = —NM (121)

to obtain the Grassmann Algebra A. The algebra has 2" basis elements 1, n;, 7:1;,...,mn2 ... nr. Note that Eq. (121)
implies n? = 0. One needs a sign convention to define the derivatives on this space. For example, for j # k,

0 0
i = Mk i = —n; . 122
an; NNk = Mk oy n; (122)

This is a convenient convention since one can think of the derivative operator as anticommuting with the variable
itself. (In other words, we have defined the derivative to act from the left, not from the right.) Second derivatives of
any product of n’s vanish (they vanish if there is at most one factor of the variable with respect to which the derivative
is taken; if there are two factors the product itself vanishes). This already shows that integration on the Grassmann
space is a bit different than one is used to: since the differential operator squared vanishes, there is no operation inverse
to differentiation. (“Usually”, that would be integration.) We require the integral to be translationally invariant and
linear. Restricting ourselves for the moment to a one-dimensional vector space (i.e., a two-dimensional Grassmann
algrabra) this means

[anso) = [anso+c). [annrvy=a [agnso [ an (123)

2 According to the traditional classification of Ehrenfest, a phase transition is called n-th order phase transition if the n-th derivative
of the thermodynamical potential is discontinuous. Since the specific heat is given by the second derivative of €2, the result of this
exercise shows that Bose-Einstein condensation in a free Bose gas is a third-order phase transition. In a more modern terminology
one distinguishes only between phase transitions where the order parameter is discontinuous at the critical point (“first-order phase
transition”) and where it is continuous (then somewhat confusingly called “second-order phase transition”, including all higher-order
transitions according to Ehrenfest). This terminology is more closely related to symmetries of the system: discontinuous transitions can
occur even though no symmetry is spontaneously broken; continuous transitions (where the order parameter must be zero in one of the
phases) imply spontaneous symmetry breaking; see Sec. IX for a detailed discussion of spontaneous symemtry breaking. Here, in the
case of Bose-Einstein transformation, the order parameter is the condensate. It behaves continuously at the critical point.
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with a,b complex numbers and ¢ € A. Here, the integration range is always the whole space, i.e., we can only talk
about “definite” integrals; “indefinite” integrals, as one is used to from c-numbers do not exist (since this would be an
operation inverse to differentiation). Because of n? = 0 the most general form of a function of 7 in our one-dimensional
example is f(n) = an + b. Then, because of linearity,

[ansor+0= [+ +ac [an= [ ansn)+ac [ an (124)

and translational invariance yields

/ dn=20. (125)
We also normalize

/ dnn=1. (126)

Equipped with these properties we can turn to fermions.
First we consider a simple system with two states |0) and |1), and creation and annihilation operators a and af
which obey the anticommutation relations

{a,a'} =1, a®>=(a")?=0. (127)

Moreover we consider the Grassmann Algebra generated by the two variables  and n* (these shall correspond to the
fermion fields later), and the states

) = e [0) = (1 —nah)]o) =[0) — 1), (1282)
(n = (0le=™" = (0](1 = an®) = (0| = (1|n*. (128b)
We also need
o) =©m =1,  (n) = @®1)" =-n, (129)
which is obvious from Eqs. (128), and
(nlm) =€, (130)

which follows from inserting 1 = |0)(0]|+|1)(1] and using Eqgs. (129). Also, with Egs. (128) and the rules for integration
(125) (generalized to two dimensions) we find

/dn*dne*"*"lnﬂnl = /dn*dn(l = 1"n) (|0){0] = n[1) (0] = [0)(L]n™ + [1)(L|nn")

0)(0[ + [1)(1] = 1. (131)

And, finally, upon inserting unity twice and using Eqs. (129)

/ d*dp =" (—n| Aly) = / d*diy (1 — ™) (0] AJ0) +n* (1] A]0) — (O] A[1) — n*n{1] A]1))

(0] AJ0) + (1]A[1) = Tr A. (132)

Egs. (131) and (132) are the ingredients we need to compute the fermionic partition function in the path integral
formalism in analogy to the bosonic case. First, from Eq. (132) we compute the partition function for the Hamiltonian

H =wala,
Z =Tre PH = /dn*dnefn*"<—n|efﬂﬁ|n>. (133)

The important difference to the bosonic case can already be seen here, namely the —n as the final state of the transition
amplitude. Compare this to Eq. (43) which is the bosonic analogue. We can now proceed analogously to the bosonic
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case by dividing the “time” interval into N pieces of width At and inserting unity from Eq. (131) N — 1 times. We
obtain

3
Z:/ Dn*/ Dnexp (—/ dr [n*87n+H(77*,77)]> : (134)
n*(8)=—n*(0) n(8)=-n(0) 0

Before we generalize this to the case of Dirac fields let us discuss the fermionic Lagrangian.
[End of 6th lecture, Nov 11th, 2013.]

B. Fermionic Lagrangian and conserved charge

We start with the non-interacting Lagrangian
L =1 ("0, —m), (135)

where 1) = 119, and where the Dirac matrices are given in the Dirac representation by

0 __ 10 i 0 a;
7—(0_1 T U (136)

with the Pauli matrices ;. The general properties of the Dirac matrices are

(" =2¢",  (O)’=1, ()P=-1, (=4 (H'=-, (137)

where g"” is the Minkowski metric.

As for the bosons we are interested in the theory with a chemical potential. To this end, we determine the
conserved current with the same method as above. The Lagrangian is invariant under the transformation 1) — e~*1.
Considering a local transformation a(z), we have

L— L+ 9Py (0u0)y. (138)
From the equation of motion for o we then conclude that the current

oL

7= i = (139)
is conserved, i.e.,
ouj" =0, (140)
and the conserved charge (density) is given by
Q=v'y. (141)
The conjugate momentum is
= 8((8951/)) =iyt. (142)

We see that we have to treat 1) and v as independent variables, in accordance to what we have discussed before in
terms of 77 and n*. Consequently, the Hamiltonian becomes

H=7m000 — L =(iv-V+m)p. (143)

Here and in the following we mean by the scalar product 7 - V the product where the Dirac matrices appear with a
lower index #;, i.e., the negative of the 7* given in Eq. (136).
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C. Partition function for fermions

Now we recall that for the partition function we need ird;¢ — H + pN (see for instance Eq. (43)). With the
Hamiltonian (143) and the generalization of the fermionic partition function (134) to fields v, ¥ we obtain

Z = / DYDY exp [/ V(=70 —iv -V +1%u—m) | . (144)
antiperiodic X

In this case we cannot separate the 7 ~ 1" integration from the 1/ integration. Remember that, in the bosonic case,
this led to a new Lagrangian which contains the chemical potential not just in the term j%u. Here, the Lagrangian
with chemical potential simply is

£ = P(i7" Dy + 0 — m). (145)

Note that again the chemical potential enters just like the temporal component of a gauge field that couples to the
fermions. Analogously to the bosonic case, we introduce the Fourier transform (note the different dimensionality of
fields compared to bosons; here the field has mass dimension 3/2)

1 . - 1 ; - , V
X)=—)Y e TXY(K), X)=—=) EXY(K), / X = — 6o, 146
again with kg = —iw, such that K - X = —(w,7 + k- x). Now antiperiodicity requires 1(0,x) = —(3,x), which
implies e®n? = —1 and thus the fermionic Matsubara frequencies are
wn = (2n+1)7T. (147)

With the Fourier decomposition we find

0 — Gy (K
[ 00, %= ) v = = 3 () E I ), (149)
X K
with the free inverse fermion propagator in momentum space®
Gy '(K) = ="K, =y °p+m. (154)

3 The inverse propagator (149) can also be written in terms of energy projectors. This form will not be needed here but is very helpful
for more difficult calculations. In particular it allows inversion in a simple way. We can write

Gy M (K) = = 37 (ko + 1 — eer)1°Af, (149)
e=+
where €, = Vk? + m?2, and where the projectors onto positive and negative energy states are given by
1 -k
e = - (1 +e'yow) . (150)
2 €k
These (hermitian) projectors are complete and orthogonal,
AF+AL =1,  AfAL =6, AL (151)

The first property is trivial to see, the second follows with the anticommutation property {y°,~7%} = 0 which follows from the general
anticommutation property in Eq. (137) and with (v - k)2 = —k2. From the form of the inverse propagator (149) we can immediately
read off the propagator itself,

Af;’yo
Go(K)=-S —kl | (152)
) ;E ko + p — eeg
With the properties (151) one easily checks that GalGo = 1. One can also rewrite (152) as
AR, — A0 —
Go(K)= L —p— T R (153)

(ko +m)? — €
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For the functional integration we use

N N
[ T dnlameexo | =Sl Digny | = det. (155)
k 1,

Exercise 3: Prove this relation by using the above properties of the Grassmann variables.

Note the difference of this Grassmann integration for fermions with the corresponding formula for bosons (61).
We obtain for the partition function

-1
Z = / DYDY exp l—Zw*(K)voGo—(K)w(K)}
antiperiodic K T

_ L GH(K)
oo —(ko+tpw+m -0k
= detT< ok o+ ) +m ) (156)

where we have used det7? = 1, and where the determinant is taken over Dirac space and momentum space.
We can use the general formula

A B _
det ( o D) = det(AD — BD™'CD), (157)

for matrices A, B, C', D with D invertible, to get

-1 24 m2_ 2\ 2
detGOT(K)zl;I(k i TQ(k‘“L”)) . (158)

Here we have used (o - k)? = k2. Consequently,

2 2\ 2
1nZ—Zln<M>  a=VERtme. (159)
K

T2
With ky = —iw, we can write this as
2 SN2 2
e + (wn +ip)
s = S (At i)
= Z 1 € + (wn +ip)? 1 e + (~wn +ip)?
= T2 T2
wp + (e — p)? wi + (ex + p)?
= ; (m s +In = ) : (160)

where, in the second step, we have replaced w,, by —w;, which does not change the result since we sum over all n € Z.
Then, the third step can be easily checked by multiplying out all terms,

[k + (wn +in)?][6k + (—wn +i0)?] = [wp + (er — p)°]lwy, + (e + )] (161)



24

D. Summation over fermionic Matsubara frequencies

We have written the log of the fermionic partition function in a form which is identical to the bosonic one, compare
Eq. (160) with Eq. (100). The only difference is the form of the Matsubara frequencies. We can thus compute the
sum over fermionic Matsubara frequencies analogous to the sum over bosonic ones, explained in Sec. IV A. As above,
we write

w2 + €2 (ex/T)? 1
In—2 "k — dx? In[1+ (2n + 1)%7?]. 162
St = [ Y G i 2 1Y (162)

And as above, we write the sum as a contour integral, this time with the tanh instead of the coth,

1 1 1 1 11
1 P P T O RN S 163
Tzn:(Qn—i—l)QwQ—i—xQ zn:wg+eg 2m’j{C Yot T (163)

(We have denoted € = 2T.) The contour C encloses all poles of the tanh (and none of ﬁ) The poles of the tanh
k

are given by the zeros of e/ (T) 4 ¢=w/(?T) 'je. w/(2T) must be an odd integer multiple of i7/2. Therefore, the poles

are located at i times the fermionic Matsubara frequencies, w = iw,. Then, with the residue theorem and with

G , (164)

(ew/@T) _ efw/@T)) ‘ _oi-1n, L (ew/@T) L efw/@T))

W=iWwn dw

W=1Wwn

one sees Eq. (163). We can then proceed as for bosons, i.e., we close the contour in the positive half-plane to obtain
with the residue theorem

1 1 00+n J 1 h
T _— = —— —— t
zn:w%—i—e% 210 ) ooy wa—ek WAoT
1 €k
= —tanh —
2, 2T
1
= 5—[1—2fr(e)], (165)
2Ek
where
fr(e) = — (166)
€) = —7——
r es/T +1
is the Fermi distribution function. Inserting this result into the original expression (162) yields
w2 42 (/D" 111
zn:ln T3 = /1 dx o (5 — m) + const
= % +2In (1 —|—e_e’“/T) + const . (167)

Exercise 4: Prove via contour integration the following result for the summation over fermionic Matsubara fre-
quencies,

(k ) (K 1 — — -
TZ 2o + &) (ko +qo + 52)2 _ Z (€1 —e1&1)(e2 — e282) fr(—erer) fr(eze2) 7 (168)
(kg — €)[(ko + q0)? — €3] dereo e oly o —ererFezer fe(—eie1 + eze)
where ko = —iw, with fermionic Matsubara frequencies wy, and qo = —iw,, with bosonic (!) Matsubara frequencies

Wi, and where &1,&2,€1,€2 > 0 are real numbers.
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E. Thermodynamic potential for fermions

The result for the Matsubara sum (167) can now be inserted into the partition function (160) to obtain

3
InZz = 2V/ (;l—l;;?) [% +1In (1 4 e—(€k—lL)/T> +1n (1 + e_(€k+ll«)/T):| . (169)
m
Consequently, the thermodynamic potential 2 = —T'In Z becomes
0 3
V= —2/ (;l—ljg {ek +TlIn (1 + e_(e’“_”)/T> +TlIn (1 + e_(e’“"'“)/T)} i (170)
m

Note the overall factor 2 which accounts for the two spin states of the spin-1/2 fermion. Together with the parti-
cle/antiparticle degree of freedom (from e = 1) we thus see all four degrees of freedom of the Dirac spinor.
[End of 7th lecture, Nov 18th, 2013.]

VII. GAUGE FIELDS
A. Lagrangians for QCD and QED

In this section we shall compute the partition function for gauge fields. Many applications of thermal field theory
in modern research can be found in Quantum Chromodynamics (QCD), for instance heavy-ion collisions and neutron
star (quark star) physics. We shall, for the calculation of the partition function, focus on the simpler case of Quantum
Electrodynamics (QED). But first we write down the QCD Lagrangian from which we obtain the QED Lagrangian
as a limit. We have

1 _
Lacp = =5 Tr[Gu G| +9(iy" Dy + 1 i — m). (171)
Let us explain the meaning of the various quantities and their structure. The field strengths are
G;u/ = aHAI/ - 81/14;1, - ZQ[A,“ Al/] ) (172)

where g is the QCD coupling constant, and where A, are matrices in the Lie Algebra of the gauge group SU(N,)
where N, = 3 is the number of colors. Here, SU(N,) is the group of unitary N. x N, matrices with determinant 1.
The dimension of SU(N,) is N2 — 1, thus in this case there are eight generators T}, which fulfil

da
[Ta; Tb] = ifabcch T(I =T, ’ Tr[TaTb] = 717 ) (173)

with the so-called structure constants fu5.. The generators (more precisely, twice the generators A, = 27,) are called
Gell-Mann matrices. The gauge fields, which are called gluons, and field strengths can thus be written as

A, = AT, G =G4 T, G, = 0, AL — 0, A% + gf*" AL AT (174)

The Dirac spinors 1 describe quarks and are spinors in a 4NyN.-dimensional space with the number of flavors Ny;
the covariant derivative is

Dy, =8, —igA,. (175)

With fundamental color indices «, 8 < 3, the adjoint color index a < 8, and flavor indices ¢, 7 < Ny we can thus write
the Lagrangian as

1 7 - (e} - ara (e}
Lacp = =7 G, GL” + 9703517 (6 P8, —igAsTe?) + 6% (1 1 — ma)]) (176)

Here m and p are matrices in flavor space, with different masses and chemical potentials for different flavors.

The Lagrangian is invariant under gauge transformations U = 9% (X)T" ¢ SU(N,). The fermion fields and the
gauge fields transform as

b Uy, A, —UAU + éU@HU’l , (177)
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where U = U(x,t) may depend on space-time, i.e., the symmetry is local. We can easily check that the Lagrangian
is invariant under gauge transformations: one uses 0 = 9, (UU ') = (8,U) U~ + U(9,U~!) to find

G —UG,U". (178)
Therefore, Tr[G,,, G"”] is obviously invariant under gauge transformations. For the quark part we find
D,y —UDyy, (179)

from which we conclude that zZ_JD,ﬂ/) is invariant and thus we see that Lqcp is invariant.

For simplicity, we shall consider QED in the following calculation. In this case the gauge group is U(1) which is an
abelian symmetry. For many physical applications and many calculations this makes the theory tremendously simpler
than QCD. For the latter, controled rigorous calculations from first principles are only valid for very few systems
such as systems at very large densities or temperatures. This is due to asymptotic freedom which makes the theory
weakly coupled for large momentum transfers. In many other cases, however, the theory is strongly coupled and the
theoretical treatment becomes very complicated.

In QED there is no commutator term in the field strengths,

Fp,u = auAy - auAu ’ (180)
and a gauge transformation is simply given by
UX)=e X A, 5 A, +U8,U =4, —d,a. (181)
e
Since U(1) is a one-dimensional Lie group, there is only one gauge boson, the photon (compared to eight gluons in
QCD). Due to the missing commutator term, the photon has no self-coupling (whereas gluons interact with each

other). The fermions are leptons instead of quarks, and the coupling is denoted by e instead of g. The Lagrangian,
invariant under U (1), is

1 -
Lqep = = Fu " + (v Dy + 4= m)y, (182)
with the covariant derivative
D, =0, —ieA,. (183)
B. Partition function in QED

We now focus on the gauge part of the QED Lagrangian (182), i.e., we are interested in

L= _EF’“’FW = %FOiFOi — inFw . (184)
The electric and magnetic fields are given by
E; = —Fy = Fy, B=VXxA = B;= %Q‘ijjk . (185)
We thus have
B? = %ijij , (186)
and the Lagrangian becomes
1 1
L= 5E2 - 532 : (187)

In the following we shall work in the so-called axial gauge

A3 =0. (188)
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This does not completely fix the gauge and we will see how the residual gauge freedom appears. With

oL 1 1
- = __ rSY _ SHSY po _ _ MY _ VRN RV
8(8;1,141/) 2 (6p 60 606p) F 2 (F F ) F 9 (189)
we find the conjugate momenta
oL
= oo = PO 190
9(0A,) (190)

We see that there is no momentum conjugate to Ag. Consequently, Ag is not a dynamical field. The spatial components
of the momentum are

T, = FO'L' = _Ei . (191)
Therefore, formally there is a conjugate momentum
m3 = —Es, (192)

even though A3z = 0 in the chosen gauge, i.e., w3 is not an independent variable. It can be determined from Gauss’
law, which, in the absence of charges, is

V-E=0. (193)
Consequently, we have d3FE3 = J1m + Jome and thus
T3
FE3 = / dl‘é(({)lﬂ'l +827T2)+P(.231,.132,t), (194)
30
and
T3
Ag = / dryEs + Q(x1, m2,t) . (195)
30

The integration constants P and @) correspond to the residual gauge freedom. Next we determine the Hamiltonian in
terms of the independent variables 71, o, Ay, As,

H = m0OpgA1 + m0pAs — L (196)

We use 9gA; = m; + 0; A (from Eq. (191)) and (72 + 73)/2 = (E? + E2)/2 to obtain

1 1 1
H = §(W%+7T§)—§E§+§BQ+W131A0+7T232A0
= l(w2+7r2)+lE2+lB2 (197)
9 1 2 9 3 9 )

where we used partial integration and dropped the surface terms (i.e., this identity only holds under the integral d®z):
O Ag + M0 Ag — —Ag(O1m1 + Oama) = —AgO3E3 — F303A¢0 = E3. The Hamiltonian now has the familiar form
H = E?/2 + B%/2. The partition function for the bosonic fields A;, Ay and their conjugate momenta is

Z = /D’l‘(lpﬂ'g/ DA DA, exp/ (Z'7T187—A1 + im0, Ag — H) . (198)
periodic X
We rewrite the partition function in the following way. First we insert
| = /Dma(ﬂg + By(m, ). (199)

This can be rewritten upon using

5(V ) = (deta(giﬂ':)y 5(rs + Bs(m1,m)) (200)
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Here one should remember the more familiar form of this identity

1
5(f(z) = ——6(x — o), 201
where xq is the zero of the function f. Moreover we use
oV -m)
detTﬂ'g = det(ﬁg) 5 (202)

and we write the J-function in its integral representation,

5(V - m) = / D Ag exp (z /X on-w) . (203)

Here, in the exponential, we have replaced Ay — A since this yields the replacement ¢ f d*c AoV - — i f x AV
(note that we also have to replace dzg by —idr) . Inserting all this into Eq. (199) yields

- / Drs / D Ay det(3s) exp (z /X on-w> , (204)

and the partition function becomes (after a partial integration AoV -mw — —(VAp) - )

7 = /DTF{DT{'QDW;;/ DAODA1DA2 det(83) eXp/
periodic

1 1
[im(‘)TAl +ime0; Ay —i(VAg) -7 — Zr?— EBQ . (205)
X

2

The momentum integral now becomes trivial as we have seen in the case of scalar bosons. To this end, we rewrite
the exponential with the help of

1 1
im0, Ay + im0, Ay — i(VAg) - — 57# = —5(71' —i0, A +iVAg)? — =(0-A — VAg)?, (206)

1

2
where A = (A1, A2,0) in the axial gauge we use. Now the integration over the shifted momentum = — i0; A + iV Ag
can be performed and yields an irrelevant constant factor which we omit in the following. Consequently,

A :/ DA()DAlDAQ det((‘)g) eXp/ L. (207)
periodic X

We have recovered the Lagrangian in the exponential since
—(0;A —VAy)? =E?. (208)

(To see this, one simply “undoes” the finite-temperature replacements dy — i0,, A9 — iAp.) Hence we get the
Lagrangian in the form (187).

Before we proceed with Eq. (207) we notice that the general form of the partition function, without specifying a
gauge, is

F
Z :/ DA, (5(F)deta— exp/ L, (209)
periodic o X

where DA, = DA)DA1DA>D A3, where F is a function of the gauge fields and the condition F' = 0 fixes the gauge.
In our case, F' = Ay = Ag — 0sa. Then, with 0F/0a = 03 we recover Eq. (207). The more general form shows that we
integrate over the space of gauge fields “modulo gauge transformations”. In other words, for each point in the space
of gauge fields, we choose a fixed gauge given by the function F' and fixed by the factor 6(F). Then det(0F/da) is
the determinant of the Jacobian of the transformation Aj, = F(A,) = A, — 0,q, i.e., it accounts for the change of
integration variables according to the gauge transformation. The partition function in the form (209) is manifestly
gauge invariant.

4 Another way of saying this is that in the field strength Fjq = 8; A9 — 0pA; for finite temperature we have to replace 9y by i9,. To get
the same factor ¢ from the first term we need to replace Ag by ¢Ap.
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Let us now come back to our expression (207) in the axial gauge and compute the functional integral. With Eq.
(186) we find

E? - B? = —(0,A —VAy)? - B?

—(0;A)% — (VAy)? +20,A - VA
—(0142)% = (02A1)* — (03A1)% — (0342)% 4 2(0142)(02A1) . (210)

As above, we introduce the Fourier transform of the gauge fields,

Au(X) = \/T_V Z e EXAL(K). (211)
This yields
/X(EJTA)Q = —%;kgA(—K)-A(K), (212a)
/X(VA0)2 = %EK:HAO(—K)AO(K), (212b)
/X&TA-VAO — %;ikok-A(—K)AO(K):%;ikok-A(K)Ao(—K), (2120)
/X(01A2)2 = %;WQ(—K)AQ(K), (212d)
/X (0142)(02 A1) = %;klkgAl(—K)Ag(K): %;klkgAl(K)Ag(—K). (212¢)

The other terms (9241)?, (9341)?, (93A42)? are obtained analogously to Eq. (212d). We thus find®

k2 —ikoky —ikoks Ao(K)
/ L= _2T2 Z (Ao(— K), As(—K)) | —ikoks —k2+ k2452 —hiko AUK) | (214)
—ikokﬁg —k1ko —k?(Q) + k?% + kg AQ(K)

The 3 x 3 matrix is the inverse gauge field propagator in momentum space which we denote by Dy ! (K). Here we have
symmetrized the appearing matrix in the exponential. This is important since A(K) and A(—K) are not independent
variables. So suppose we had used some asymmetric “propagator” Dy. Then we have to write

> A =K)D5 (K )apAo(K) = 3 Aa(=EK)Dg (K)]av Ap(K) + Y Aa(=K)[D5" (K)]av Ab(K)
K K>0 K<O0
= > Au(=K) { D5 (K)ao + [B5 (K)o } A0(K), (215)
K>0

5 If we start from 1 1
L= _ZFHVFW = —5(8uAV8“A” — 0 ALOY A,

and insert the Fourier transform (211), we obtain
— L 2 v 178724
/ch ~573 EK Ap(—K)(K2g" — KHKY)A, (K). (213)

Dropping the 3-component and replacing Ag — iAg yields Eq. (214).
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and arrive at the symmetrized propagator.
We can now use Eq. (61) for the integration to obtain

'Dil —-1/2

—-1/2
K3
= det(ds) (H TG?’)

K

-2/2 -1/2
det(0s) <H ij—22> (H %) : (216)
K K

and thus

InZ = Indet(ds) — 2 = 21 kOTQ 21 : (217)

It remains to evaluate the so-called Fadeev-Popov determinant det(d3). With Eq. (155) we can write this determinant
as a functional integral over Grassmann variables C', C,

det(03) = /DCDC exp (—/Xéagc> . (218)

Here C' is a complex, scalar field, i.e., it seems to describe a spin-0 boson. On the other hand, the integration goes
over Grassmann variables, indicating fermionic properties. This unphysical field is called a Fadeev-Popov ghost field.
It plays a more important role in non-abelian gauge theories but we see that it is needed also here. With the Fourier
transform

1 .
O(X)=—=) e FXC(K), (219)
D
(bosonic Matsubara frequencies!) we have
_ _ ik
- / CosC ==Y C(K)220(K). (220)
X = T
Consequently, the ghost contribution is

det(93) = det@ sz3 3. (221)

We see that this term exactly cancels the third term on the right-hand side of Eq. (217) and we are left with

1 2 _ 1.2
InZ = —252111 kOTQk : (222)
K

This result shows the two degrees of freedom of the gauge field. The third degree of freedom, unphysical due to gauge
symmetry, is cancelled by the ghosts.
[End of 8th lecture, Dec 2nd, 2013.]

VIII. INTERACTIONS
A. Perturbative expansion in \¢* theory

We add an interaction term with coupling constant A to the Lagrangian for a real scalar field (45) to obtain the
Lagrangian

L=Lo+Lr= % ), POH p — %m%? — At (223)
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We use the index 0 for the contribution we have already computed above. The partition function then is
7 = /D¢ e, (224)
with the action

S:S()-i-S[:/ﬁo-f—/ﬁ[, S[:—A/ ¢4. (225)
X X X

Without interaction, S; = 0, we could compute In Z exactly. In the presence of interactions this is not possible.
Therefore, we need to apply an approximation. The simplest approximation is to consider the coupling constant \ as
a small expansion parameter and then truncate the expansion at a given order in A\. We shall discuss this procedure
in the following. Denoting the noninteracting part by

Zy = / D¢ e5° (226)
we can write the expansion as

InZ

In / D ot

oo Sn

1n/D¢ ey 71' . (227)
n=0

Now if we add and subtract In Zy we can write this as

[ Dpeso s 5t
| D eSo

=InZy+InZ;, (228)

o So Qn o0 n
InZ; = <1+2%%> =In <1+§_:1<Sé!>0> . (229)

Here (—)¢ denotes the ensemble average over the noninteracting ensemble. From the definition of S; we know that
each factor of S; comes with one power of . If we expand In Z; to, say, third order in the coupling, we thus obtain,
using In(1 + ) =Y 02 (=1)" 2" /n,

e R i

InZ InZy + In

with

2

2 6

12

(Sr)o + % ((SHho — (S1)3) + % ((SP)o = 3(S1)o(ST)o +2(S1)}) , (230)

where we have ordered the contributions according to the powers A, A2, A3. Denoting the n-th order correction to
InZ by In Z}n), we thus have

mzM = (S, (231a)
mZ® = 2 (57— (51)7) (231b)
nz® = é ((S$)o — 3(Sr)o(SF)o + 2(S1)3) - (231c)

Let us compute the first correction In Z}l) x A explicitly. We have

Do [ i)
[ D eSo

(Sr)o = (232)
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From Sec. IV we know that
e = exp H Z¢(—K>D0——§K)¢(K>] —[Teww |- o202 o) (233)
K

with the inverse propagator
Dy M(K) = w2 + k> +m?. (234)
In momentum space, the ¢* term becomes

[ 000 = mpm X[ X o) o)

Ki,....K4

= %K12K45(K1+...+K4) ¢(K1)¢)(K4) (235)

Inserting Egs. (233) and (235) into Eq. (232) yields

S ot K] [ aot)e i 0K oK)

(Si)o = — g K : (236)

v H / dp(K) e~ 34107 2o 19 4()

The integral in the numerator is only nonvanishing if the four momenta K, Ko, K3, K4 cancel each other pairwise.
Otherwise, if there is a single power of ¢(K), the integral over ¢(K) is zero by symmetry. (Remember that ¢(—K) =
¢*(K) and thus ¢(K)é(—K) = |¢(K)|?.) Hence we have for instance K1 = —Ky = Q and K3 = —K4 = P, and the
Kronecker-delta is automatically fulfilled. There are 3 possibilities for the momenta to be pairwise identical and thus
we obtain

/ dp(I) e 19K 000 4 0)6(Q)6(~P)o(P)
(Sr)o =— TBVQZ; K o . (237)

11 / dp(K) e~ 30 F) P oK)
K

Now we notice that all integrals over K # P, (Q appear identically in numerator and denominator and thus cancel.
The ¢(P) and ¢(Q) integrals factorize and we obtain

2

/ 16(Q) e 3O LA 4 )5(—Q)

(Sr)o = (238)
TBV /d¢ 3o 2D Q)
Now we use
I R (239)
ffooo dx e—0z?/2 a12/72r a’
to obtain
2
InZ" = (Sp) = —3)\— ZDO . (240)

We shall evaluate In Z}l) further in Sec. VIII C. Here we proceed by introducing Feynman diagrams: it is convenient
to translate the complicated algebraic perturbative expansion into a diagrammatic form. One starts by representing
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each field by a line with a direction, the direction indicating whether the field is ingoing or outgoing (i.e., inverting
the direction corresponds to ¢(K) — ¢(—K)). Then the interaction term —A¢? is represented in momentum space
by

(241)

By convention, we have chosen the signs of the momenta such that all lines are ingoing. Since the momenta Ki, K,
K3, K4 have to cancel pairwise, we connect the lines pairwise and interpret each resulting line as a propagator. (From
the explicit integration above we know how the propagators come about.) There are three possibilities to connect the
four lines pairwise and thus the algebraic result is translated into a Feynman diagram as follows,

2
(510 = -0 | Y Do(@)] =3 @ (242)
Q

In summary, the vertex gives a factor —\, the factor 3 is a combinatorical factor, the closed line is a propagator
T/V 3°q Do(Q), and momentum conservation gives V/T §(Kin — Kout) which here is automatically fulfilled and thus

simply gives a factor V/T.
In general, the rules to find all contributions to the logarithm of the partition function for a given order \™ are

1. Draw all connected diagrams with combinatorical prefactors.
2. Each (closed) line gives a propagator < 3", Do(K).
3. Each vertex gives a factor —\ and a momentum-conserving Kronecker-delta %(5 (Kin — Kout)-

In the first-order contibution it is clear that there is only a connected diagram. We shall explain now, for the second-
order corrections to In Z, why the disconnected diagrams cancel. The second-order terms of the partition function
are

Iz = 2 (S0~ (50)?) (243)

From Eq. (242) we know the diagrammatic representation of (S7)3. For (5%) we need to start from (—A¢*)? which,
in analogy to Eq. (241) is represented as

K

K3 (244)
Again we have to construct all possible diagrams by connecting the eight lines pairwise. One of the diagrams we obtain
is the product of two disconnected “double-bubbles” (each with a combinatorical factor 3) which exactly cancels the

term (S7)3. We are left with
(2) _
In Z? = 36 +12 (245)

The combinatorical factors arise as follows. First diagram: pick two fixed lines from the first vertex, say 2 and 3 such
that 2 is the upper line, 3 the lower line. This fixed pair of lines now gets connected with a pair of the second vertex.
There are 6 such pairs, and each pair can connect in 2 ways (if we choose the pair 5, 8 we can connect (2,5), (3,8)
or (2,8), (3,5)). We are now at 12 diagrams. This has to be multiplied by 6 since there are 6 pairs from the first
diagram which we could have started with. Then we are done since once the two pairs in the middle are connected
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there is no more choice. Consequently, we obtain 72 possibilities which has to be divided by 2 because of Eq. (243).

Second diagram: simply fix the lines from the left diagram in the order 1,2,3,4 from top to bottom. Then there are 4!

possibilities to attach the lines from the second diagram to them. This makes 24 which also has to be divided by 2.
Translating the second-order diagrams into momentum sums yields

= (—)\)2 (%) (;) Z 5(K2+K3)D0(K1)...D0(K4)
Ki,....K4
T2 2
= /\QW ZDO(K)l > (K + K3)Do(K2)Do(Ks), (246a)
K K2,K3

4 2
(—2)? <§) (;) KZK46(K1+...+K4)D0(K1)...D0(K4). (246D)

The fact that the disconnected diagrams cancel out is general, i.e., Eq. (229) simplifies to

e n
1nZI:Z<SI>0va. (247)

n!
n=1

As a summary, we have computed the partition function diagrammatically up to second order in the coupling

constant,

We shall see below, however, that this result is incomplete. There is in fact a contribution to In Z; of order A3/2, see
Sec. VIIID.

B. Propagator, self-energy, and one-particle irreducible (1PI) diagrams

We have seen above that the free propagator can be written as the following ensemble average over the non-
interacting ensemble (see for instance Eq. (239)),

i / 46(K) & 110000 4.0y Q)
DO(Q) = ﬁ L LK)
11 / d(K) e~ 340 P 6(0)
K
= L (H(QO- Q. (249)

In general, the propagator in position space is defined as
D(X1, X2) = (¢(X1)d(X2)) . (250)

From this definition the above form of Dy(Q) follows for the case of a translationally invariant system: in this case,
D(X1, X5) only depends on the difference X; — X5. Without loss of generality we can thus set X5 = 0 and denote
X = X;. Then, the Fourier transform is

D@ = [ @X )00 = 7 3 [ @@Xe X (o(161)0(Kz)
K1,Ko»

= o Q) = A3 ((@)6(-Q)) . (251)
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In the last step we have used that the ensemble average is only nonzero for Ko = —(@Q). The result is the full propagator
in momentum space in a translationally invariant system (where the ensemble average is taken over the interacting
ensemble, in contrast to the free propagator (249)).

Exercise 5: Compute the free propagator Do(X,0) in position space and show that

1 f 11 dist < L
—_— T sm istan, -, —
=ye or small distances @, 7 < -, —
DO(Xv O) =
e~ me ) 1
T for large distances x> — and m < T
dmx T

As usual, X = (—it,x), and x = |x|. (Hints: In the Matsubara summation, use the function 1/(e*/T — 1) instead
of 1/2 cothw/(2T) in the analogue of Eq. (67); this ensures that, when closing the contour, the contribution of the
infinite semi-circle in the positive half-plane vanishes. In the Fourier integral, use that the dominant contribution
comes from momenta kx ~ 1.)

[End of 9th lecture, Dec 9th, 2013]
For a systematic calculation of the perturbation series it is convenient to divide the full (inverse) propagator into
a free part and an interaction part, called self-energy II. We write

D YK) =Dy (K)+1I(K). (252)

The purpose of the following will be to connect the perturbative expansion of the self-energy Il to the expansion
of In Z;. To this end, we first observe that the propagator of the interacting system can be written as a functional
derivative of In Z with respect to the free propagator. Remember from Eq. (227) that

InZ = 1n/D¢ e%0eSr (253)
Therefore,
%mz = 1 5_1 /D¢eSOeS’
5Dy H Q) / D eo+51 9Dy
= 1 6 1 H/d(b(K) 6_%¢(_K) DTO_21 ¢(K) 651
/ D eSorsr 000
| [PocteTo-Qu@)
= o972 /queS°+S’
1
and thus
0lnZ 0lnZ
D(Q)=-2—==2—"—"2D2. 2
(@) 5Dyt "Dy ° (255)
Then, from Eq. (252) we have
D= Dyt +T)~' = (1+ Do) "' Dy. (256)

Using Eq. (255) we have

0lnZ
0Dy

(1+ Doll)™' = DDy =2 Dy . (257)
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In the following we shall expand both sides of this equation in A to obtain the self-energy II order by order. To this
end we first write

m=> II,, (258)

such that II,, is proportional to A™. Then, up to second order in A\, we have
(1+ Doll) ™ =1 — Dy[Il; + Iy — II; DoIl; + O(\?)]. (259)

This is the left-hand side of Eq. (257). For the right-hand side we use, see Eq. (64),

1 Dyt 1 ) snZy 1. 4
1nZO:—§ZInW:§Zh(DOT) = 5D =505, (260)
K K
and thus
0lnZ olnZy ddlnZ;
2D = 2Dy | ——
975Dy 0( 5Dy 5Dy )
511’1ZI
= 1+2D
+ 0 5Dy
3(Sr)o  18((SP)o —(Sn)}) 3
= 1+2D — . 261
+ 0|:5D0 +2 5Dq +0O(N\) (261)
Thus, upon comparing Egs. (259) and (261) we have
InZ
H1+H2—H1D0H1+...=—255n L. (262)
Dy
The first- and second- order contributions are
B 0{S1)o
I 25 p (263a)
2\ 2
My — 10 Dolt, — — 250 = (50a) (263b)
0Dy
The first-order contribution becomes
T § ’
M = 6\ —r K
1 6)\V5D0 [Z o( )]
K
= 12>\ZZD (K) (264)
= T > o .

We see that taking the functional derivative with respect to the propagator is equivalent to cutting a line in the
Feynman diagram,

0(S1)o
0Dy

5
= —12 Q (265)

M, = —2
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The additional factor of 2 appears since each of the two lines can be cut to obtain the same diagram. With this
“cutting rule”, we can easily determine the second-order contributions with the help of the diagrams. By cutting a
line in the respective diagrams we obtain

I, — I, Doll; = _M

- 5Do m @
— _144 Q; Q — 144 — 96 (266)

From Eq. (265) we conclude

IT, DolT; = 144 Q: Q (267)

I, = —144 5 — 96 4@— (268)

We see that the diagram which can be divided into two disconnected diagrams by cutting one line cancels. This is a
general fact and the self-energy is given by all diagrams that cannot be divided into two by cutting one line. These
diagrams are called “one-particle irreducible (1PI)”, and thus Eq. (262) simplifies to

M (Wf) | (269)
0Dy 1PI

C. Evaluation of the first-order corrections

such that we obtain

We can now compute the first-order contribution to the self-energy (264) and to the pressure from Eq. (240).
Making use of Eq. (72) we obtain

I, = 12— Z =10} + 107, (270)
K

with the temperature-independent vacuum part

3
1
I — T (T = 0) = 6) / Ik (271)

and the temperature-dependent part

! — 12/\/ (3:;3 fe(er). (272)

€k
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While II7' is finite, the vacuum part is divergent. This divergence comes from large momenta, k — oo, and is thus

called ultraviolet divergence®.

This divergence requires a renormalization, such that we obtain the renormalized self-energy by subtracting the
vacuum part,

I =10, — 11,(T = 0). (273)

With this renormalization condition we could proceed directly to Eq. (279) to compute II}*" explicitly. Before doing
so0, let us briefly discuss how the renormalization is usually implemented via counterterms in the Lagrangian.
To this end, we remember that the inverse propagator to first order in A is [see Eq. (252)]

D YK)=wl+k +m®+1I. (274)

This shows that the self-energy plays the role of a mass squared if it is momentum-independent (which is the case in
our example of quartic interactions; this would be different for a cubic interaction term). The counterterm we thus
add to the Lagrangian is written as a mass term

1
L— L~ 55m2¢2 : (275)
However, this term is treated as an interaction, i.e., dm? has to be thought of as being of order A\. From Eq. (229)

we have concluded that the ¢* term produces a “double-bubble” diagram for the first-order correction. Analogously,
there is a “single-bubble” contribution (§m? replacing a factor ¢2, i.e., one closed loop) from dm?¢?, denoted as

</X gm*¢?)o = 5m2</X ¢*)o = (276)

Its contribution to the self-energy is then obtained from cutting one line,
Im? = ——&—— (277)
This contribution is now chosen such that the condition (273) is fulfilled, i.e.,
om? = —1I7*. (278)

After this renormalization we can evaluate the first-order self-energy. For the massless case m = 0 (or, equivalently,
for large temperatures T > m) we can do so analytically,

d?’k fB(Gk) 2
I = 12X ~ \T 2
1 / (277)3 € ) ( 79)

where we used

> T 2
d = —. 2
jﬁ o= (280)

We see that a massless boson acquires a thermal mass NT2.
We can also compute the corrections to the pressure from interactions. To first order in the coupling, the pressure
is given by

T T
P==InZy+ =

- o AR (281)

We already know the pressure of the non-interacting system at large temperatures, see Eq. (81),

T d3k 7274
—Zy=-T ] —=In(1—e*T) ~ 282
y e /(27r)3n< ¢ ) 90 (282)

6 In the next section we will encounter an infrared divergence, more intimately related to finite temperature effects.
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where we have dropped the T-independent contribution which is only an irrelevant shift in the pressure, where we
have approximated the expression for T' > m, and where we have used

7.‘_4

dra*ln(l —e )= ——. 283
| dmetma e - - (283)

With In Z}l) from Eq. (240) plus the contribution from the mass counterterm we have

2

VT 1. 5
= _3)\T V%:DO(Q) —§5m %:DO(Q)- (284)

DN | =

Using the form of the self-energy (264) and the mass counterterm (278) and dividing both terms into vacuum and
temperature-dependent parts according to Eqgs. (271) and (272) we have

V1 2 V1
1 Z(l) _ _ TIvac HT - [Ivac (1rvac HT
4 T ey (W I0) o g I (I + 1L
V1 vac)2 T2
— e [ - @) (285)
Again, we drop the temperature-independent part to get
: 2

T (1) / d‘sk fB(Gk) >\T4

—InZ;”7 = =3\ ~—— 286

v o { (2m)3 e 48 7 (286)

again approximating for 7' >> m and using Eq. (279). Putting Eqgs. (282) and (286) together yields the pressure

2T 1
p=" (1 5A+...). (287)

90 82

Exercise 6: Derive the lowest-order correction (S?)o to InZ for a Yukawa interaction L = gnhd, with a bosonic
scalar field ¢ and a fermionic field 1. Give (S%)q in terms of diagrams as well as in terms of momentum sums. (Note
that odd powers in the interaction term such as (Sr)o vanish. Therefore (S%) is the lowest-order correction.)

[End of 10th lecture, Dec 16th, 2013.]

D. Infrared divergence and resummation of ring diagrams

We have seen above that the first-order self-energy II; gives rise to a thermal mass AT2. In particular, if m = 0,
the scalar field acquires a finite mass only through a temperature effect. We shall in the following focus on the case
m = 0. For small energies and momenta, at most of the order of the thermal mass, w2, k? < AT, the free inverse
propagator Dy - w2 + k? is (at most) of the order of AT, and, as we have seen, also the correction through the self
energy is of the order of AT2. This indicates that the naive perturbation series might not be the correct procedure.
Indeed, we shall see in the following that one needs to “resum” a certain class of infinitely many diagrams because of
an infrared divergence, i.e., a divergence coming from small momenta (and energies), as the above simple argument
suggests. Another way of saying this is that the temperature introduces a new energy scale. If we work at zero
temperature, the only possible correction to the mass (squared) is of the form Am?. This is always parametrically
small compared to m?. Now, at nonzero temperature, the temperature itself can (and does) give a correction to the
mass (squared) of the form ANT2. And, even for arbitrarily small ), if T is large enough compared to m, this is not a
small correction.
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Before we discuss the necessary resummation more systematically, let us show a very direct form of a resummation,
namely to use the full instead of the free propagator in the one-loop expression of the self-energy,

T
II = 12X= D(K
v 2Dl

T 1
= 12=) —. (288)
% EK: Dy (K)+10

This is a self-consistent equation for II. Note that in our simple example of real ¢* theory II does not depend on K. In
other more complicated theories where II depends on four-momentum, Eq. (288) is a complicated integral equation.
But also here the general solution of (288) has to be done numerically. Writing

1 > N

B = Do (TP (289)
we see that the self energy now is a loop which itself has any arbitrary number of self-energy insertions, which in
turn have self-energy insertions and so on. Such a sum, which formally includes all powers of the coupling constant,
is usually termed “resummation”. If we replace II in the denominator of Eq. (288) by the first-order approximation
114, the corresponding diagrams consist of a loop with n loops attached to it, sometimes called “daisy”. Using the full
I1, each of the n loops itself gets additional loops, hence here we sum over “superdaisy” diagrams. (But note that,
even if the full self-energy is used, Eq. (288) still has the form of a one-loop self-energy, i.e., even in the “superdaisy”
resummation we only sum over a subset of all possible diagrams.)

We evaluate Eq. (288) as follows,

= 12>\/ d’k TZ L
N (2m)3 " e~ wp + k2411

3 ViZ+ 1
12)\/ dk: fe(VE2 +1I)
VE2 +11

, (290)

where we used the Matsubara sum (72) and where we dropped the zero-temperature contribution. With the new
integration variable x = /k2 /Il + 1 we can write this as

T R 1 fp(I1/%2)
1

7.‘-2
6A [ 2 —1
= F 1 dx 6$H1/2/T -1 : (291)

If one wants to keep all superdaisy diagrams, one has to proceed numerically now.

Exercise 7: Solve Eq. (291) numerically and plot H1/2/T as a function of \. Compare this curve with the result
(279) for 11;.

We can extract an analytical result by using the expansion

/ooda:\/a:Q—lfB(ux)ZZ—W; i—i—l-(’)(uzlnu) . (292)

1 u? |12 4w
Inserting this expansion into Eq. (291), solving the resulting equation for II and expanding in powers of A yields

T2)\3/2
H:)\TQ—L—F... (293)
T

Interestingly, besides the first-order term, we have found a term proportional to A\3/2. We shall see now that this
power also appears in the thermodynamic potential, and we shall see that it is related to the infrared divergence of
certain diagrames.
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Let us start from Eq. (247) and separate the first-order contribution which we already have computed,

S connecte
InZ; = (S;) 0+Z%. (294)

The second-order diagrams are given in Eqs. (246). We see that the first of these diagrams, Eq. (246a) can be written
as

122 Z/ 3 (w2 + k2)? k2) (205)

For n = 0 the integrand goes like 1/k? which is infrared divergent. One can check that the second diagram, given
in Eq. (246b) does not have this property. The solution to this apparent problem is to resum all diagrams of this
“dangerous” kind as we did above for the self energy. More precisely, these are the “daisy” diagrams, where N loops
are attached to an interior loop (sometimes also called “ring” diagrams). We have

(N loops)
> SI 0,connected,daisy - 1 NoN— lN'
Z - Z N|6 2 N
N=2 N=2
_ — 1 NoN-—1
= 3 ' vz/ 3 I oy

= 5% [ G 2 oo

3
- Z/% {In[1 + 11, Do (K)] — 11 Do ()}

1% A3k T2 T2
N 2 (1 ~ 2
2 ;/(2@3 [n( +w2+k2) w%+k2] (296)

The origin of the combinatorical factors is: 6% for choosing one pair of lines from each of the N crosses; 2V~ for the
number of ways to connect the chosen pairs of lines to obtain a ring diagram; N!/N for the number of ways to order
the N loops around the ring. Let us again look at the zero Matsubara mode, n = 0. All other Matsubara modes give
contributions of higher order in A (remember that naively, i.e., ignoring any infrared divergence, one would expect
every single diagram of the sum to be of order A\? or higher). With the noninteracting and first-order results (282)
and (286) we thus find the pressure

n2Tt NI+ T d*k PV T2
P~ ————/ {ln(l—f—?)—?]- (297)

The integral is given by

2 2 3 a2 3 2
9 a a*|  2a k k k a
/dkk [1n<1+ﬁ>_ﬁ] Tarctang—?—f—?ln 1+ﬁ . (298)
Therefore, for the upper boundary we need
2a° A na® 1 A3 a® a’A 1
— 2 arctan— = — - S m(1+=) =22 — 2
3 arctan — 3 +O(A), 3 n<+A2) 3 +O<A>, (299)

and consequently

00 2 2 3
dkk? m(14+ L) -4 = -T2
[ar(ed) 23
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Therefore,
d*k T2 T2 \3/273
m(1+ ) -2 | = 1
[ [ () - | = (301)
and thus
72T 150 15 /A\Y?
P = -+ == N 2
90 8 72 3 (772) * (302)

Consequently, we have found that the next term in the perturbation series of the pressure is not of order A2, but of
order \3/2, as we have seen above for the self-energy.

IX. BOSE-EINSTEIN CONDENSATION OF AN INTERACTING BOSE GAS
A. Spontaneous symmetry breaking and the Goldstone theorem

In Sec. V we have discussed Bose-Einstein condensation of a non-interacting field. Now, having discussed the basics
of an interacting theory, we revisit this effect. The inclusion of interactions is not only more realistic for possible
applications, but also will give us a better conceptual understanding of Bose-Einstein condensation. In particular,
we shall see that Bose-Einstein condensation is an example of spontaneous symmetry breaking and the Goldstone
theorem which are extremely important concepts in various fields of theoretical physics. Another consequence of
including interactions is that we can compute the condensate for fixed chemical potential, and not only for fixed
charge density, as we have done in Sec. V.

We use the same Lagrangian as in Sec. V, see for instance Eq. (95), i.e., we include a chemical potential, but now
also include an interaction term as in the previous section,

L =100 —ip)el* — [Veol|* —m?|p|* — Alp|*. (303)

This Lagrangian is invariant under U(1) rotations ¢ — e~*p. As in Sec. V we introduce real fields via

P = %(@1 +ip2), (304)

which leads to the Lagrangian

1 A
L=< |(0op1)* + (Qo2)” — (Vep1)? = (Vp2) + 20(020001 — 010092) + (1° — m) (@] + ¢3) — = (o] + w%)Q]

2 2

(305)

As discussed above for the noninteracting case, we separate the zero-mode ¢;, allowing for Bose condensation, ¢; —
i + ¢; (remember Eq. (96)). Then the Lagrangian becomes

L=-U+LD 4+ £O 4@ (306)
with
m? —p? 2 Ao 212
U = T(% +¢3) + Z((bl +63)°, (307a)
1
£® = —2 [~(9op1)” = (Bop2) + (Ver)? + (Vo) = 2020001 = p1002)
+(m? = p?) (01 + 93) + ABT + 93)pT + AT + 363)05 + AAdrdapiia] (307b)
L = —Xorp1 + d22) (92 +93), (307¢)
A
LY = 2Pl +¢3). (307d)

Here we have assumed that the condensate is constant in space and time, i.e., all derivative terms 0" ¢; vanish.
We can ignore the terms linear in the fluctuations because of the following
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u <m

FIG. 3: Illustration of the zero-temperature tree-level potential Q for u < m (left) and p > m (right). In the latter case, the
order parameter acquires a nonzero value at a fixed, but arbitrary value on the bottom circle of the potential, thus breaking
the U(1) symmetry “spontaneously”.

Exercise 8: Show that the contributions linear in the fluctuations vanish after using the classical equations of
motion for ¢1, ¢2. Hint: You need to keep the space-time dependence of ¢1, ¢ and drop a boundary term (assuming
that the fields vanish at infinity). The classical equations of motion are the equations of motion obtained from U.

Remarkably, besides the obvious quartic interaction term £, there is an interaction term cubic in the fields,
induced by the condensate ¢;. (Note that here we use the term “condensate” for what is, in the particle physics
context, also called “vacuum expectation value” for the field, or shortly “vev”.) Both interaction terms will lead to
loop corrections as discussed in the previous section. However, let us first discuss the “tree-level” contributions.

Again, for symmetry reasons, we can choose ¢ = 0 and denote ¢ = ¢1. Then, the potential becomes

2,2 by
U@?) =" 5 g 4 79" (308)
and, following the same steps as in Sec. V, the tree-level propagator is

—K?2+m? + 3\ — p? —2ikop (309)
2ikopu —K24+m? 4+ \p? —p? )

Note that Dg knows about the interaction, although we have only considered the terms quadratic in the fields. This
is because of the condensate which appears together with the coupling constant A. Again following the steps in Sec.
V we obtain the tree-level thermodynamic potential,

Q _ o, T Dq ' (K)

Firstly, let us discuss the zero-temperature case, ' = 0. In this case, the thermodynamic potential is simply the
potential U,

— 2 _ 2
UT=0) _m - ¢2+%¢4. (311)

Minimization of {2 with respect to ¢ yields the ground state (corresponding to the state with maximal pressure). For
chemical potentials |u| < m, the minimum is at ¢ = 0. In accordance with our observation in the noninteracting
theory, this means that there is no condensation in this case. One rather needs a negative coefficient in front of the
#? term for condensation, i.e, |u| > m (negative “mass parameter squared” in field-theoretical treatments without
chemical potential). In this case, the potential has a “mexican hat” or “bottom of a wine bottle” shape, see Fig. 3 (we
consider a repulsive interaction for which A > 0; otherwise the potential would be unbounded from below, indicating
an unstable system). Remember that we started from a complex field ¢, hence the rotationally symmetric wine bottle
potential. The minimum is now at ¢ # 0. Such a minimum cannot be invariant under U(1). However, all possible
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minima are degenerate, i.e., we are free to choose an arbitrary direction (and have already done this by choosing
¢ = ¢1). This mechanism, where the Lagrangian has a symmetry which is not respected by the ground state, is
called spontaneous symmetry breaking, as already briefly mentioned in Sec. V. The object that breaks the symmetry
and which is zero in the symmetric phase (here the condensate ¢) is called the order parameter. Other examples of
spontaneous symmetry breaking are:

e ferromagnetism; in this case, the rotational symmetry SO(3) is, by alignment of all microscopic spins and hence
a nonzero magnetization, broken down to U(1).

e chiral symmetry breaking; here, the order parameter is a condensate of pairs of a left-handed antiquark and a
right-handed quark (or vice versa), and the so-called chiral group SU(Ny)p x SU(Np)r (with Ny being the
number of quark flavors) is broken down to the group of joint left- and right-handed rotations SU(Ny)r+r.

e superconductivity; in this case, the order parameter is a condensate of Cooper pairs, breaking the electromagnetic
gauge group U(1)em

e the Higgs mechanism, where the the Higgs field breaks the electroweak group SU(2); x U(1)y of isospin I and
hypercharge Y down to the electromagnetic U(1)ep.

For ;2 > m? we can easily solve the minimization condition

=0 = (312)
Additionally, there is of course the trivial solution ¢ = 0; but, as we easily see, this solution corresponds to a maximum
of the free energy and thus to an unstable state.

[End of 11th lecture, Jan 13th, 2014.]

Next, let us discuss the excitations of the system on top of the condensate background. The poles of the tree-level

propagator Dy (i.e., the zeros of the determinant of the inverse propagator D, 1) correspond to the quasiparticle

energies, which we denote by eki. They can be used to compute the Trln (which is the same as Indet). Defining

m? = m?+3\p?, (313a)
mi = m?+ \p?, (313b)

we obtain (cf. Eq. (100))

DyY (K 1
lndet% = lnH ﬁ[(_KQ +mi — ) (=K? +m3 — p?) — 4p°k])]
K

= W] lleh? ~ Kl ? — K
K

_ (6+)2—k2 (6_)2—k2
;[ln e I 0]. (314)

The quasiparticle energies are

e = \/E,g 2 T \JAp2ER + S MA, (315)

where we abbreviated

Ey = Vk2 + M2, (316)

and
2 2
M? = w =m? + 2)¢2, (317a)
2 2
sm? = T2 _ g2 (317b)
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FIG. 4: Dispersions €5 without (left, 4 < m) and with (right, 4 > m) Bose condensation. In the latter case, one of the modes
becomes gapless with a linear behavior for small momenta k, see Egs. (320) and (321). Such a “Goldstone mode” appears
always for a spontaneously broken global symmetry.

We recover the usual particle and antiparticle dispersions when we set the coupling constant to zero, A = 0. In this
case, we have M = m and dM = 0, and

& =Vk2+m2Fp. (318)

Performing the Matsubara sum in Eq. (314) as usual, inserting the result into the thermodynamic potential (310) and
dropping the vacuum contribution yields

Q m2-p?,, A, d3k e
= Z T — 7 1— —er/T ) 1
% 5 Pt o ;/(2@3 n( e ) (319)

Inserting the solution for the condensate (312) into the definition of M and 6M from Eq. (317), we obtain M? =
2u% —m?, SM? = 2 — m? and thus

& = 12 + (32 - m?) F VBER 1 B2 — ). (320)

We see that 6: becomes gapless, i.e., Gg:o = 0, as shown in Fig. 4. We can expand this mode for small momenta to
obtain

2 2 2 2
eg:\/%kz %k (321)

3u? —m M2+ p
This gapless mode with linear dispersion relation is called the Goldstone mode. Its presence is of great importance
since one is very often interested in the low-energy limit of a theory. The Goldstone mode can be excited with
arbitrarily small energy. As a consequence, it is populated for arbitrarily small temperature. Moreover, its presence is
a very general fact, due to the Goldstone theorem which says that in any system with a spontaneously broken global

symmetry there is a gapless mode.”
The second mode does have an energy gap and behaves quadratically for small k,

2

1 5u®—
G = VRV R L (322)

V2 G2 = m) 72

7 Notice the specification global symmetry. For a local symmetry, for instance in the case of superconductivity, the Goldstone mode is
“eaten up” by the gauge fields, giving rise to a magnetic screening mass, the Meissner mass. Another example is the Higgs mechanism
where the spontaneous breaking of the electroweak group gives rise to the massive W+ and Z bosons.
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B. Symmetry restoration at finite temperature

At a certain temperature, called critical temperature T, the symmetry will be restored, i.e., the ground state will
be symmetric under the original symmetry group. In our case this means that for T > T. we have ¢ = 0 (in the
case of a ferromagnet the magnetization vanishes above the critical temperature, there called Curie temperature;
in a superconductor, the condensate of Cooper pairs vanishes above T, etc.). The general treatment of symmetry
restoration and the determination of the critical temperature is complicated. Here we shall first discuss the qualitative
picture which gives a good physical understanding for the symmetry restoration process. We shall do so with the help
of a very simple approximation. We shall also see that this approximation has obvious problems.

For the sake of simplicity let us set p = 0. This means, in order to have condensation at small temperatures, we
2

need a negative mass parameter squared. Therefore, we introduce the positive square ¢* via
m? = —c?. (323)
The tree-level propagator is now diagonal,
—K? — %+ 3)\¢? 0
DiYK) = , 324
0( ) ( 0 —KQ—CQ—f—)\(bQ ( )

and the excitations energies become

=R +md, mi=a -, mi=3at - (325)

The potential in Eq. (319) now is
Q
|4

2 3
_ e A d°k _ e €/T
= —5 "+ 79 +T§/(2ﬂ)3ln<l e /T

2 4 o]
- c” 9 A 4 T 2 _ /z2+(mi/T)2
= _EQS +Z¢ +ﬁ E /0 dr x ln(l—e )

i=1,2
~ Sy g T THmitm) (326)
2 4 45 24
where we have used the high-temperature approximation 72 > ¢ and
o] _ 4 2
/ dz 2% In (1 - e—\/ﬁﬂﬂ) = —1—5 + % y>+ 0y, (327)
0
Now, with Eq. (325) this becomes, ordered in powers of ¢,
Q 2 \T? o A4 Tir?  AT?
— = J— N — — - 2
Vv ( 2+6>¢+4¢ 45 12 (328)

This result shows that the coefficient of the quadratic term becomes larger with increasing temperature until it
becomes positive for temperatures larger than the critical temperature

3c?
T? = .
A
This indicates a second-order phase transition to the restored phase. (A first-order phase transition can only occur if
there was also a cubic term ¢®.) We can compute the condensate as a function of temperature and find

(329)

2 72 T, T2

5 c
- T T)= 25, )1— = 330
#r=5-% oT) = 1= T3 (330)
forT<T.and ¢ =0 for T > T..
This approximation has the following severe problem. With Eqgs. (325) and (330) we observe that the excitation
energies are given by the following masses (for T' < T,),
\T?
mi = -5 (331a)

m? = 2¢% — \T?. (331b)
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For T' = 0 we recover the gapless Goldstone mode and the gapped mode. However, for nonzero temperature, the
Goldstone mode acquires an imaginary energy for small momenta which is obviously unphysical. It is no surprise that
the applied approximation is incomplete, since we know from the previous section that loops can give corrections to
the potential of the order of AT2. This is exactly the order which was responsible for the symmetry restoration above.
Therefore, in the next subsection we improve our result by including loop corrections.

[End of 12th lecture, Jan 20th, 2014.]

C. Including loop corrections

So far we have ignored the contributions from the interaction terms (307c) and (307d) in the Lagrangian. From
Sec. VIIT A we know that the quartic term gives rise to the “double-bubble” diagram in the thermodynamic potential.
The cubic term gives an additional contribution, such that up to two loops we find the contributions (omitting the
arrows in the loop diagrams)

In Ziwe loors — 3 +3 (332)

Note that now each line denotes a 2 x 2 propagator, given in Eq. (309). Naively, one might say that the second
diagram is suppressed compared to the first because of the number of vertices, which each comes with one power
of the coupling constant A. However, there is a condensate sitting on the vertices of the second diagram. We have
seen above that the condensate is proportional to the inverse of A/2, and thus the power counting does not work in
the usual way. Nevertheless we shall neglect the second diagram for simplicity. The self-energy that arises from this
diagram depends on four-momentum (in contrast to the self-energy arising from the first diagram). For an estimate of
the self-energy from the second diagram we restrict ourselves to the low-momentum, large-temperature approximation
and consider a scalar propagator instead of the full 2 x 2 structure.

Exercise 9: Show that the momentum-dependent self-energy

T

S(P) = ¢2A2V ; Do(P — K)Do(K) (333)

with the propagator Do(K) = 1/(k2 — €3), €2 = k? +m?, is given in the po =0, p — 0, T > m limit by

$2N2T
8tm

lim ¥(0, p) (334)

(Hint: Use the result from Exercise 1 for the Matsubara sum.)

As we shall see below (and can guess from our results for the real scalar field), the contribution of the first diagram
(with quartic interactions) is oc A\T2. We can thus neglect the contribution from the second diagram if the condensate
is small, more precisely if (u? — m?)/m < T, i.e., if the chemical potential is only slightly larger than the mass and
thus only allows for a small condensate.

To find the result for the first diagram we write the interaction Lagrangian (307d) as

£(4) = _Aabcd PaPoPcPd ; a, ba C, de {15 2} ) (335)
with a symmetrized tensor,
A
Aabcd = E(éab(scd + 5a05bd + 5(1(151)0) . (336)

The tensor structure comes from the two components of the complex field ¢ and replaces the scalar A for the case of
a single scalar field. Consequently,

T
In 7y = =3Aancay; Y DE'(K) Y DEH(Q). (337)
K Q
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where Dg’ are the components of the 2 x 2 propagator

1 —K?+m3 — 2 2iko
()2 — k31l(ex )% — K] —2ikop ~K24mi—p? )

This propagator is obtained from the inverse propagator (309) by using the expression for the inversion of a 2 x 2

matrix
_(ab 1 d —b
a=(20) - (4 -

Inserting the tensor (336) into Eq. (337) and performing the sum over a, b, ¢, d yields

Dy(K) = (338)

2 2
mz) = 22331 o @)| 3| 0R@)| 23 DY D) | (310)
Q Q Q K

where we have used that the Matsubara sum over the off-diagonal components D§? = —D3! vanishes. Therefore we
are left with the diagonal components. The self-energy (which, due to the definition (252) now is also a 2 X 2 matrix)
can now be determined from the relation (269). With Eq. (337) the self-energy of first order in A is

1
b _ o0z
sDgv

T Ci
— 12A“”“V %: DEYQ)

T
= A(dabOcd + dacObd + 5ad5bc)v > D@ (341)
Q
Written as a matrix, this is
T 3D4'(Q) + DF*(Q) 0
=g 2 ( 0 DINQ) +3DP(Q) ) - (342)

This matrix can of course also be obtained from taking the derivatives with respect to D" from the explicit expression
(340). Using two different line styles for the two modes 1 and 2 we can bring Eqs. (340) and (342) into a diagrammatic

form,
m o= -3 Q - L (344a)
m22 = -3 i - O . (344b)

As a check, we see that these self-energy diagrams arise from cutting the respective lines in Eq. (343). If we ignore the
second degree of freedom we recover the form of the self-energy (265) for a real scalar field (the different prefactor,
12 vs. 3, is due to the different normalization of the coupling constant in the Lagrangian, A vs. A/4, which originates
from the normalization of the real fields ¢1, @2 in Eq. (304)).

To evaluate the self-energy from Eq. (342) we again set p = 0 for simplicity. The result will give us the loop
corrections to the masses given in Eq. (331). In the high-temperature approximation, T >> m1,ms, the propagators

and
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of the two modes become identical, Di! ~ D32 ~ —1/K?. Then we can use the results of Sec. VIIIC to obtain, after
subtracting the vacuum contribution,

T T2
Ay > DiHQ) ~ A ZD A : (345)
Q

i.e., II*! ~ II?2 ~ \T?/3. Consequently, the corrected masses of the two modes are, for T < T,

mi+1' = 0, (346a)

T2 2\T? T2
2 22 2 —
mq + 11 = 2 (C — T) = 3 ¢ (1 — T_CQ) s (346b)

where we have used Egs. (329) and (331). We see that the Goldstone mode now remains gapless up to T' = T as it
should be. Moreover, the other mode becomes gapless at the phase transition. Then, for T' > T, both masses become
identical, m? = m3 = —c? + \T?/3 > 0.

The case of a nonvanishing chemical potential is similar. However, in this case, the gapped mode has an energy gap
even at T = T, where the energy is y (as opposed to 0 in the case without chemical potential). For a self-consistent
treatment of this case see for instance Sec. IIT in Ref. [10].

[End of 13th lecture, Jan 27th, 2014.]

X. THE PHOTON PROPAGATOR IN A QED PLASMA
A. Photon polarization tensor

From Exercise 6 we know the structure of the self-energy diagrams for fermions interacting via a bosonic field
through the Yukawa interaction. In QED, discussed in Sec. VII, electrons interact in a similar way with photons,
namely through an interaction term

Lr=epy" A, (347)
cf. Eq. (182). From this expression we can construct the one-loop photon self-energy

0 K
2L

H,“,(Q) = V

> " Try,Go(K)7.Go(P)] (348)

K-Q
where the trace is taken over Dirac space, where we have abbreviated
P=K-Q, (349)

and where the electron propagator is given by Eq. (153). A gauge interaction is of course different from a simple
Yukawa interaction. We shall come to the subtleties related to gauge invariance in the next subsection. First we
compute the photon self-energy, also called polarization tensor. For simplicity, we shall consider the ultrarelativistic
limit m = 0 and set the chemical potential to zero, g = 0. Then, the fermion propagator simply becomes

"
Go(K) = —VK—Q“ . (350)

With the trace
Tr[’Yp'Ya'YV'Yp] = 4(guagup + Gup9or — g;wgap) > (351)
where g, = diag(1, —1, -1, —1) is the metric tensor, we obtain

Ty KoY’ Py = 4(K P, + K, Py — g K - P). (352)
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In the following we need to treat the following three cases separately,

k +k
Moo(Q) = VZ Opo e _pp) (353a)
k?pri-k?zp
o (Q) = Mio(Q VZ . OPQ), (353b)
T« kip; + k;p; + 01 (kopo — k -
,(Q) = de2— S Bl TPt jlhopo —k-p). (353c¢)

V (k§ — k2)(p§ — p?)

The Matsubara sum over kg is taken over fermionic Matsubara frequencies since the loop is an electron loop. Since
the external momentum () belongs to the photon, the Matsubara frequencies in gy are bosonic. Therefore we can use
the result from Exercise 4. With the relations

fr(e)fr(e2)  fr(—€1)fr(—e2)

1= frler) = fr(e2) = ol ta) - Iaca—a) (354a)
_ fr(=e)frlea) _ fr(en)fr(—e2)
fr(er) — fr(e2) = N E————— Fola—a) (354Db)

we can write Eq. (168) as (changing g to —qo)

TZ kko+§1 (ko—gqo+&) _ 1 {{(61—51)(62—52)_(€1+51)(62+§2)

2—eD)(ko — q0)? — €3] deren go + €1 — €2 go — €1+ €2

] ) — Flea)

. {(61 +&)(e2—&) (e —&)(e2 + &)

qo — €1 — €2 go + €1 + €2

[ s - st} @9

Since eventually only fermionic distribution functions occur we have abbreviated f = fp. Consequently, since the
dispersions in our massless approximation are €, = k, Egs. (353) become

62/ (;il;” [(qo +1k—p @ —1k+p> 1k p)(fi = )

1 1 L
+(q0_k_p—q0+k+p>(1—k-p)(1—fk—fp)], (356a)

oo

L[ &% 1 1 T
Hoi = = /(277)3 {<qo+k—p+qo—k+p> Pt k)= 1)

1 1
+(Q0—k—p+qo+k:+p>( )(1_fk_fp)]’ (356D)

d*k 1 1 A
Hij = 32/(271_)3 |:(q0+k_p_q0—k+p> [5ij(1_k'p)+kipj+kjpi](fk—fp)
1 1 o .
+<qo—k—p_qo+k+p)[5"3‘(”1"1’)—kipj—kjpi](l—fk—fp). (356¢)

where we have abbreviated fi = f(k) and the unit vector k = k/k. We now apply the so-called “Hard Thermal
Loop (HTL)” approximation [11], where the dominant contribution comes from fermion momenta k ~ T (called
“hard”), and the photon momentum is of the order of gg,q ~ €T (called “soft”). In this spirit, we approximate the
denominators in Egs. (356) as (remember p = |k — q)

GotkFp~q+q-k, gotk+p~ +2k, (357)
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and the distribution functions as

L

fk_ pﬁ a— 1—fk—fp21—2fk. (358)

Now, to compute Iy first note that k- p = 1 + O(q*/k?), hence we can neglect the second line in Eq. (356a). Thus,

A3k 1 1 ~ O fy

2

2e / 5 3< - A)q kE)k
27)* \go+a-k g —-q-k

(27’(’)3 qo-f—qf( ok

A3k qo Ofk
4 2/ (1 - ) L 359
“ ] @n)p o+q k) Ok (859)

In the second step we have used that the angular integral gives the same result for both terms: with 6 being the angle
between k and q, and = = cosf, one changes the integration variable x — —x in the first term to obtain the second
term. Hence we can drop the second term and obtain a factor 2. In the third step we have separated the gy = 0 part.®

To compute II;p in the HTL approximation, we can again neglect the second line in Eq. (356b) since p; — k; is of
the order of ¢/k. The remaining term, being of order one, is

3k 1 1 .- f
2
@ o+a-k q-qk

3 ~
- 4e2/ d k3 _ @ O (360)

IToo

12

;o

12

In II;5, the second line cannot be neglected. The first term is analogous to the first term in Ilgg and we obtain
d‘sk q0 8fk 1 ~on
IT;; = 2¢ 21— —2—— ) kiky —=— — — (05 — kiky)(1 = 2f2) ] - 361
ij € /(27r)3 { < o+ q- k) I ok k:( ij ikj)( Ir) (361)

The 1 in the factor 1 — 2f} is the vacuum contribution which has to be subtracted as discussed for the case of the
self-energy in ¢* theory. Then, with

Q.. oy
/Zﬂkk :%ﬂ, (362)

we see via partial integration that only one term in Eq. (361) survives,

Bk [+ 0fs 1 - 8 [ Afr
— ki = 4 = (655 — kik; =Y dk ( KF2==2 +2kf ) =0.
/(27r)3 { ok R J)f’“} 67r2/0 < ok fk) (363)
Consequently, we are left with
3 A~ ~
I, = —de? / d k3q7°Akikj%. (364)
2m)? go+q-k k

In all three results (359), (360), and (364) we have the same k integral which we can perform exactly,

8fk T2 x? T?7?
2 _ - _
/ dk N 0 d 1 +cosha 6 (365)

8 Note that the limits go — 0, ¢ — 0 do not commute. We shall see in the subsequent sections that different limits correspond to different
physics.



92

Consequently, we have

dQ
Moy = —2m’ <1— =0 > , (366a)
AT g0 +q -k
dQ) ki
HOi = —2m2/—7q0 : ZR) (366b)
AT gy +q -k
dQ  qokik;
; = 2m? / e L (366¢)
Am g0 +q-k
where we defined
22
m? = ¢ 6T (367)

B. Photon propagator

After having computed the polarization tensor, we want to use the result to determine the photon modes in the
plasma. To this end, we need the photon propagator D(Q). In a covariant gauge 9,A" = 0 with gauge-fixing
parameter p the free inverse propagator is

Dy, (Q) = Q*gpu — (1 - %) QuQy - (368)

(Cf. the inverse propagator in axial gauge in Eq. (214).) Physical quantities must of course be independent of p.
Inversion gives

Guv Q.Qy
DO,,U,V(Q) = & - (1 - p) 524 . (369)
(One can easily check that Dg"D&ig = gH_=0".) Let us now introduce projection operators Pr,, Pr via
P = PP =Py =0, (370a)
Py = §Y — g, (370b)
and
v QMQV v 14
P = 2 g"" — PRV (371)
Both Pr and P, are 4-transverse to @, i.e., QP = Q. Py’ = 0. The projector Pr is 3-transverse, while Py, is
3-longitudinal. We have P/ Py, ,, = —P}jﬁ, Pl Pr,, = —P’ﬂw P! Pr,, = PRPr . = 0. In terms of these
projectors, the photon self-energy can be written as
1,,(Q) = F(Q)PrL yw + G(Q) Py » (372)

with scalar functions F' and G. This follows from rotational invariance and the tranversality property of the self-energy
Q,II" = 0 (in non-abelian gauge theories, the structure of the self-energy is more complicated). For the full inverse
propagator we then find

QNQV

Dyus = Dy + oy = (F = Q) Prp + (G = Q) Pryuy + =25, (373)
such that
PL v PT. N2 Q Ql/
D,..(Q)= M + L + pLEr 374
wQ=Fo-Ftao-o o (374)
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(Again, one checks D;VID”" = gu".) To obtain an explicit form for F' we may for instance consider the (00)-component
of Eq. (372), which yields®

F(Q) = q_QHOO(Q) . (375)

To obtain G, we multiply Eq. (372) with P7" and take the ¢ = i, = j component. This yields
1 .
GQ) = §(§jk = Qi qi) gy = Hee (Q) (376)
where, in the second step, we have chosen a reference frame in which q points into the z-direction, in which case we

also have I, = II,.
We can now use our results from the previous subsection. With Eq. (366a) we find

2 1
_ o 2@ 1 o
FQ) = —2m . (1 2/_1dxq0—|—qx)

2
_ 2 Q go ., qo+¢q
and with Eq. (366¢)
m? [ i qosin? 6 cos? o
G = — d df sin ———
(@) 2m Jo @/0 go +gcosd

= m?— %F(Q) : (378)

In both functions F' and G the Legendre function of the second kind

1. 41

Qo(x)zilnx—l

(379)

appears. This function is defined in the complex plane, cut from -1 to 1. Consequently, F'(Q) and G(Q) are defined
in the complex qo plane, cut from —q to g. For timelike Q% > 0 (go real), F' and G are real, while for spacelike Q% < 0
they become complex.

C. Debye screening

In order to discuss the physical meaning of the photon propagator with the functions F' and G, we first consider
a static point charge Q in the plasma. The resulting potential in position space then is given by the function F' (see
chapter 6.3 in Ref. [2] for more details)

- d3q eiq-r
vin=of e E T P =0.q) (380)

9 We may also express F in terms of IIp; by multiplying both sides of Eq. (372) with Pz“ and take the o = i,v = 0 component of the

2
resulting equation. After a few lines of algebra one finds F(Q) = %(jjl‘[jo.
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For F' = 0 we recover the usual Coulomb potential V(r) = Q/r. The effect of F' is to screen this potential,
Vi(r)= L -rmo , (381)
r

with the so-called Debye screening mass
e2T?

3
This screening is easy to understand: since we are at finite temperature, there are electrons end positrons in the
system. Say Q is a negative charge, then positrons will be attracted and screen the charge. They do so on a length
scale given by the inverse Debye mass. In other words, looking from far away (from distances much larger than mBl)
one cannot see the charge. One has to come closer (up to distances ~ mp' or closer) to resolve the charge.

There is no magnetic screening mass, G(go = 0,¢ — 0) = 0. The magnetic screening mass becomes non-vanishing
in a superconductor (— Meissner mass), where magnetic fields are screened.

m$ = F(qo =0,qg = 0) = —go(qo = 0,¢ = 0) = (382)

D. Plasma oscillations and Landau damping

Next we discuss the collective excitations in the plasma. (See, besides the textbooks by LeBellac and Kapusta, Ref.
[12] for details.) To this end, we consider the spectral density, given by

1
prr(Q) = —ImDrr(Q), (383)
where the longitudinal and transverse parts of the photon propagator are defined as
Q? 1 1
D Q = — = , 384a
YO PR -@ T @ - (3542)
1
Dr(Q) = ——, 384b

where we have used Eq. (375). The imaginary part in Eq. (383) has to be understood as the imaginary part of the
retarded propagator, lim._,o Im Dy, 7(go + i€, q), € > 0.
Expanding

2
. . €
oo (qo + i€, q) ~ Iloo(qo, a) + i€d1lpo(qo, q) — 5321100(%7 q), (385)

(with the abbreviation 0 = aiqo)’ we can write

2
Im DL(qO + e, q) ~ — {Im IIoo + eRe 01lgg — %Im 821_[00
X {(Re oo — ¢%)% + (Im Tgo)? + 2€[Im Tpo Re Tlog — (Re gg — ¢%)Im Ollyo]

-1
+e%[(Re 0Mgg)? + (Im OTlp)? — (Re Mgy — ¢*)Re 9*Tgp — Im MgoIm 92 HOO]} . (386)

As discussed above, the imaginary parts of F' and G are nonzero if and only if the four-momentum @ is spacelike,
q®> — g2 > 0. In this case, the limit € — 0 can be taken without any subtleties: all terms proportional to any order of
€ can simply be discarded, and we obtain

1 Im Hoo
7 (Rellgg — ¢2)2 + (Im po)?
This is different for timelike momenta, g3 — ¢®> > 0, where the imaginary part of Ilpg vanishes. In this case, we have

— lim — €0lloo
e—0 T (Hoo — q2)2 =+ 62[(81_[00)2 — (Hoo — q2)82H00]

L s Hoo -
0l Olly

= —sgn(dTlno) 6 (oo — ¢%), (388)

1
q°—q;>0: 21_1}(1) 7TIm Dr(qo + i€, q) (387)

1
@—q*>0: lim —Im Dy, (qo + i€,q)
e—0 T
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g/m

FIG. 5: Longitudinal (plasmon) and transverse modes in a QED plasma. wp = T'/3, m? = ¢*T?/6.

where we have used
1 €
My 0 (389)

For the transverse part we proceed analogously. As a result, the longitudinal and transverse parts of the spectral

function are
- 81_[00 2 2 2 1 Im HOO
(@ = s (G2 ) o(thn — ) = O )2 o e s (3000)
_ (G — qg) 2 2 o\ 1 ImG
(391)

Since IIpg and G are both even in ¢y we can write

oo — ¢* = (g0 — wr)(qo +wL), G — Q%= (qo — wr)(qo +wr).
The zeros wr, 7(q) have to be determined numerically, see Fig. 5. They correspond to quasiparticle dispersions. We
see that besides the transverse photon there is another, longitudinal degree of freedom. This is due to the plasma in

which the photon propagates, hence the name plasmon for this quasiparticle.
We can rewrite the quasiparticle contribution to the spectral density with the help of the general formula

d(x — x0)
of@)) =) —mr—r (392)
%): |f/ (o)l
where z( are the zeros of the function f(z). We thus first compute
Ollpy 1 ( 3w123q2> 1 ( s 9 o 3w%q2)
=— oo ——— | =— A o 5 393
dqo qo % Q? do o LT Q? (393)
where we have defined the plasma frequency
2 72
wd = Zm :69 . (394)
This yields
om 2302 — w2 4+ 2
wr(wf — ¢°)

aqo qo=%twr

One can check that the result is negative (positive) for the upper (lower) sign for all q.
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And, analogously, for the transverse component,

(G — Q(Q)) 1 [(G - m2)(3q8 - q2) 2 2
—_ = — —2g5 +m”| 396
dqo q0 Q? % ( )
and thus
_ g2 2,2 _ (2 _ . 2\2
(G —q?) _ qE?wTon 2(°JT - ) (397)
9qo go=+wr wr (WT —q )

Consequently, the spectral densities from Eqgs. (390) become

wr (Wi —¢?) O(¢* — ¢3) Im Iy

1
pL(Q) = q2(3w123 + q2 — w%) [5((]0 - WL) - 6(q0 + WL)] - ; (Re oo — qg)g I (Im HOO)2 ) (398&)
pr(@) = T =) 5 ur) — a(go + wp)] - L O a) ImC (395h)

3wiw? — (wh —¢?)? 7 (ReG — Q22 + (InG)?"
The spacelike part of the spectral functions describes Landau damping. This is related to scattering processes of the
photon off electrons and positrons in the plasma. Through these processes energy is dissipated, i.e., the photon is
“damped”.
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