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I. INTRODUCTION AND OUTLINE

We shall discuss systems in equilibrium at finite temperatures and chemical potentials. In most parts we will follow
the book by Kapusta [1], see also the book by Le Bellac [2] or the online lecture notes by Laine [3] for additional
reference. We will focus on the functional integral approach, for a different approach using second quantization
see the book by Fetter and Walecka [4]. We shall learn the tools of functional integration, Matsubara summation,
perturbation techniques, and discuss important theoretical concepts such as spontaneous symmetry breaking and
restoration thereof at large temperatures. Applications, to be discussed after learning these techniques, are

• early universe, cosmology

– inflation, T ∼ 1015 GeV

– electroweak phase transition T ∼ 102GeV

– QCD phase transition, T ∼ 102MeV (for comparison, this is ∼ 1012K)

– baryogenesis

• QCD phase transitions

– heavy-ion collisions (“little bang” vs. “big bang”)

– chiral symmetry (spontaneous breaking thereof)

– lattice QCD

• compact stars, T � 10MeV, µq ∼ 400MeV

– dense nuclear matter

– neutrino emissivity

– quark matter, color superconductivity

The physics of compact stars are discussed in a separate lecture, for the lecture notes see Ref. [5] (some methods of
thermal field theory are also used in my lectures about superfluids, see Ref. [6]). For a review of the basic features of
thermal field theory with emphasis on heavy-ion collisions, see Ref. [7]; for a review of more advanced techniques, in
particular in the context of QCD, see Ref. [8].
[End of 1st lecture, Oct 7th, 2013.]

II. BASICS OF STATISTICAL QUANTUM MECHANICS

This chapter serves as a quick reminder of the main ingredients of statistical quantum mechanics and its relation
to thermodynamic quantities. A good textbook about statistical physics is the book by Nolting [9]. The goal of
this reminder is to explain the meaning and form of the partition function which, in later chapters in the functional
integral representation, plays a central role in thermal field theory.

A. Statistical operator

We start by recalling that statistical quantum mechanics involves probabilities on two levels. First, on the funda-
mental level, quantum mechanics itself involves some kind of statistics, i.e., we can only give probabilities to measure
a certain value of an observable. Let Â be an observable with a set of complete orthogonal eigenstates |n〉 and
eigenvalues an,

Â|n〉 = an|n〉 , (1)

with 〈m|n〉 = δmn,
∑

n |n〉〈n| = 1. We can expand any state |ψ〉 in terms of these eigenstates,

|ψ〉 =
∑
n

cn|n〉 . (2)
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The probability to measure the value an in the state |ψ〉 is |cn|2 with cn = 〈n|ψ〉. Then, the expectation value of Â
in the state |ψ〉 is

〈Â〉 =
∑
n

|cn|2an

=
∑
n

|〈n|ψ〉|2an

=
∑
n

〈n|ψ〉〈ψ|Â|n〉

= 〈ψ|Â|ψ〉 . (3)

Second, and independent of the quantum probability interpretation, there is a level of uncertainty for macroscopic
systems of which we don’t know (and are not interested in) the microscopic details. We now consider many possible
(orthogonal) quantum mechanical states |ψm〉 each of which we find with a probability pm, 0 < pm < 1. Then, the

expectation value for Â is not only given by the quantum mechanical averaging but also by averaging over the possible
states |ψm〉, i.e.,

〈Â〉 =
∑
m

pm〈ψm|Â|ψm〉 . (4)

If we define the statistical operator

ρ̂ ≡
∑
m

pm|ψm〉〈ψm| , (5)

we can write the expectation value as

〈Â〉 = Tr(ρ̂ Â) . (6)

Proof:

〈Â〉 =
∑
m

pm〈ψm|Â|ψm〉 =
∑
i,j,m

pm〈ψm|φi〉〈φi|Â|φj〉〈φj |ψm〉

=
∑
i,j

ρ̂jiÂij = Tr(ρ̂ Â) . (7)

We obviously have ρ̂† = ρ̂ and

Tr ρ̂ = 1 (8)

(which is clear from setting Â = 1 above). The meaning of ρ̂ can also be understood from the analogy to classical
statistical mechanics. In this case, there is a probability distribution ρ(p, q) in the 6N -dimensional phase space (N be
the number of particles which each moves on a trajectory in phase space); then, d3Np d3Nq ρ(p, q) is the probability
to find the system in the small region d3Np d3Nq in phase space. An observable A has a value A(p, q) if the system
sits on the point (p, q) in phase space, and its expectation value is given by

〈A〉 = 1

(2π�)3NN !

∫
d3Np d3Nq ρ(p, q)A(p, q) , (9)

where the factor N ! in the normalization refers to the exchange of particles and the factor (2π�)3N is included to
do the transition to a quantum mechanical system. Comparing Eq. (6) with Eq. (9) shows the formal similarity
between the quantum and classical expectation values (the trace is replaced by the phase space integral). This formal
correspondence goes further, e.g., the Liouville equation for the classical probability distribution

∂ρ

∂t
= −{H, ρ} , (10)
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where H is the Hamilton function of the system and {−,−} the Poisson bracket, is very similar to the Heisenberg
equation for the statistical operator

∂ρ̂

∂t
= − i

�
[Ĥ, ρ̂] , (11)

with the Hamilton operator Ĥ. Here we shall be mostly concerned with equilibrium situations and thus [Ĥ, ρ̂] = 0.

B. Grand canonical ensemble

Let us now recall the different ensembles in statistical physics (both classical and quantum mechanical). One should
in the following always think of an ensemble as a collection of many different systems with the same fixed macroscopic
properties but different microscopic configurations. Which macroscopic properties are fixed depends on the ensemble:

• microcanonical ensemble (E,N, V )

• canonical ensemble (T,N, V )

• grand canonical ensemble (T, µ, V )

with the volume V , the energy E, the particle number (charge) N , the temperature T , and the chemical potential
µ (associated with the charge N); in general, there can be more than one conserved charge and chemical potential.
We shall mostly be concerned with the grand canonical ensemble. Therefore, let us give a brief derivation of the
statistical operator in the grand canonical ensemble. Consider a system Σ with fixed energy E, charge N , and volume
V . We are interested in a small subsystem Σ(1) such that Σ = Σ(1) ∪ Σ(2) and such that Σ(1) and Σ(2) are separated
by walls through which charge and energy can be exchanged. Let us denote the energy, charge, and volume of the
subsystems by E(i), N (i), V (i). We then have E = E(1) +E(2), N = N (1) +N (2). We assume that the Hamilton and
charge operators commute, [Ĥ(i), N̂ (i)] = 0, and thus that there is a set of simultaneous eigenstates |Em, n〉 for the
subsystem Σ(1),

Ĥ(1)|Em, n〉 = Em|Em, n〉 , (12a)

N̂ (1)|Em, n〉 = n|Em, n〉 . (12b)

We can write the statistical operator as

ρ̂ =
∑
m,n

pm,n|Em, n〉〈Em, n| . (13)

We are interested in the probability pm,n to find the system Σ(1) in the state |Em, n〉 with energy Em and charge

N (1) = n. This probability is proportional to the number of states Γ available in the complementary system Σ(2),

pm,n ∝ Γ(2)(E − Em, N − n, V (2)) . (14)

The system Σ(2) acts as a heat and particle bath for Σ(1) and thus Em � E, n � N . We can then expand the
logarithm of Γ,

ln Γ(2)(E − Em, N − n, V (2)) � 1

kB
S(2)(E,N, V (2))− Em

kB

∂S(2)

∂E

∣∣∣∣
Em=n=0

− n

kB

∂S(2)

∂N

∣∣∣∣
Em=n=0

, (15)

where we have used the definition for the entropy S = kB ln Γ where kB is the Boltzmann constant. Now we can use
the thermodynamic relations ∂S/∂E = 1/T , ∂S/∂N = −µ/T (in fact, one can view the derivatives in Eq. (15) as the
definitions of temperature and chemical potential) to obtain

pm,n ∝ e−β(Em−µn) , (16)

with

β ≡ 1

kBT
. (17)
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(Later we shall always use units where � = c = kB = 1 such that β is simply the inverse temperature, β = 1/T .) Here
we have dropped the contribution S(2)/kB which only depends on the system Σ(2) and thus can be absorbed in the
normalization, to be determined below. Inserting this into the statistical operator (13) yields

ρ̂ ∝
∑
m,n

e−β(Em−µn)|Em, n〉〈Em, n| = e−β(Ĥ(1)−µN̂(1))
∑
m,n

|Em, n〉〈Em, n| = e−β(Ĥ(1)−µN̂(1)) . (18)

Here we have used that the exponential of an operator is defined via the expansion in powers of the operator,

eÂ =
∑

�
Â�

�! . Therefore, one has for instance eÂ|n〉 = ∑
�
Â�

�! |n〉 =
∑

�
a�
n

�! |n〉 = ean |n〉. We have also used that Ĥ(1)

and N̂ (1) commute, such that we can factorize the exponential, e−β(Ĥ(1)−µN̂(1)) = e−βĤ(1)

eβµN̂
(1)

.
To fulfill the normalization (8) we find (dropping the superscript “(1)”, from now on we are only talking about the

subsystem Σ(1))

ρ̂ =
e−β(Ĥ−µN̂)

Z
, (19)

where

Z ≡ Tr e−β(Ĥ−µN̂) (20)

is the partition function of the system. This means that, with Eq. (6), the expectation value of an observable Â is
given by

〈Â〉 = Tr[Âe−β(Ĥ−µN̂)]

Z
. (21)

We can derive all thermodynamic quantities from the partition function, which thus is the central quantity in statistical
physics. For instance we have the grand canonical potential (sometimes called the thermodynamic potential)

Ω(T, µ, V ) ≡ − 1

β
lnZ . (22)

This function is related to the other thermodynamic quantities via

Ω = −PV = E − µN − TS , (23)

where P is the pressure. From the partition function we immediately get, in accordance with (23),

∂Ω

∂µ
= − 1

β

∂ lnZ

∂µ

= − 1

β Z

∂Z

∂µ

= −TrN̂e−β(Ĥ−µN̂)

Z

= −〈N̂〉 ≡ −N , (24)

and

∂Ω

∂T
= − lnZ − β

Tr
[
(Ĥ − µN̂)e−β(Ĥ−µN̂)

]
Z

= 〈ln ρ̂〉 = −〈S〉 , (25)

since ln ρ̂ = ln e−β(Ĥ−µN̂) − lnZ = −β(Ĥ − µN̂)− lnZ.
Let us compute the partition function for the simplest cases before we turn to the field theoretical description.

Let us first consider a single energy state with energy ω which we can fill with bosons. Remember that this simple
many-particle system resembles the one-particle harmonic oscillator because the Hamiltonian is Ĥ = ω(N̂ + 1/2),
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where we drop the zero-point energy ω/2. Since arbitrarily many bosons can populate the state, the partition function
is

Z =

∞∑
n=0

〈n|e−β(ω−µ)N̂ |n〉 =
∞∑
n=0

e−β(ω−µ)n〈n|n〉 = 1

1− e−β(ω−µ)
, (26)

where, for the last step, we have assumed µ < ω, such that we can apply the formula for the geometric series∑∞
n=0 q

n = 1
1−q for 0 < q < 1. The thermodynamic potential is thus

Ω = −T lnZ = T ln
[
1− e−β(ω−µ)

]
(27)

and the particle number

N = −∂Ω
∂µ

=
1

eβ(ω−µ) − 1
. (28)

One can already see from this simple example that something interesting happens if the chemical potential approaches
the energy ω, since in this case the particle number seems to diverge. This is a first hint of Bose-Einstein condensation
which we shall discuss later. We also see that the chemical potential cannot assume values larger than ω in order to
avoid negative N . This is a restriction for non-interacting systems.
For fermions we get a similar expression, with the difference that we can only put one fermion at most into the

energy state. Consequently, the sum only runs over n = 0, 1, and we get

Z =
1∑

n=0

〈n|e−β(ω−µ)N̂ |n〉 = 1 + e−β(ω−µ) , (29)

where the n = 0 term yields the 1 from the expansion of the exponential (which is obvious from writing e−β(ω−µ)N̂ =

1− β(ω − µ)N̂ + . . .). In this case, the thermodynamic potential is

Ω = −T lnZ = −T ln
[
1 + e−β(ω−µ)

]
(30)

and the particle number

N = −∂Ω
∂µ

=
1

eβ(ω−µ) + 1
. (31)

In this simple case of just one single energy ω, the particle number at vanishing temperature is N = 0 for µ < ω and
N = 1 for µ > ω. At nonzero temperature, N assumes values in between 0 and 1.
Next we allow for a dispersion of the particles, i.e., the energy may depend on the (modulus of the) momentum,

ωp ≡ ω(p). We start with a box with size L in all three dimensions. The box size must be an integer times half of the
wavelength λ, L = nλ/2. With the de Broglie relation for the wavelength p = 2π/λ (we set � = 1) we have p = nπ/L.
The log of the full partition function is the sum over all partition functions of the single modes,

lnZ =
∑

n=(nx,ny,nz)

lnZn = V

∫
d3p

(2π)3
lnZp = ∓V

∑
e=±

∫
d3p

(2π)3
ln[1∓ e−β(ωp−eµ)] . (32)

Here we have employed the infinite volume limit L→ ∞ where we can replace the sums over ni by integrals
∫∞
1
dni.

Then, we have used dni → L/π dpi from the above de Broglie relation and have doubled the range of the three
momentum integrals, hence the the factor 23 in the denominator. Also, we have defined the volume V = L3. In
the second step, we have inserted the above expressions for the log of the partition function for a single mode for
bosons (upper sign) and fermions (lower sign). Finally, we have added a sum over e = ± accounting for particles and
antiparticles which differ in the sign of their chemical potential. The conserved charge is thus

N = V
∑
e=±

e

∫
d3p

(2π)3
1

eβ(ωp−eµ) ∓ 1
. (33)

We shall often consider the charge density n ≡ N/V instead. In the case of bosons (upper sign) we see that we have
to require −minωp < µ < minωp in order to have positive occupation numbers.
[End of 2nd lecture, Oct 14th, 2013.]



7

III. PARTITION FUNCTION IN THE PATH INTEGRAL FORMALISM

Here we derive the expression for the partition function in quantum field theory as opposed to usual quantum
mechanics. Remember that in usual quantum theory, the projection of an eigenstate 〈x| of the position operator x̂
onto the eigenstate |p〉 of the momentum operator p̂ is given by a plane wave,

〈x|p〉 = eip·x . (34)

In quantum field theory, the discrete sum p · x =
∑

i pixi becomes an integral,

〈φ|π〉 = ei
∫
d3xπ(x)φ(x) . (35)

Here, φ(x) and π(x) are eigenvalues (better: eigenfunctions) of the field operator (at t = 0) φ̂(x, 0) and its conjugate
momentum operator π̂(x, 0). We have the following completeness and orthogonality conditions,∫

dφ(x) |φ〉〈φ| = 1 , 〈φa|φb〉 = δ[φa(x) − φb(x)] , (36a)

∫
dπ(x)

2π
|π〉〈π| = 1 , 〈πa|πb〉 = δ[πa(x) − πb(x)] . (36b)

The Hamiltonian Ĥ of the system is given by the Hamilton density H which can be expressed in terms of the field
operators,

Ĥ =

∫
d3xH(π̂(x, t), φ̂(x, t)) . (37)

In the following we shall write the partition function in terms of the fields φ and π and get rid of all operators. To
this end, we first compute a transition amplitude with identical initial and final state, say φa, at times t = 0 and

t = tf . The initial state evolves in time upon applying the unitary operator e−iĤt, assuming that Ĥ does not depend

explicitly on t. (We are not interested in the general case with time-dependent Ĥ since eventually we want to compute

the partition function; the statistical operator has the form e−βĤ for all Ĥ.) We divide the time interval [0, tf ] into
N pieces with length ∆t. Then we can write the transition amplitude as

〈φa|e−iĤtf |φa〉 = lim
N→∞

〈φa|e−iĤ∆te−iĤ∆t . . . e−iĤ∆t|φa〉

= lim
N→∞

∫ N∏
i=1

dπi(x)

2π
dφi(x)〈φa|πN 〉〈πN |e−iĤ∆t|φN 〉〈φN |πN−1〉〈πN−1|e−iĤ∆t|φN−1〉

× . . .× 〈φ2|π1〉〈π1|e−iĤ∆t|φ1〉〈φ1|φa〉 , (38)

where we inserted each of the completeness relations in Eqs. (36) N times alternatingly. Now, for the scalar products
of the form 〈φi+1|πi〉 we use Eq. (35). For the factors involving the Hamiltonian we use

〈πi|e−iĤ∆t|φi〉 � e−i∆t
∫
d3xH(φi,πi)〈πi|φi〉

= e−i∆t
∫
d3xH(φi,πi)e−i

∫
d3xπiφi , (39)

where we have approximated e−iĤ∆t � 1 − iĤ∆t and used that the Hamiltonian at a given time labelled by i
is a sum of powers of the fields φi and πi. This is needed to replace the operators in the exponential by their

eigenfunctions, by applying all field operators φ̂ to |φi〉 and all momentum operators π̂ to 〈πi|. Moreover, we have
used that 〈π|φ〉 = 〈φ|π〉∗, hence the minus in the exponent compared to the scalar product in Eq. (35). From the last
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φa

φa
τ=β

=0τt=0

f
t=t 

2πΤ
1

x

τ

FIG. 1: Left: illustration of the functional integration over fields with identical inital and final states at times t = 0 and t = tf .
In thermal field theory, we work with imaginary time where the field is periodic in the interval with boundaries τ = 0 and
τ = β. The integral is performed over all φa, each of them with the shown periodicity. Right: due to this periodicity, space-time
in thermal field theory can effectively be viewed as a cylinder whose radius is proportional to the inverse temperature. For zero
temperature, the radius goes to infinity and the flat topology is recovered.

factor in the integrand in Eq. (38) we obtain 〈φ1|φa〉 = δ(φa − φ1). Consequently,

〈φa|e−iĤtf |φa〉 = lim
N→∞

∫ N∏
i=1

dπi(x)

2π
dφi(x)δ[φa(x)− φ1(x)]e

i
∫
d3x [πN (φ−φN )+πN−1(φN−φN−1)+...+π1(φ2−φ1)]

× e−i∆t
∫
d3x [H(φN ,πN )+...+H(φ1,π1)]

= lim
N→∞

∫ N∏
i=1

dπi(x)

2π
dφi(x)δ[φa(x)− φ1(x)] exp


i

N∑
j=1

∆t

∫
d3x

[
πj
φj+1 − φj

∆t
−H(φj , πj)

]
 ,(40)

where we have denoted φN+1 ≡ φa. We can now take the limit N → ∞ to obtain

〈φa|e−iĤtf |φa〉 =

∫
Dπ

∫ φ(x,tf )=φa(x)

φ(x,0)=φa(x)

Dφ exp
{
i

∫ tf

0

dt

∫
d3x [π(x, t)∂tφ(x, t) −H(φ(x, t), π(x, t))]

}
. (41)

We have denoted the continuum limit of the functional integration as∫ N∏
i=1

dπi(x)

2π
→

∫
Dπ ,

∫ N∏
i=1

dφi(x) →
∫

Dφ . (42)

We can now use the result (41) to compute the partition function. To this end we compare Eq. (41) with Eq. (20).
We see that the trace looks like a transition amplitude with identical initial and final states,

Z = Tr e−β(Ĥ−µN̂)

=

∫
dφ 〈φ|e−β(Ĥ−µN̂)|φ〉

=

∫
Dπ

∫
periodic

Dφ exp

[∫ β

0

dτ

∫
d3x (iπ∂τφ−H+ µN )

]
. (43)

Here, we have, upon comparing with Eq. (41), identified the inverse temperature with “imaginary time”

τ = it , (44)

such that the integration over τ goes from 0 to the inverse temperature β = 1/T . The term “periodic” for the φ
integral means that all functions φ have to be periodic in the imaginary time direction, φ(x, 0) = φ(x, β). The integral
over dφ integrates over all boundary values which are fixed in Eq. (41). We are left with a partition function which
is given entirely in terms of the fields, all operators are gone.
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IV. REAL NON-INTERACTING SCALAR FIELD

We now compute the partition function (43) for the simplest case, a real non-interacting scalar field which is
described by the Lagrangian

L =
1

2
∂µφ∂

µφ− 1

2
m2φ2 =

1

2

[
(∂0φ)

2 − (∇φ)2 −m2φ2
]
. (45)

Here and throughout the lecture our convention for the Minkowski metric is gµν = diag(1,−1,−1,−1). In the case of
a real scalar field there is no continuous symmetry of the Lagrangian, hence there is no conserved charge and thus no
chemical potential. We shall introduce the chemical potential for a charged complex field in the subsequent section.
For the partition function (43) we need the combination π∂0φ − H. First we compute H. Remember that L and

H are connected via a Legendre transformation which changes the independent variable ∂0φ (velocity q̇ in classical
mechanics) to the conjugate momentum π (momentum p in classical mechanics), i.e., L = L(∂0φ, φ,∇φ), while
H = H(π, φ,∇φ). In order to perform the Legendre transform we need the conjugate momentum

π =
∂L

∂(∂0φ)
= ∂0φ . (46)

Therefore, the Hamiltonian is

H(π, φ,∇φ) = [π∂0φ− L(∂0φ, φ,∇φ)]∂0φ=π =
1

2

[
π2 + (∇φ)2 +m2φ2

]
, (47)

and thus

π∂0φ−H = π∂0φ− 1

2

[
π2 + (∇φ)2 +m2φ2

]
=

1

2

[
(∂0φ)

2 − (∇φ)2 −m2φ2
]− 1

2
(π − ∂0φ)

2

= L− 1

2
π̃2 , (48)

with the shifted momentum π̃ ≡ π − ∂0φ. If we use this shifted momentum as our new integration variable, the
integration over the field φ separates from the integration over the momentum π̃, and we obtain

Z =

∫
Dπ̃ exp

(
−1

2

∫
X

π̃2(τ,x)

)∫
Dφ exp

∫
X

L

= N

∫
Dφ exp

∫
X

L , (49)

where we have absorbed the result of the Gaussian momentum integral into an irrelevant constant1, and where we
have abbreviated ∫

X

≡
∫ β

0

dτ

∫
d3x . (52)

1 This constant is infinite, but indeed independent of temperature, as one can see by introducing the Fourier components for the conjugate
momenta,

π̃(X) =

√
T

V

∑
K

e−iK·X π̃(K) . (50)

Then, with Eq. (56), ∫
Dπ̃ exp

(
−1

2

∫
X

π̃2

)
=

∫
Dπ̃ exp

[
−1

2

∑
K

π̃(−K)π̃(K)

]
. (51)

This integral can formally be computed by using Eq. (61).



10

It remains to perform the integral over the Lagrangian which can be done exactly for a non-interacting field. We
denote four-momenta by capital letters,

X ≡ (t,x) = (−iτ,x) , K ≡ (k0,k) = (−iωn,k) , (53)

where ωn are the “Matsubara frequencies” which we explain now. The Fourier transform of the field is

φ(X) =
1√
TV

∑
K

e−iK·Xφ(K) =
1√
TV

∑
K

ei(ωnτ+k·x)φ(K) , (54)

with the Minkowski scalar product K ·X = k0x0 −k ·x. Note that in terms of ωn, τ , the scalar product is Euclidean.
The sum is over discrete values k0, k (the summation over k will become an integral over continuous k when we
take the thermodynamic limit below). The normalization is chosen such that the Fourier-transformed fields φ(K) are
dimensionless. We know from the previous section that the field has to be periodic, φ(0,x) = φ(β,x). To fulfill this
periodicity requirement we need eiωnβ = 1, i.e., ωnβ has to be an integer multiple of 2π, or

ωn = 2πnT , n ∈ Z . (55)

[End of 3rd lecture, Oct 21st, 2013.]
With the Fourier transform (54), and the relation∫

X

eiK·X =
V

T
δK,0 , (56)

we have ∫
X

L = −1

2

∫
X

[
(∂τφ)

2 + (∇φ)2 +m2φ2
]

= −1

2

∑
K

φ(−K)
D−1

0 (K)

T 2
φ(K) , (57)

with the free (hence the subscript “0”) inverse propagator in momentum space

D−1
0 (K) = ω2

n + k2 +m2 = −K2 +m2 . (58)

Explicitly, we have for example for the first term,∫
X

(∂τφ)
2 =

1

TV

∫
X

∑
K,Q

[∂τe
i(ωnτ+k·x)φ(K)][∂τe

i(ωmτ+q·x)φ(Q)]

= − 1

TV

∫
X

∑
K,Q

ωnωme
−i(K+Q)·Xφ(K)φ(Q)

=
1

T 2

∑
K

ω2
nφ(−K)φ(K) . (59)

Since φ(X) is real we have φ(K) = φ∗(−K) and thus

Z = N

∫
Dφ exp

[
−1

2

∑
K

φ∗(K)
D−1

0 (K)

T 2
φ(K)

]
. (60)

We can evaluate this integral by using the general formula∫
dDx e−

1
2x·Âx = (2π)D/2(detÂ)−1/2 , (61)

for a hermitian, positive definite matrix Â. This identity is a generalization of the one-dimensional gaussian integral∫ ∞

−∞
dx e−

1
2αx

2

=

√
2π

α
, (62)
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and can easily be shown by writing the bilinear x · Âx in terms of the eigenvalues of Â and then using Eq. (62).
Consequently,

Z = N ′
(
det

D−1
0 (K)

T 2

)−1/2

, (63)

where we have absorbed the constant factor into the new constant N ′, and where the determinant is taken over
momentum space (in which the inverse propagator is diagonal). Hence the log of the partition function is, up to a
constant,

lnZ = −1

2
ln det

D−1
0 (K)

T 2

(
= −1

2
Tr ln

D−1
0 (K)

T 2

)

= −1

2
ln

∏
K

D−1
0 (K)

T 2

= −1

2

∑
K

ln
D−1

0 (K)

T 2
. (64)

Next we perform the summation over Matsubara frequencies (recall that the sum over K is a sum over k0 = −iωn

and over k; the latter will become an integral in the thermodynamic limit).

A. Summation over bosonic Matsubara frequencies

Here we prove the identity ∑
n

ln
ω2
n + ε2k
T 2

=
εk
T

+ 2 ln
(
1− e−εk/T

)
+ const , (65)

where, in our case, ε2k = k2 +m2 (however, for the following calculation we only need that εk is a real number), and
where const is an (infinite) number independent of temperature and momentum. First, in order to get rid of the log,
we write ∑

n

ln
ω2
n + ε2k
T 2

=

∫ (εk/T )2

1

dx2
∑
n

1

(2nπ)2 + x2
+

∑
n

ln[1 + (2nπ)2] . (66)

We now perform the sum in the integrand which, denoting εk ≡ Tx, we write as a contour integral,

1

T

∑
n

1

(2nπ)2 + x2
= T

∑
n

1

ω2
n + ε2k

= − 1

2πi

∮
C

dω
1

ω2 − ε2k

1

2
coth

ω

2T
. (67)

The second identity follows from the residue theorem,

1

2πi

∮
C

dz f(z) =
∑
n

Res f(z)|z=zn
, (68)

where zn are the poles of f(z) in the area enclosed by the contour C. If we can write the function f as f(z) = ϕ(z)/ψ(z),
with analytic functions ϕ(z), ψ(z), the residues are

Res f(z)|z=zn
=

ϕ(zn)

ψ′(zn)
. (69)

The contour C in Eq. (67) encloses all poles of coth[ω/(2T )] (and none of 1/(ω2 − ε2k)), as shown in Fig. 2. The

denominator of coth[ω/(2T )] is eω/2T − e−ω/2T which vanishes when ω/2T is an integer multiple of iπ, i.e., when
ω = iωn with the Matsubara frequencies ωn. Hence, in the above notation,

ϕ(ω) =
1

2

eω/(2T ) + e−ω/(2T )

ω2 − ε2k
, ψ(ω) = eω/(2T ) − e−ω/(2T ) ,

⇒ ϕ(iωn)

ψ′(iωn)
= −T 1

ω2
n + ε2k

, (70)
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εkεk

Im ω

Re ω

poles of coth ω
2T

_

contour C
integration

εkεk

−i     +8 η

Im ω

Re ω
_

integration
deformed

contour 

8 η

8 η 8 ηi     +i     −

−i     −

FIG. 2: Left: integration contour in the complex ω plane used in Eq. (67). Right: deformed integration contour from Eq. (71).

from which Eq. (67) follows immediately. Next, we deform the contour (which consists of infinitely many circles
surrounding the poles) and obtain

T
∑
n

1

ω2
n + ε2k

= − 1

2πi

∫ i∞+η

−i∞+η

dω
1

ω2 − ε2k

1

2
coth

ω

2T
− 1

2πi

∫ −i∞−η

i∞−η

dω
1

ω2 − ε2k

1

2
coth

ω

2T

= − 1

2πi

∫ i∞+η

−i∞+η

dω
1

ω2 − ε2k
coth

ω

2T
, (71)

where we have changed the integration variable ω → −ω in the second integral of the first line. We now use the
residue theorem a second time: we can close the contour in the positive half plane and pick up the poles ω = ±εk.
(in our simple case εk > 0, but we can keep the result general in order to use it later for the case of a nonvanishing
chemical potential),

T
∑
n

1

ω2
n + ε2k

= Θ(εk)
1

2εk
coth

εk
2T

−Θ(−εk) 1

2εk
coth

−εk
2T

=
1

2εk
coth

εk
2T

=
1

2εk
[1 + 2fB(εk)] , (72)

(note minus sign from clockwise contour integration) with the Bose distribution function

fB(ε) ≡ 1

eε/T − 1
. (73)

We thus have found

1

T

∑
n

1

(2nπ)2 + x2
=

1

Tx

(
1

2
+

1

ex − 1

)
. (74)
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Now we insert the result into the original expression (66) and integrate over x2 to obtain (with const denoting
T -independent constants)

∑
n

ln
ω2
n + ε2k
T 2

=

∫ (εk/T )2

1

dx2
1

x

(
1

2
+

1

ex − 1

)
+ const

=
εk
T

+ 2 ln
(
1− e−εk/T

)
+ const , (75)

which is the result we wanted to prove.

Exercise 1: Show via contour integration that

T
∑
k0

1

[(p0 − k0)2 − ω2
q ](k

2
0 − ω2

k)
= −

∑
e1,e2=±

e1e2
4ωkωq

1

p0 − e1ωk − e2ωq
[1 + fB(e1ωk) + fB(e2ωq)] , (76)

with k0 = −iωn, p0 = −iωm bosonic Matsubara frequencies and ωk, ωq > 0.

B. Pressure of a scalar field

Inserting the result from the Matsubara sum into Eq. (64) and taking the thermodynamic limit yields the (log of)
the bosonic partition function,

lnZ = −V
∫

d3k

(2π)3

[ εk
2T

+ ln
(
1− e−εk/T

)]
. (77)

Consequently, the thermodynamic potential (density) is

Ω

V
= −T

V
lnZ =

∫
d3k

(2π)3

[εk
2

+ T ln
(
1− e−εk/T

)]
. (78)

The first term on the right-hand side is infinite. We have to renormalize the potential by subtracting the zero-
temperature result,

Ωren

V
≡ Ω− ΩT=0

V
= T

∫
d3k

(2π)3
ln

(
1− e−εk/T

)
, (79)

where we have used limT→0 T ln
(
1− e−εk/T

)
= −εkΘ(−εk) = 0. We have thus recovered the result from Eq. (32).

We can compute the potential analytically for T � m, in which case we can approximate εk/T � k/T ,

Ωren

V
� T

2π2

∫ ∞

0

dk k2 ln
(
1− e−k/T

)
=

T 4

2π2

∫ ∞

0

dxx2 ln
(
1− e−x

)
︸ ︷︷ ︸

−π
4

45

= −π
2T 4

90
. (80)

This result gives the pressure of a noninteracting scalar field for large temperatures T � m (for all temperatures if
the field is massless, m = 0),

P = −Ω

V
=
π2T 4

90
. (81)

[End of 4th lecture, Oct 28th, 2013.]

V. COMPLEX NON-INTERACTING SCALAR FIELD

Next we discuss a complex bosonic field. Although we still neglect interactions, this will already lead to new physics
compared to the real field, namely Bose-Einstein condensation. We start from the Lagrangian

L = ∂µφ
∗∂µφ−m2|φ|2 − λ|φ|4 . (82)

We set the coupling to zero, λ = 0.
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A. Conserved charge and chemical potential

We see that L is invariant under U(1) rotations of the field,

φ→ e−iαφ . (83)

Since this rotation leaves L only invariant if α is constant, the symmetry is called global (= the same rotation is
applied at every point of space-time). We know from Noether’s theorem that a system with a continuous symmetry
has a conserved current. This is in contrast to the previous case of a real scalar field, where there was only a discrete
Z2 symmetry φ → −φ. The conserved current will allow us to introduce a chemical potential associated with the
corresponding charge.
To identify the conserved current we formally extend the symmetry to a local symmetry α(x) and transform the

Lagrangian,

L → L+ |φ|2∂µα∂µα+ i∂µα(φ
∗∂µφ− φ∂µφ∗) . (84)

Now we write down the equation of motion for α. We see that the transformed Lagrangian does not depend on α,
but only on its derivative. Consequently, the quantity

∂L
∂(∂µα)

= 2|φ|2∂µα+ i(φ∗∂µφ− φ∂µφ∗) (85)

is conserved. If we now go back to constant α we see that we have the conserved current

jµ ≡ i(φ∗∂µφ− φ∂µφ∗) , ∂µj
µ = 0 . (86)

The conserved charge (density) is thus

j0 = i(φ∗∂0φ− φ∂0φ∗) . (87)

This is needed to introduce a chemical potential µ. In the following we want to see how the chemical potential enters
the Lagrangian. One might think that we simply have to add a term µj0 to L, because j0 = N is the charge density
and the Lagrangian has the form H−µN . However, we need to be more careful. We know that the partition function
is (in a straightforward generalization from the real scalar field)

Z =

∫
DπDπ∗

∫
periodic

DφDφ∗ exp

[∫ β

0

dτ

∫
d3x (π∗∂0φ+ π∂0φ

∗ −H + µN )

]
, (88)

It is convenient to introduce real and imaginary parts of φ and the conjugate momentum π,

φ =
1√
2
(φ1 + iφ2) , π =

1√
2
(π1 + iπ2) . (89)

Then, the Lagrangian becomes

L =
1

2

[
∂µφ1∂

µφ1 + ∂µφ2∂
µφ2 −m2(φ21 + φ22)

]
, (90)

and the conjugate momenta are

πi =
∂L

∂(∂0φi)
= ∂0φi . (91)

Now, with Eqs. (87), (89), and (91) we find j0 = φ2π1 − φ1π2. This yields the Hamiltonian

H− µN = π1∂0φ1 + π2∂0φ2 − L− µN

=
1

2

[
π2
1 + π2

2 + (∇φ1)2 + (∇φ2)2 +m2(φ21 + φ22)
] − µ(φ2π1 − φ1π2) . (92)
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For the partition function (88), using π∗∂0φ+ π∂0φ
∗ = π1∂0φ1 + π2∂0φ2, we need

π1∂0φ1 + π2∂0φ2 −H + µN = π1∂0φ1 + π2∂0φ2 − 1

2

[
π2
1 + π2

2 + (∇φ1)2 + (∇φ2)2 +m2(φ21 + φ22)
]
+ µ(φ2π1 − φ1π2)

=
1

2

[
(∂0φ1)

2 + (∂0φ2)
2 − (∇φ1)2 − (∇φ2)2 + (µ2 −m2)(φ21 + φ22) + 2µ(φ2∂0φ1 − φ1∂0φ2)

]
−1

2

[
(π1 − ∂0φ1 − µφ2)

2 + (π2 − ∂0φ2 + µφ1)
2
]

= L′ − 1

2
(π̃2

1 + π̃2
2) , (93)

with the shifted momenta π̃1 ≡ π1 − ∂0φ1 − µφ2, π̃2 ≡ π2 − ∂0φ2 + µφ1, and the new Lagrangian that now includes
the chemical potential,

L′ =
1

2

[
(∂0φ1)

2 + (∂0φ2)
2 − (∇φ1)2 − (∇φ2)2 + (µ2 −m2)(φ21 + φ22) + 2µ(φ2∂0φ1 − φ1∂0φ2)

]
. (94)

In terms of the complex field φ, the Lagrangian reads

L′ = |(∂0 − iµ)φ|2 − |∇φ|2 −m2|φ|2 . (95)

Thus we see that the effect of the chemical potential is to add, besides the expected term µj0, the additional term
µ2(φ21 +φ22)/2. As a result, the chemical potential enters the Lagrangian in the same way as the temporal component
of a gauge field.
In order to compute the partition function, we Fourier transform the fields φ1, φ2 as discussed for the scalar field.

However, anticipating Bose-Einstein condensation, we separate the zero-momentum mode ζi = φi(K = 0),

φi(X) = ζi +
1√
TV

∑
K �=0

e−iK·Xφi(K) . (96)

The condensate ζi plays the role of a vacuum expectation value of the field. It breaks the U(1) symmetry spontaneously.
We can choose any of the degenerate directions in the complex plane, for instance ζ2 = 0 and will denote ζ ≡ ζ1.
Moreover, we assume ζ to be constant in space-time. With the Lagrangian (94) the action then becomes∫

X

L′ =
V

T

µ2 −m2

2
ζ2 − 1

2

∑
K

(φ1(−K), φ2(−K))
D−1

0 (K)

T 2

(
φ1(K)
φ2(K)

)
, (97)

with the 2× 2 inverse propagator

D−1
0 (K) =

( −K2 +m2 − µ2 −2iµk0

2iµk0 −K2 +m2 − µ2

)
. (98)

In deriving the action (97) we have used that the integrals over mixed terms, i.e., over a product of the condensate ζ
and the momentum sum (excluding the mode K = 0), vanish. We see that the chemical potential induces off-diagonal
terms in the propagator.
Now from the partition function

Z = N

∫
Dφ1Dφ2 exp

∫
X

L , (99)
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we obtain, dropping the constant terms,

lnZ =
V

T

µ2 −m2

2
ζ2 − 1

2
ln

(
det

D−1
0 (K)

T 2

)

=
V

T

µ2 −m2

2
ζ2 − 1

2
ln

∏
K

1

T 4
[(−K2 +m2 − µ2)2 − 4µ2k20 ]

=
V

T

µ2 −m2

2
ζ2 − 1

2
ln

∏
K

1

T 4
[(εk − µ)2 − k20 ][(εk + µ)2 − k20 ]

=
V

T

µ2 −m2

2
ζ2 − 1

2

∑
K

[
ln

(εk − µ)2 − k20
T 2

+ ln
(εk + µ)2 − k20

T 2

]
, (100)

where we defined

εk ≡
√
k2 +m2 . (101)

We can now use the result of the Matsubara summation from above, Eq. (65), to obtain

lnZ =
V

T

µ2 −m2

2
ζ2 − V

∫
d3k

(2π)3

[εk
T

+ ln
(
1− e−(εk−µ)/T

)
+ ln

(
1− e−(εk+µ)/T

)]
. (102)

This gives the thermodynamic potential

Ω

V
=
m2 − µ2

2
ζ2 + T

∫
d3k

(2π)3

[εk
T

+ ln
(
1− e−(εk−µ)/T

)
+ ln

(
1− e−(εk+µ)/T

)]
. (103)

We see that in order to avoid complex values of the potential we need to require

−m < µ < m . (104)

This restriction for µ is a consequence of neglecting any interaction. Had we included an interaction term, the
condensate would have had an effect on the dispersion relations εk. In our non-interacting system, they are not
affected.
As discussed for the case of the scalar field, we need to renormalize the potential by subtracting the “vacuum

contribution”, in this case

Pvac = −ΩT=µ=0

V
= −

∫
d3k

(2π)3
εk , (105)

where we used that ζ(µ = 0) = 0 (which we shall show below), and limT→0 T ln(1 − e−E/T ) = −EΘ(−E). Conse-
quently,

Ωren

V
=

Ω− ΩT=µ=0

V
=
m2 − µ2

2
ζ2 + T

∫
d3k

(2π)3

[
ln

(
1− e−(εk−µ)/T

)
+ ln

(
1− e−(εk+µ)/T

)]
. (106)

In the following we shall drop the subscript “ren” again since for all physical purposes the renormalized potential is
used and thus no confusion is possible. As for the scalar field, we may compute the pressure P = −Ω/V at sufficiently
large temperatures T � m,µ (where ζ = 0),

P � −2T

∫
d3k

(2π)3
ln

(
1− e−k/T

)
= −2

T 4

2π2

∫ ∞

0

dxx2 ln
(
1− e−x

)
= 2

π2T 4

90
. (107)

The additional factor 2 compared to Eq. (81) is due to the two degrees of freedom of the complex field.
The charge density is

Q = − 1

V

∂Ω

∂µ
= µζ2 +

∑
e=±

e

∫
d3k

(2π)3
1

e(εk−eµ)/T − 1
. (108)
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We may approximate the thermal part for small and large temperatures. We first introduce the new integration
variable x = k/T to obtain

Q =
T 3

2π2

∫ ∞

0

dxx2

[
1

e
√

x2+(m/T )2−µ/T − 1
− 1

e
√

x2+(m/T )2+µ/T − 1

]
. (109)

Now we expand for small T ,
√
x2 + (m/T )2 � m/T + Tx2/(2m). Then, with the new integration variable y =√

T/(2m)x, we have

Q � T 3

2π2

∫ ∞

0

dxx2
[
e−(m−µ)/T

eTx2/(2m)
− e−(m+µ)/T

eTx2/(2m)

]

=

(
2m

T

)3/2
T 3

2π2

[
e−(m−µ)/T − e−(m+µ)/T

] ∫ ∞

0

dy y2e−y2

=
m3/2T 3/2

2
√
2π3/2

[
e−(m−µ)/T − e−(m+µ)/T

]
, (110)

where we have used that the remaining y-integral evaluates to
√
π/4. We see that the density is exponentially

suppressed for small temperatures. This exponential suppression for massive particles is also typical for other quantities
such as the specific heat.
For large temperatures we can use Eq. (109) and neglect the terms m/T and µ/T in the integrand to obtain

Q+ = Q− =
T 3

2π2

∫ ∞

0

dx
x2

ex − 1︸ ︷︷ ︸
2ζ(3)

=
ζ(3)T 3

π2
, (111)

where Q+ and Q− are the particle and antiparticle contributions, respectively. We see that they become identical
for large T and thus the total charge Q = Q+ −Q− vanishes. This is easy to understand: the difference in energies
between particles and antiparticles is 2µ for all momenta. If T is sufficiently large, i.e., T � µ, then this difference is
not “resolved” and particle and antiparticle states become practically equally populated. For T of the order of µ or
smaller, the chemical potential induces an asymmetry between particles and antiparticles, favoring particles for µ > 0
and antiparticles for µ < 0.

Exercise 2: Compute the specific heat (at constant chemical potential) cV = T∂S/∂T , where S = −∂Ω/∂T
is the entropy, and find analytic approximations for the limits of small and large temperatures. Compare these
approximations with the full result in a numerical plot.

[End of 5th lecture, Nov 4th, 2013.]

B. Bose-Einstein condensation

Let us now discuss the condensate. The condensate ζ has to be determined from minimizing the potential,

0 =
∂Ω

∂ζ
= (m2 − µ2)ζ . (112)

We see that ζ = 0 for |µ| < m. In this case, there is no Bose condensation and all particles sit in the thermal states.
For |µ| = m, ζ remains undetermined. This is due to our neglecting the interactions. From usual φ4 theory at zero
temperature we know that the interactions may lead to a nonvanishing vacuum expectation value (“mexican hat
potential”). But for now we have dropped the φ4 term for simplicity. In this case, we can determine ζ by fixing the
density. This may or may not correspond to the physical situation one is interested in.
For the charge density Q, there is a zero-temperature contribution µζ2 coming from the bosons in the zero-

momentum state. For a given density, the system populates as many thermal states as possible until there is no
more “space”. Note that the contribution of the thermal integral is bounded with its maximum at µ2 = m2. This
maximum value defines a critical density for a given temperature T . For densities larger than this critical density,
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the condensate gets populated. The population is “macroscopic”, i.e., proportional to the volume. The value of the
condensate is given by

ζ2 =
1

m

(
Q−

∑
e=±

e

∫
d3k

(2π)3
1

e(εk−em)/T − 1

)
. (113)

The critical temperature Tc for a given charge density Q is then given by the implicit equation

Q =
∑
e=±

e

∫
d3k

(2π)3
1

e(εk−em)/Tc − 1
. (114)

In the nonrelativistic limit
√
k2 +m2 − µ is replaced by k2

2m − µ (note that this defines a “nonrelativistic µ” which
includes the rest energy m), and condensation occurs for µ = 0. In this case, Tc can be computed as

Q =

∫
d3k

(2π)3
1

ek2/(2mTc) − 1

=
1

2π2

∫ ∞

0

dk k2
1

ek2/(2mTc) − 1

=
(2mTc)

3/2

2π2

∫ ∞

0

dx
x2

ex2 − 1

=
(2mTc)

3/2

2π2

√
π

4
ζ(3/2) , (115)

which implies

Tc =
2π

m

(
Q

ζ(3/2)

)2/3

. (116)

In the ultrarelativistic limit it is instructive to compute particle and antiparticle contributions separately. With µ = m
and εk ∓m � k ∓m+O(m2) we have

Q± � T 3
c

2π2

∫ ∞

0

dx
x2

ex∓m/Tc − 1
. (117)

Up to first order in m/Tc we have

1

ex∓m/Tc − 1
=

e±m/Tc

ex − e±m/Tc
� 1

ex − 1

(
1± m

Tc

)
± m/Tc

(ex − 1)2
. (118)

Consequently,

Q± � T 3
c

2π2

∫ ∞

0

dx
x2

ex − 1
± T 2

cm

2π2

[ ∫ ∞

0

dx
x2

ex − 1
+

∫ ∞

0

dx
x2

(ex − 1)2︸ ︷︷ ︸
π2

3
− 2ζ(3)

]

=
T 3
c

2π2

[
2ζ(3)± mπ2

3Tc

]
. (119)

We see that the antiparticles have an interesting effect: had we neglected antiparticles, i.e., Q = Q+, the critical

temperature would have been Tc ∝ Q
1/3
+ . In the full result Q = Q+ −Q−, however, the leading term cancels and we

get the very different result

Tc =

√
3Q

m
. (120)
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Bose-Einstein condensation is a phenomenon occurring in a huge variety of systems. It was first directly observed with
bosonic atoms in 1995, awarded with the Nobel prize 2001. It often has spectacular phenomenological consequences,
such as in superfluid He-4. It can also occur for excitons in semiconductors, and for mesons such as pions and kaons
in neutron stars. One can even think of superconductivity in fermionic systems as a Bose-Einstein condensate, since
Cooper pairs of fermions can be viewed as bosons. Very recent experiments have shown that this picture indeed is
valid, i.e., there is a crossover from a superfluid (at weak coupling) to a Bose-Einstein condensate (at strong coupling),
not a phase transition.
We will come back to Bose-Einstein condensation in Sec. IX, where we include interactions and discuss the Goldstone

mode that appears due to the spontaneous breaking of a global symmetry.

Exercise 2a: Repeat exercise 2, but now at a fixed density (as opposed to a fixed chemical potential). This allows
you to include Bose-Einstein condensation. Plot the full result for cV for all temperatures and show that cV is
continuous, but not differentiable2 at the critical temperature Tc. (Hint: find the derivative ∂µ/∂T with the help of
the implicit function theorem.)

VI. NON-INTERACTING FERMIONS

We shall now turn to fermions and compute their partition function. We shall see that there are two important
differences to the bosonic case. Firstly, the fields over which we integrate in the functional integral are anticommuting,
which yields a different result for the functional integration. Secondly, we shall have antiperiodicity instead of
periodicity in the fields, which yields different Matsubara frequencies. Both differences are related to the Pauli
principle.

A. Grassmann Algebra and antiperiodicity in β for fermion fields

We start by defining the so-called Grassmann Algebra: on an r-dimensional vector space with basis vectors η1, . . . , ηr
we define an anticommuting product

ηiηj = −ηjηi , (121)

to obtain the Grassmann Algebra A. The algebra has 2r basis elements 1, ηi, ηiηj , . . . , η1η2 . . . ηr. Note that Eq. (121)
implies η2i = 0. One needs a sign convention to define the derivatives on this space. For example, for j �= k,

∂

∂ηj
ηjηk = ηk ,

∂

∂ηk
ηjηk = −ηj . (122)

This is a convenient convention since one can think of the derivative operator as anticommuting with the variable
itself. (In other words, we have defined the derivative to act from the left, not from the right.) Second derivatives of
any product of η’s vanish (they vanish if there is at most one factor of the variable with respect to which the derivative
is taken; if there are two factors the product itself vanishes). This already shows that integration on the Grassmann
space is a bit different than one is used to: since the differential operator squared vanishes, there is no operation inverse
to differentiation. (“Usually”, that would be integration.) We require the integral to be translationally invariant and
linear. Restricting ourselves for the moment to a one-dimensional vector space (i.e., a two-dimensional Grassmann
algrabra) this means ∫

dη f(η) =

∫
dη f(η + ζ) ,

∫
dη (aη + b) = a

∫
dη η + b

∫
dη , (123)

2 According to the traditional classification of Ehrenfest, a phase transition is called n-th order phase transition if the n-th derivative
of the thermodynamical potential is discontinuous. Since the specific heat is given by the second derivative of Ω, the result of this
exercise shows that Bose-Einstein condensation in a free Bose gas is a third-order phase transition. In a more modern terminology
one distinguishes only between phase transitions where the order parameter is discontinuous at the critical point (“first-order phase
transition”) and where it is continuous (then somewhat confusingly called “second-order phase transition”, including all higher-order
transitions according to Ehrenfest). This terminology is more closely related to symmetries of the system: discontinuous transitions can
occur even though no symmetry is spontaneously broken; continuous transitions (where the order parameter must be zero in one of the
phases) imply spontaneous symmetry breaking; see Sec. IX for a detailed discussion of spontaneous symemtry breaking. Here, in the
case of Bose-Einstein transformation, the order parameter is the condensate. It behaves continuously at the critical point.
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with a, b complex numbers and ζ ∈ A. Here, the integration range is always the whole space, i.e., we can only talk
about “definite” integrals; “indefinite” integrals, as one is used to from c-numbers do not exist (since this would be an
operation inverse to differentiation). Because of η2 = 0 the most general form of a function of η in our one-dimensional
example is f(η) = aη + b. Then, because of linearity,∫

dη f(η + c) =

∫
dη (aη + b) + ac

∫
dη =

∫
dη f(η) + ac

∫
dη , (124)

and translational invariance yields ∫
dη = 0 . (125)

We also normalize ∫
dη η = 1 . (126)

Equipped with these properties we can turn to fermions.
First we consider a simple system with two states |0〉 and |1〉, and creation and annihilation operators a and a†

which obey the anticommutation relations

{a, a†} = 1 , a2 = (a†)2 = 0 . (127)

Moreover we consider the Grassmann Algebra generated by the two variables η and η∗ (these shall correspond to the
fermion fields later), and the states

|η〉 ≡ e−ηa† |0〉 = (1− ηa†)|0〉 = |0〉 − η|1〉 , (128a)

〈η| ≡ 〈0|e−aη∗
= 〈0|(1− aη∗) = 〈0| − 〈1|η∗ . (128b)

We also need

〈η|0〉 = 〈0|η〉 = 1 , 〈1|η〉 = 〈η|1〉∗ = −η , (129)

which is obvious from Eqs. (128), and

〈η|η〉 = eη
∗η , (130)

which follows from inserting 1 = |0〉〈0|+ |1〉〈1| and using Eqs. (129). Also, with Eqs. (128) and the rules for integration
(125) (generalized to two dimensions) we find∫

dη∗dη e−η∗η|η〉〈η| =

∫
dη∗dη (1− η∗η) (|0〉〈0| − η|1〉〈0| − |0〉〈1|η∗ + |1〉〈1|ηη∗)

= |0〉〈0|+ |1〉〈1| = 1 . (131)

And, finally, upon inserting unity twice and using Eqs. (129)∫
dη∗dη e−η∗η〈−η|A|η〉 =

∫
dη∗dη (1− η∗η) (〈0|A|0〉+ η∗〈1|A|0〉 − η〈0|A|1〉 − η∗η〈1|A|1〉)

= 〈0|A|0〉+ 〈1|A|1〉 = TrA . (132)

Eqs. (131) and (132) are the ingredients we need to compute the fermionic partition function in the path integral
formalism in analogy to the bosonic case. First, from Eq. (132) we compute the partition function for the Hamiltonian

Ĥ = ωa†a,

Z = Tre−βĤ =

∫
dη∗dη e−η∗η〈−η|e−βĤ |η〉 . (133)

The important difference to the bosonic case can already be seen here, namely the −η as the final state of the transition
amplitude. Compare this to Eq. (43) which is the bosonic analogue. We can now proceed analogously to the bosonic
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case by dividing the “time” interval into N pieces of width ∆t and inserting unity from Eq. (131) N − 1 times. We
obtain

Z =

∫
η∗(β)=−η∗(0)

Dη∗
∫
η(β)=−η(0)

Dη exp
(
−

∫ β

0

dτ [η∗∂τη +H(η∗, η)]

)
. (134)

Before we generalize this to the case of Dirac fields let us discuss the fermionic Lagrangian.
[End of 6th lecture, Nov 11th, 2013.]

B. Fermionic Lagrangian and conserved charge

We start with the non-interacting Lagrangian

L = ψ̄ (iγµ∂µ −m)ψ , (135)

where ψ̄ = ψ†γ0, and where the Dirac matrices are given in the Dirac representation by

γ0 =

(
1 0
0 −1

)
, γi =

(
0 σi

−σi 0

)
, (136)

with the Pauli matrices σi. The general properties of the Dirac matrices are

{γµ, γν} = 2gµν , (γ0)2 = 1 , (γi)2 = −1 , (γ0)† = γ0 , (γi)† = −γi , (137)

where gµν is the Minkowski metric.
As for the bosons we are interested in the theory with a chemical potential. To this end, we determine the

conserved current with the same method as above. The Lagrangian is invariant under the transformation ψ → e−iαψ.
Considering a local transformation α(x), we have

L → L+ ψ̄γµ(∂µα)ψ . (138)

From the equation of motion for α we then conclude that the current

jµ =
∂L

∂(∂µα)
= ψ̄γµψ (139)

is conserved, i.e.,

∂µj
µ = 0 , (140)

and the conserved charge (density) is given by

Q = ψ†ψ . (141)

The conjugate momentum is

π =
∂L

∂(∂0ψ)
= iψ† . (142)

We see that we have to treat ψ and ψ† as independent variables, in accordance to what we have discussed before in
terms of η and η∗. Consequently, the Hamiltonian becomes

H = π∂0ψ − L = ψ̄(iγ · ∇+m)ψ . (143)

Here and in the following we mean by the scalar product γ · ∇ the product where the Dirac matrices appear with a
lower index γi, i.e., the negative of the γi given in Eq. (136).
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C. Partition function for fermions

Now we recall that for the partition function we need iπ∂τψ − H + µN (see for instance Eq. (43)). With the
Hamiltonian (143) and the generalization of the fermionic partition function (134) to fields ψ, ψ† we obtain

Z =

∫
antiperiodic

Dψ†Dψ exp

[∫
X

ψ̄
(−γ0∂τ − iγ · ∇+ γ0µ−m

)
ψ

]
. (144)

In this case we cannot separate the π ∼ ψ† integration from the ψ integration. Remember that, in the bosonic case,
this led to a new Lagrangian which contains the chemical potential not just in the term j0µ. Here, the Lagrangian
with chemical potential simply is

L = ψ̄(iγµ∂µ + γ0µ−m)ψ . (145)

Note that again the chemical potential enters just like the temporal component of a gauge field that couples to the
fermions. Analogously to the bosonic case, we introduce the Fourier transform (note the different dimensionality of
fields compared to bosons; here the field has mass dimension 3/2)

ψ(X) =
1√
V

∑
K

e−iK·Xψ(K) , ψ̄(X) =
1√
V

∑
K

eiK·X ψ̄(K) ,

∫
X

eiK·X =
V

T
δK,0 , (146)

again with k0 = −iωn such that K · X = −(ωnτ + k · x). Now antiperiodicity requires ψ(0,x) = −ψ(β,x), which
implies eiωnβ = −1 and thus the fermionic Matsubara frequencies are

ωn = (2n+ 1)πT . (147)

With the Fourier decomposition we find∫
X

ψ̄
(
iγµ∂µ + γ0µ−m

)
ψ = −

∑
K

ψ̄(K)
G−1

0 (K)

T
ψ(K) , (148)

with the free inverse fermion propagator in momentum space3

G−1
0 (K) = −γµKµ − γ0µ+m. (154)

3 The inverse propagator (149) can also be written in terms of energy projectors. This form will not be needed here but is very helpful
for more difficult calculations. In particular it allows inversion in a simple way. We can write

G−1
0 (K) = −

∑
e=±

(k0 + µ− eεk)γ
0Λe

k , (149)

where εk ≡ √
k2 +m2, and where the projectors onto positive and negative energy states are given by

Λe
k ≡ 1

2

(
1 + eγ0 γ · k+m

εk

)
. (150)

These (hermitian) projectors are complete and orthogonal,

Λ+
k +Λ−

k = 1 , Λe
kΛ

e′
k = δe,e′Λ

e
k . (151)

The first property is trivial to see, the second follows with the anticommutation property {γ0, γi} = 0 which follows from the general
anticommutation property in Eq. (137) and with (γ · k)2 = −k2. From the form of the inverse propagator (149) we can immediately
read off the propagator itself,

G0(K) = −
∑
e=±

Λe
kγ

0

k0 + µ− eεk
. (152)

With the properties (151) one easily checks that G−1
0 G0 = 1. One can also rewrite (152) as

G0(K) =
−γµKµ − γ0µ−m

(k0 + µ)2 − ε2k
. (153)
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For the functional integration we use

∫ N∏
k

dη†kdηk exp


−

N∑
i,j

η†iDijηj


 = detD . (155)

Exercise 3: Prove this relation by using the above properties of the Grassmann variables.

Note the difference of this Grassmann integration for fermions with the corresponding formula for bosons (61).
We obtain for the partition function

Z =

∫
antiperiodic

Dψ†Dψ exp

[
−

∑
K

ψ†(K)γ0
G−1

0 (K)

T
ψ(K)

]

= det
G−1

0 (K)

T

= det
1

T

( −(k0 + µ) +m −σ · k
σ · k (k0 + µ) +m

)
, (156)

where we have used det γ0 = 1, and where the determinant is taken over Dirac space and momentum space.
We can use the general formula

det

(
A B
C D

)
= det(AD −BD−1CD) , (157)

for matrices A, B, C, D with D invertible, to get

det
G−1

0 (K)

T
=

∏
K

(
k2 +m2 − (k0 + µ)2

T 2

)2

. (158)

Here we have used (σ · k)2 = k2. Consequently,

lnZ =
∑
K

ln

(
ε2k − (k0 + µ)2

T 2

)2

, εk ≡
√
k2 +m2 . (159)

With k0 = −iωn we can write this as

lnZ =
∑
K

ln

(
ε2k + (ωn + iµ)2

T 2

)2

=
∑
K

(
ln
ε2k + (ωn + iµ)2

T 2
+ ln

ε2k + (−ωn + iµ)2

T 2

)

=
∑
K

(
ln
ω2
n + (εk − µ)2

T 2
+ ln

ω2
n + (εk + µ)2

T 2

)
, (160)

where, in the second step, we have replaced ωn by −ωn which does not change the result since we sum over all n ∈ Z.
Then, the third step can be easily checked by multiplying out all terms,

[ε2k + (ωn + iµ)2][ε2k + (−ωn + iµ)2] = [ω2
n + (εk − µ)2][ω2

n + (εk + µ)2] . (161)
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D. Summation over fermionic Matsubara frequencies

We have written the log of the fermionic partition function in a form which is identical to the bosonic one, compare
Eq. (160) with Eq. (100). The only difference is the form of the Matsubara frequencies. We can thus compute the
sum over fermionic Matsubara frequencies analogous to the sum over bosonic ones, explained in Sec. IVA. As above,
we write

∑
n

ln
ω2
n + ε2k
T 2

=

∫ (εk/T )2

1

dx2
∑
n

1

(2n+ 1)2π2 + x2
+

∑
n

ln[1 + (2n+ 1)2π2] . (162)

And as above, we write the sum as a contour integral, this time with the tanh instead of the coth,

1

T

∑
n

1

(2n+ 1)2π2 + x2
= T

∑
n

1

ω2
n + ε2k

= − 1

2πi

∮
C

dω
1

ω2 − ε2k

1

2
tanh

ω

2T
. (163)

(We have denoted εk ≡ xT .) The contour C encloses all poles of the tanh (and none of 1
ω2−ε2k

). The poles of the tanh

are given by the zeros of eω/(2T )+e−ω/(2T ), i.e., ω/(2T ) must be an odd integer multiple of iπ/2. Therefore, the poles
are located at i times the fermionic Matsubara frequencies, ω = iωn. Then, with the residue theorem and with(

eω/(2T ) − e−ω/(2T )
)∣∣∣

ω=iωn

= 2i(−1)n ,
d

dω

(
eω/(2T ) + e−ω/(2T )

)∣∣∣∣
ω=iωn

=
i(−1)n

T
, (164)

one sees Eq. (163). We can then proceed as for bosons, i.e., we close the contour in the positive half-plane to obtain
with the residue theorem

T
∑
n

1

ω2
n + ε2k

= − 1

2πi

∫ i∞+η

−i∞+η

dω
1

ω2 − ε2k
tanh

ω

2T

=
1

2εk
tanh

εk
2T

=
1

2εk
[1− 2fF (εk)] , (165)

where

fF (ε) ≡ 1

eε/T + 1
(166)

is the Fermi distribution function. Inserting this result into the original expression (162) yields

∑
n

ln
ω2
n + ε2k
T 2

=

∫ (εk/T )2

1

dx2
1

x

(
1

2
− 1

ex + 1

)
+ const

=
εk
T

+ 2 ln
(
1 + e−εk/T

)
+ const . (167)

Exercise 4: Prove via contour integration the following result for the summation over fermionic Matsubara fre-
quencies,

T
∑
k0

(k0 + ξ1)(k0 + q0 + ξ2)

(k20 − ε21)[(k0 + q0)2 − ε22]
= − 1

4ε1ε2

∑
e1,e2=±

(ε1 − e1ξ1)(ε2 − e2ξ2)

q0 − e1ε1 + e2ε2

fF (−e1ε1)fF (e2ε2)
fB(−e1ε1 + e2ε2)

, (168)

where k0 = −iωn with fermionic Matsubara frequencies ωn, and q0 = −iωm with bosonic (!) Matsubara frequencies
ωm, and where ξ1, ξ2, ε1, ε2 > 0 are real numbers.
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E. Thermodynamic potential for fermions

The result for the Matsubara sum (167) can now be inserted into the partition function (160) to obtain

lnZ = 2V

∫
d3k

(2π)3

[εk
T

+ ln
(
1 + e−(εk−µ)/T

)
+ ln

(
1 + e−(εk+µ)/T

)]
. (169)

Consequently, the thermodynamic potential Ω = −T lnZ becomes

Ω

V
= −2

∫
d3k

(2π)3

[
εk + T ln

(
1 + e−(εk−µ)/T

)
+ T ln

(
1 + e−(εk+µ)/T

)]
. (170)

Note the overall factor 2 which accounts for the two spin states of the spin-1/2 fermion. Together with the parti-
cle/antiparticle degree of freedom (from e = ±1) we thus see all four degrees of freedom of the Dirac spinor.
[End of 7th lecture, Nov 18th, 2013.]

VII. GAUGE FIELDS

A. Lagrangians for QCD and QED

In this section we shall compute the partition function for gauge fields. Many applications of thermal field theory
in modern research can be found in Quantum Chromodynamics (QCD), for instance heavy-ion collisions and neutron
star (quark star) physics. We shall, for the calculation of the partition function, focus on the simpler case of Quantum
Electrodynamics (QED). But first we write down the QCD Lagrangian from which we obtain the QED Lagrangian
as a limit. We have

LQCD = −1

2
Tr[GµνG

µν ] + ψ̄(iγµDµ + γ0µ−m)ψ . (171)

Let us explain the meaning of the various quantities and their structure. The field strengths are

Gµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ] , (172)

where g is the QCD coupling constant, and where Aµ are matrices in the Lie Algebra of the gauge group SU(Nc)
where Nc = 3 is the number of colors. Here, SU(Nc) is the group of unitary Nc ×Nc matrices with determinant 1.
The dimension of SU(Nc) is N

2
c − 1, thus in this case there are eight generators Ta which fulfil

[Ta, Tb] = ifabcTc , T †
a = Ta , Tr[TaTb] =

δab
2
, (173)

with the so-called structure constants fabc. The generators (more precisely, twice the generators λa = 2Ta) are called
Gell-Mann matrices. The gauge fields, which are called gluons, and field strengths can thus be written as

Aµ = Aa
µTa , Gµν = Ga

µνTa , Ga
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν . (174)

The Dirac spinors ψ describe quarks and are spinors in a 4NfNc-dimensional space with the number of flavors Nf ;
the covariant derivative is

Dµ = ∂µ − igAµ . (175)

With fundamental color indices α, β ≤ 3, the adjoint color index a ≤ 8, and flavor indices i, j ≤ Nf we can thus write
the Lagrangian as

LQCD = −1

4
Ga

µνG
µν
a + ψ̄α

i δij [iγ
µ(δαβ∂µ − igAa

µT
αβ
a ) + δαβ(γ0µi −mi)]ψ

β
j . (176)

Here m and µ are matrices in flavor space, with different masses and chemical potentials for different flavors.
The Lagrangian is invariant under gauge transformations U = eigθa(X)Ta ∈ SU(Nc). The fermion fields and the

gauge fields transform as

ψ → Uψ , Aµ → UAµU
−1 +

i

g
U∂µU

−1 , (177)
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where U = U(x, t) may depend on space-time, i.e., the symmetry is local. We can easily check that the Lagrangian
is invariant under gauge transformations: one uses 0 = ∂µ(UU

−1) = (∂µU)U−1 + U(∂µU
−1) to find

Gµν → UGµνU
−1 . (178)

Therefore, Tr[GµνG
µν ] is obviously invariant under gauge transformations. For the quark part we find

Dµψ → UDµψ , (179)

from which we conclude that ψ̄Dµψ is invariant and thus we see that LQCD is invariant.
For simplicity, we shall consider QED in the following calculation. In this case the gauge group is U(1) which is an

abelian symmetry. For many physical applications and many calculations this makes the theory tremendously simpler
than QCD. For the latter, controled rigorous calculations from first principles are only valid for very few systems
such as systems at very large densities or temperatures. This is due to asymptotic freedom which makes the theory
weakly coupled for large momentum transfers. In many other cases, however, the theory is strongly coupled and the
theoretical treatment becomes very complicated.
In QED there is no commutator term in the field strengths,

Fµν = ∂µAν − ∂νAµ , (180)

and a gauge transformation is simply given by

U(X) = e−ieα(X) , Aµ → Aµ +
i

e
U∂µU

−1 = Aµ − ∂µα . (181)

Since U(1) is a one-dimensional Lie group, there is only one gauge boson, the photon (compared to eight gluons in
QCD). Due to the missing commutator term, the photon has no self-coupling (whereas gluons interact with each
other). The fermions are leptons instead of quarks, and the coupling is denoted by e instead of g. The Lagrangian,
invariant under U(1), is

LQED = −1

4
FµνF

µν + ψ̄(iγµDµ + γ0µ−m)ψ , (182)

with the covariant derivative

Dµ = ∂µ − ieAµ . (183)

B. Partition function in QED

We now focus on the gauge part of the QED Lagrangian (182), i.e., we are interested in

L = −1

4
FµνF

µν =
1

2
F0iF0i − 1

4
FijFij . (184)

The electric and magnetic fields are given by

Ei = −F0i = Fi0 , B = ∇×A ⇒ Bi =
1

2
εijkFjk . (185)

We thus have

B2 =
1

2
FjkFjk , (186)

and the Lagrangian becomes

L =
1

2
E2 − 1

2
B2 . (187)

In the following we shall work in the so-called axial gauge

A3 = 0 . (188)
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This does not completely fix the gauge and we will see how the residual gauge freedom appears. With

∂L
∂(∂µAν)

= −1

2

(
δµρ δ

ν
σ − δµσδ

ν
ρ

)
F ρσ = −1

2
(Fµν − F νµ) = −Fµν , (189)

we find the conjugate momenta

πµ =
∂L

∂(∂0Aµ)
= −F 0µ . (190)

We see that there is no momentum conjugate to A0. Consequently, A0 is not a dynamical field. The spatial components
of the momentum are

πi = F0i = −Ei . (191)

Therefore, formally there is a conjugate momentum

π3 = −E3 , (192)

even though A3 = 0 in the chosen gauge, i.e., π3 is not an independent variable. It can be determined from Gauss’
law, which, in the absence of charges, is

∇ · E = 0 . (193)

Consequently, we have ∂3E3 = ∂1π1 + ∂2π2 and thus

E3 =

∫ x3

x30

dx′3(∂1π1 + ∂2π2) + P (x1, x2, t) , (194)

and

A0 =

∫ x3

x30

dx′3E3 +Q(x1, x2, t) . (195)

The integration constants P and Q correspond to the residual gauge freedom. Next we determine the Hamiltonian in
terms of the independent variables π1, π2, A1, A2,

H = π1∂0A1 + π2∂0A2 − L (196)

We use ∂0Ai = πi + ∂iA0 (from Eq. (191)) and (π2
1 + π2

2)/2 = (E2
1 + E2

2)/2 to obtain

H =
1

2
(π2

1 + π2
2)−

1

2
E2

3 +
1

2
B2 + π1∂1A0 + π2∂2A0

=
1

2
(π2

1 + π2
2) +

1

2
E2

3 +
1

2
B2 , (197)

where we used partial integration and dropped the surface terms (i.e., this identity only holds under the integral d3x):
π1∂1A0 + π2∂2A0 → −A0(∂1π1 + ∂2π2) = −A0∂3E3 → E3∂3A0 = E2

3 . The Hamiltonian now has the familiar form
H = E2/2 +B2/2. The partition function for the bosonic fields A1, A2 and their conjugate momenta is

Z =

∫
Dπ1Dπ2

∫
periodic

DA1DA2 exp

∫
X

(iπ1∂τA1 + iπ2∂τA2 −H) . (198)

We rewrite the partition function in the following way. First we insert

1 =

∫
Dπ3δ(π3 + E3(π1, π2)) . (199)

This can be rewritten upon using

δ(∇ · π) =
(
det

∂(∇ · π)
∂π3

)−1

δ(π3 + E3(π1, π2)) . (200)
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Here one should remember the more familiar form of this identity

δ(f(x)) =
1

|f ′(x0)|δ(x− x0) , (201)

where x0 is the zero of the function f . Moreover we use

det
∂(∇ · π)
∂π3

= det(∂3) , (202)

and we write the δ-function in its integral representation,

δ(∇ · π) =
∫

DA0 exp

(
i

∫
X

A0∇ · π
)
. (203)

Here, in the exponential, we have replaced A0 → iA0 since this yields the replacement i
∫
d4xA0∇ ·π → i

∫
X
A0∇ ·π

(note that we also have to replace dx0 by −idτ) 4. Inserting all this into Eq. (199) yields

1 =

∫
Dπ3

∫
DA0 det(∂3) exp

(
i

∫
X

A0∇ · π
)
, (204)

and the partition function becomes (after a partial integration A0∇ · π → −(∇A0) · π)

Z =

∫
Dπ1Dπ2Dπ3

∫
periodic

DA0DA1DA2 det(∂3) exp

∫
X

[
iπ1∂τA1 + iπ2∂τA2 − i(∇A0) · π − 1

2
π2 − 1

2
B2

]
. (205)

The momentum integral now becomes trivial as we have seen in the case of scalar bosons. To this end, we rewrite
the exponential with the help of

iπ1∂τA1 + iπ2∂τA2 − i(∇A0) · π − 1

2
π2 = −1

2
(π − i∂τA+ i∇A0)

2 − 1

2
(∂τA−∇A0)

2 , (206)

where A = (A1, A2, 0) in the axial gauge we use. Now the integration over the shifted momentum π − i∂τA+ i∇A0

can be performed and yields an irrelevant constant factor which we omit in the following. Consequently,

Z =

∫
periodic

DA0DA1DA2 det(∂3) exp

∫
X

L . (207)

We have recovered the Lagrangian in the exponential since

−(∂τA−∇A0)
2 = E2 . (208)

(To see this, one simply “undoes” the finite-temperature replacements ∂0 → i∂τ , A0 → iA0.) Hence we get the
Lagrangian in the form (187).
Before we proceed with Eq. (207) we notice that the general form of the partition function, without specifying a

gauge, is

Z =

∫
periodic

DAµ δ(F )det
∂F

∂α
exp

∫
X

L , (209)

where DAµ ≡ DA0DA1DA2DA3, where F is a function of the gauge fields and the condition F = 0 fixes the gauge.
In our case, F = A′

3 = A3−∂3α. Then, with ∂F/∂α = ∂3 we recover Eq. (207). The more general form shows that we
integrate over the space of gauge fields “modulo gauge transformations”. In other words, for each point in the space
of gauge fields, we choose a fixed gauge given by the function F and fixed by the factor δ(F ). Then det(∂F/∂α) is
the determinant of the Jacobian of the transformation A′

µ = F (Aµ) = Aµ − ∂µα, i.e., it accounts for the change of
integration variables according to the gauge transformation. The partition function in the form (209) is manifestly
gauge invariant.

4 Another way of saying this is that in the field strength Fi0 = ∂iA0 − ∂0Ai for finite temperature we have to replace ∂0 by i∂τ . To get
the same factor i from the first term we need to replace A0 by iA0.
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Let us now come back to our expression (207) in the axial gauge and compute the functional integral. With Eq.
(186) we find

E2 −B2 = −(∂τA−∇A0)
2 −B2

= −(∂τA)2 − (∇A0)
2 + 2∂τA · ∇A0

− (∂1A2)
2 − (∂2A1)

2 − (∂3A1)
2 − (∂3A2)

2 + 2(∂1A2)(∂2A1) . (210)

As above, we introduce the Fourier transform of the gauge fields,

Aµ(X) =
1√
TV

∑
K

e−iK·XAµ(K) . (211)

This yields ∫
X

(∂τA)2 = − 1

T 2

∑
K

k20A(−K) ·A(K) , (212a)

∫
X

(∇A0)
2 =

1

T 2

∑
K

k2A0(−K)A0(K) , (212b)

∫
X

∂τA · ∇A0 =
1

T 2

∑
K

ik0k ·A(−K)A0(K) =
1

T 2

∑
K

ik0k ·A(K)A0(−K) , (212c)

∫
X

(∂1A2)
2 =

1

T 2

∑
K

k21A2(−K)A2(K) , (212d)

∫
X

(∂1A2)(∂2A1) =
1

T 2

∑
K

k1k2A1(−K)A2(K) =
1

T 2

∑
K

k1k2A1(K)A2(−K) . (212e)

The other terms (∂2A1)
2, (∂3A1)

2, (∂3A2)
2 are obtained analogously to Eq. (212d). We thus find5

∫
X

L = − 1

2T 2

∑
K

(A0(−K), A1(−K), A2(−K))




k2 −ik0k1 −ik0k2
−ik0k1 −k20 + k22 + k23 −k1k2
−ik0k2 −k1k2 −k20 + k21 + k23






A0(K)

A1(K)

A2(K)


 . (214)

The 3×3 matrix is the inverse gauge field propagator in momentum space which we denote by D−1
0 (K). Here we have

symmetrized the appearing matrix in the exponential. This is important since A(K) and A(−K) are not independent

variables. So suppose we had used some asymmetric “propagator” D̃0. Then we have to write∑
K

Aa(−K)[D̃−1
0 (K)]abAb(K) =

∑
K>0

Aa(−K)[D̃−1
0 (K)]abAb(K) +

∑
K<0

Aa(−K)[D̃−1
0 (K)]abAb(K)

=
∑
K>0

Aa(−K)
{
[D̃−1

0 (K)]ab + [D̃−1
0 (K)]ba

}
Ab(K) , (215)

5 If we start from

L = −1

4
FµνF

µν = −1

2
(∂µAν∂

µAν − ∂µAν∂
νAµ) ,

and insert the Fourier transform (211), we obtain∫
X

L = − 1

2T 2

∑
K

Aµ(−K)(K2gµν −KµKν)Aν(K) . (213)

Dropping the 3-component and replacing A0 → iA0 yields Eq. (214).
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and arrive at the symmetrized propagator.
We can now use Eq. (61) for the integration to obtain

Z = det(∂3)

(
det

D−1
0

T 2

)−1/2

= det(∂3)

(∏
K

K4k23
T 6

)−1/2

= det(∂3)

(∏
K

K2

T 2

)−2/2 (∏
K

k23
T 2

)−1/2

, (216)

and thus

lnZ = ln det(∂3)− 2
1

2

∑
K

ln
k20 − k2

T 2
− 1

2

∑
K

ln
k23
T 2

. (217)

It remains to evaluate the so-called Fadeev-Popov determinant det(∂3). With Eq. (155) we can write this determinant
as a functional integral over Grassmann variables C̄, C,

det(∂3) =

∫
DC̄DC exp

(
−

∫
X

C̄∂3C

)
. (218)

Here C is a complex, scalar field, i.e., it seems to describe a spin-0 boson. On the other hand, the integration goes
over Grassmann variables, indicating fermionic properties. This unphysical field is called a Fadeev-Popov ghost field.
It plays a more important role in non-abelian gauge theories but we see that it is needed also here. With the Fourier
transform

C(X) =
1√
V

∑
K

e−iK·XC(K) , (219)

(bosonic Matsubara frequencies!) we have

−
∫
X

C̄∂3C = −
∑
K

C̄(K)
ik3
T
C(K) . (220)

Consequently, the ghost contribution is

det(∂3) = det
ik3
T

=
∏
K

ik3
T

∝
∏
K

k3
T
. (221)

We see that this term exactly cancels the third term on the right-hand side of Eq. (217) and we are left with

lnZ = −2
1

2

∑
K

ln
k20 − k2

T 2
. (222)

This result shows the two degrees of freedom of the gauge field. The third degree of freedom, unphysical due to gauge
symmetry, is cancelled by the ghosts.
[End of 8th lecture, Dec 2nd, 2013.]

VIII. INTERACTIONS

A. Perturbative expansion in λφ4 theory

We add an interaction term with coupling constant λ to the Lagrangian for a real scalar field (45) to obtain the
Lagrangian

L = L0 + LI =
1

2
∂µφ∂

µφ− 1

2
m2φ2 − λφ4 . (223)
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We use the index 0 for the contribution we have already computed above. The partition function then is

Z =

∫
Dφ eS , (224)

with the action

S = S0 + SI =

∫
X

L0 +

∫
X

LI , SI = −λ
∫
X

φ4 . (225)

Without interaction, SI = 0, we could compute lnZ exactly. In the presence of interactions this is not possible.
Therefore, we need to apply an approximation. The simplest approximation is to consider the coupling constant λ as
a small expansion parameter and then truncate the expansion at a given order in λ. We shall discuss this procedure
in the following. Denoting the noninteracting part by

Z0 ≡
∫

Dφ eS0 (226)

we can write the expansion as

lnZ = ln

∫
Dφ eS0+SI

= ln

∫
Dφ eS0

∞∑
n=0

Sn
I

n!
. (227)

Now if we add and subtract lnZ0 we can write this as

lnZ = lnZ0 + ln

∫ Dφ eS0
∑∞

n=0
Sn
I

n!∫ Dφ eS0

= lnZ0 + lnZI , (228)

with

lnZI ≡ ln

(
1 +

∞∑
n=1

1

n!

∫ Dφ eS0Sn
I∫ Dφ eS0

)
= ln

(
1 +

∞∑
n=1

〈Sn
I 〉0
n!

)
. (229)

Here 〈−〉0 denotes the ensemble average over the noninteracting ensemble. From the definition of SI we know that
each factor of SI comes with one power of λ. If we expand lnZI to, say, third order in the coupling, we thus obtain,
using ln(1 + x) =

∑∞
n=1(−1)n+1xn/n,

lnZI � ln

(
1 + 〈SI〉0 + 〈S2

I 〉0
2

+
〈S3

I 〉0
6

)

� 〈SI〉0 + 1

2

(〈S2
I 〉0 − 〈SI〉20

)
+

1

6

(〈S3
I 〉0 − 3〈SI〉0〈S2

I 〉0 + 2〈SI〉30
)
, (230)

where we have ordered the contributions according to the powers λ, λ2, λ3. Denoting the n-th order correction to

lnZ by lnZ
(n)
I , we thus have

lnZ
(1)
I = 〈SI〉0 , (231a)

lnZ
(2)
I =

1

2

(〈S2
I 〉0 − 〈SI〉20

)
, (231b)

lnZ
(3)
I =

1

6

(〈S3
I 〉0 − 3〈SI〉0〈S2

I 〉0 + 2〈SI〉30
)
. (231c)

Let us compute the first correction lnZ
(1)
I ∝ λ explicitly. We have

〈SI〉0 = −λ
∫ Dφ eS0

∫
X
φ4(X)∫ Dφ eS0

. (232)
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From Sec. IV we know that

eS0 = exp

[
−1

2

∑
K

φ(−K)
D−1

0 (K)

T 2
φ(K)

]
=

∏
K

exp

[
−1

2
φ(−K)

D−1
0 (K)

T 2
φ(K)

]
, (233)

with the inverse propagator

D−1
0 (K) = ω2

n + k2 +m2 . (234)

In momentum space, the φ4 term becomes∫
X

φ4(X) =
1

T 2V 2

∑
K1,...,K4

∫
X

ei(K1+...+K4)·X φ(K1) . . . φ(K4)

=
1

T 3V

∑
K1,...,K4

δ(K1 + . . .+K4)φ(K1) . . . φ(K4) . (235)

Inserting Eqs. (233) and (235) into Eq. (232) yields

〈SI〉0 = − λ

T 3V

∑
K1,...,K4

δ(K1 + . . .+K4)
∏
K

∫
dφ(K) e−

1
2φ(−K)

D
−1
0 (K)

T2 φ(K)φ(K1) . . . φ(K4)

∏
K

∫
dφ(K) e−

1
2φ(−K)

D
−1
0

(K)

T2 φ(K)

. (236)

The integral in the numerator is only nonvanishing if the four momenta K1, K2, K3, K4 cancel each other pairwise.
Otherwise, if there is a single power of φ(K), the integral over φ(K) is zero by symmetry. (Remember that φ(−K) =
φ∗(K) and thus φ(K)φ(−K) = |φ(K)|2.) Hence we have for instance K1 = −K2 ≡ Q and K3 = −K4 ≡ P , and the
Kronecker-delta is automatically fulfilled. There are 3 possibilities for the momenta to be pairwise identical and thus
we obtain

〈SI〉0 = − 3λ

T 3V

∑
Q,P

∏
K

∫
dφ(K) e−

1
2φ(−K)

D
−1
0 (K)

T2 φ(K)φ(−Q)φ(Q)φ(−P )φ(P )
∏
K

∫
dφ(K) e−

1
2φ(−K)

D
−1
0

(K)

T2 φ(K)

. (237)

Now we notice that all integrals over K �= P,Q appear identically in numerator and denominator and thus cancel.
The φ(P ) and φ(Q) integrals factorize and we obtain

〈SI〉0 = − 3λ

T 3V


∑

Q

∫
dφ(Q) e−

1
2φ(−Q)

D
−1
0 (Q)

T2 φ(Q)φ(Q)φ(−Q)∫
dφ(Q) e−

1
2φ(−Q)

D
−1
0

(Q)

T2 φ(Q)



2

. (238)

Now we use ∫∞
−∞ dxx2e−ax2/2∫∞
−∞ dx e−ax2/2

=

√
2π

a3/2√
2π

a1/2

=
1

a
, (239)

to obtain

lnZ
(1)
I = 〈SI〉0 = −3λ

T

V


∑

Q

D0(Q)


2

. (240)

We shall evaluate lnZ
(1)
I further in Sec. VIII C. Here we proceed by introducing Feynman diagrams: it is convenient

to translate the complicated algebraic perturbative expansion into a diagrammatic form. One starts by representing
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each field by a line with a direction, the direction indicating whether the field is ingoing or outgoing (i.e., inverting
the direction corresponds to φ(K) → φ(−K)). Then the interaction term −λφ4 is represented in momentum space
by

K1

K2

K3

K4

(241)

By convention, we have chosen the signs of the momenta such that all lines are ingoing. Since the momenta K1, K2,
K3, K4 have to cancel pairwise, we connect the lines pairwise and interpret each resulting line as a propagator. (From
the explicit integration above we know how the propagators come about.) There are three possibilities to connect the
four lines pairwise and thus the algebraic result is translated into a Feynman diagram as follows,

〈SI〉0 = −3λ
T

V


∑

Q

D0(Q)


2

= 3 (242)

In summary, the vertex gives a factor −λ, the factor 3 is a combinatorical factor, the closed line is a propagator
T/V

∑
QD0(Q), and momentum conservation gives V/T δ(Kin −Kout) which here is automatically fulfilled and thus

simply gives a factor V/T .
In general, the rules to find all contributions to the logarithm of the partition function for a given order λn are

1. Draw all connected diagrams with combinatorical prefactors.

2. Each (closed) line gives a propagator T
V

∑
K D0(K).

3. Each vertex gives a factor −λ and a momentum-conserving Kronecker-delta V
T δ(Kin −Kout).

In the first-order contibution it is clear that there is only a connected diagram. We shall explain now, for the second-
order corrections to lnZ, why the disconnected diagrams cancel. The second-order terms of the partition function
are

lnZ
(2)
I =

1

2

(〈S2
I 〉0 − 〈SI〉20

)
. (243)

From Eq. (242) we know the diagrammatic representation of 〈SI〉20. For 〈S2
I 〉0 we need to start from (−λφ4)2 which,

in analogy to Eq. (241) is represented as

K1

K2

K3

K4

K5

K6

K7

K8

(244)

Again we have to construct all possible diagrams by connecting the eight lines pairwise. One of the diagrams we obtain
is the product of two disconnected “double-bubbles” (each with a combinatorical factor 3) which exactly cancels the
term 〈SI〉20. We are left with

lnZ
(2)
I = 36 + 12 (245)

The combinatorical factors arise as follows. First diagram: pick two fixed lines from the first vertex, say 2 and 3 such
that 2 is the upper line, 3 the lower line. This fixed pair of lines now gets connected with a pair of the second vertex.
There are 6 such pairs, and each pair can connect in 2 ways (if we choose the pair 5, 8 we can connect (2,5), (3,8)
or (2,8), (3,5)). We are now at 12 diagrams. This has to be multiplied by 6 since there are 6 pairs from the first
diagram which we could have started with. Then we are done since once the two pairs in the middle are connected
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there is no more choice. Consequently, we obtain 72 possibilities which has to be divided by 2 because of Eq. (243).
Second diagram: simply fix the lines from the left diagram in the order 1,2,3,4 from top to bottom. Then there are 4!
possibilities to attach the lines from the second diagram to them. This makes 24 which also has to be divided by 2.
Translating the second-order diagrams into momentum sums yields

= (−λ)2
(
T

V

)4 (
V

T

)2 ∑
K1,...,K4

δ(K2 +K3)D0(K1) . . . D0(K4)

= λ2
T 2

V 2

[∑
K

D0(K)

]2 ∑
K2,K3

δ(K2 +K3)D0(K2)D0(K3) , (246a)

= (−λ)2
(
T

V

)4 (
V

T

)2 ∑
K1,...,K4

δ(K1 + . . .+K4)D0(K1) . . . D0(K4) . (246b)

The fact that the disconnected diagrams cancel out is general, i.e., Eq. (229) simplifies to

lnZI =
∞∑
n=1

〈Sn
I 〉0,connected

n!
. (247)

As a summary, we have computed the partition function diagrammatically up to second order in the coupling
constant,

lnZI = 3 + 36 + 12 + . . . (248)

We shall see below, however, that this result is incomplete. There is in fact a contribution to lnZI of order λ3/2, see
Sec. VIIID.

B. Propagator, self-energy, and one-particle irreducible (1PI) diagrams

We have seen above that the free propagator can be written as the following ensemble average over the non-
interacting ensemble (see for instance Eq. (239)),

D0(Q) =
1

T 2

∏
K

∫
dφ(K) e−

1
2φ(−K)

D
−1
0

(K)

T2 φ(K)φ(Q)φ(−Q)

∏
K

∫
dφ(K) e−

1
2φ(−K)

D
−1
0 (K)

T2 φ(K)

=
1

T 2
〈φ(Q)φ(−Q)〉0 , (249)

In general, the propagator in position space is defined as

D(X1, X2) ≡ 〈φ(X1)φ(X2)〉 . (250)

From this definition the above form of D0(Q) follows for the case of a translationally invariant system: in this case,
D(X1, X2) only depends on the difference X1 −X2. Without loss of generality we can thus set X2 = 0 and denote
X = X1. Then, the Fourier transform is

D(Q) =

∫
X

eiQ·X〈φ(X)φ(0)〉 = 1

TV

∑
K1,K2

∫
X

eiQ·Xe−iK1·X〈φ(K1)φ(K2)〉

=
1

T 2

∑
K2

〈φ(Q)φ(K2)〉 = 1

T 2
〈φ(Q)φ(−Q)〉 . (251)
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In the last step we have used that the ensemble average is only nonzero for K2 = −Q. The result is the full propagator
in momentum space in a translationally invariant system (where the ensemble average is taken over the interacting
ensemble, in contrast to the free propagator (249)).

Exercise 5: Compute the free propagator D0(X, 0) in position space and show that

D0(X, 0) �




− 1

4π2X2
for small distances x, τ � 1

T
,
1

m

T
e−mx

4πx
for large distances x� 1

T
and m� T

.

As usual, X = (−iτ,x), and x ≡ |x|. (Hints: In the Matsubara summation, use the function 1/(eω/T − 1) instead
of 1/2 cothω/(2T ) in the analogue of Eq. (67); this ensures that, when closing the contour, the contribution of the
infinite semi-circle in the positive half-plane vanishes. In the Fourier integral, use that the dominant contribution
comes from momenta kx ∼ 1.)

[End of 9th lecture, Dec 9th, 2013.]
For a systematic calculation of the perturbation series it is convenient to divide the full (inverse) propagator into

a free part and an interaction part, called self-energy Π. We write

D−1(K) = D−1
0 (K) + Π(K) . (252)

The purpose of the following will be to connect the perturbative expansion of the self-energy Π to the expansion
of lnZI . To this end, we first observe that the propagator of the interacting system can be written as a functional
derivative of lnZ with respect to the free propagator. Remember from Eq. (227) that

lnZ = ln

∫
Dφ eS0eSI . (253)

Therefore,

δ

δD−1
0 (Q)

lnZ =
1∫

Dφ eS0+SI

δ

δD−1
0

∫
Dφ eS0eSI

=
1∫

Dφ eS0+SI

δ

δD−1
0

∏
K

∫
dφ(K) e−

1
2φ(−K)

D
−1
0
T2 φ(K) eSI

= − 1

2T 2

∫
Dφ eS0eSIφ(−Q)φ(Q)∫

Dφ eS0+SI

= −1

2
D(Q) , (254)

and thus

D(Q) = −2
δ lnZ

δD−1
0

= 2
δ lnZ

δD0
D2

0 . (255)

Then, from Eq. (252) we have

D = (D−1
0 +Π)−1 = (1 +D0Π)

−1D0 . (256)

Using Eq. (255) we have

(1 +D0Π)
−1 = DD−1

0 = 2
δ lnZ

δD0
D0 . (257)
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In the following we shall expand both sides of this equation in λ to obtain the self-energy Π order by order. To this
end we first write

Π =

∞∑
n=1

Πn , (258)

such that Πn is proportional to λn. Then, up to second order in λ, we have

(1 +D0Π)
−1 = 1−D0[Π1 +Π2 −Π1D0Π1 +O(λ3)] . (259)

This is the left-hand side of Eq. (257). For the right-hand side we use, see Eq. (64),

lnZ0 = −1

2

∑
K

ln
D−1

0

T 2
=

1

2

∑
K

ln(D0T
2) ⇒ δ lnZ0

δD0
=

1

2
D−1

0 , (260)

and thus

2D0
δ lnZ

δD0
= 2D0

(
δ lnZ0

δD0
+
δ lnZI

δD0

)

= 1 + 2D0
δ lnZI

δD0

= 1 + 2D0

[
δ〈SI〉0
δD0

+
1

2

δ(〈S2
I 〉0 − 〈SI〉20)
δD0

+O(λ3)

]
. (261)

Thus, upon comparing Eqs. (259) and (261) we have

Π1 +Π2 −Π1D0Π1 + . . . = −2
δ lnZI

δD0
. (262)

The first- and second- order contributions are

Π1 = −2
δ〈SI〉0
δD0

, (263a)

Π2 −Π1D0Π1 = −δ(〈S
2
I 〉0 − 〈SI〉20)
δD0

. (263b)

The first-order contribution becomes

Π1 = 6λ
T

V

δ

δD0

[∑
K

D0(K)

]2

= 12λ
T

V

∑
K

D0(K) . (264)

We see that taking the functional derivative with respect to the propagator is equivalent to cutting a line in the
Feynman diagram,

Π1 = −2
δ〈SI〉0
δD0

= −2
δ

δD0
3

= −12 (265)
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The additional factor of 2 appears since each of the two lines can be cut to obtain the same diagram. With this
“cutting rule”, we can easily determine the second-order contributions with the help of the diagrams. By cutting a
line in the respective diagrams we obtain

Π2 −Π1D0Π1 = −δ(〈S
2
I 〉0 − 〈SI〉20)
δD0

= − δ

δD0

[
72 + 24

]

= −144 − 144 − 96 (266)

From Eq. (265) we conclude

Π1D0Π1 = 144 (267)

such that we obtain

Π2 = −144 − 96 (268)

We see that the diagram which can be divided into two disconnected diagrams by cutting one line cancels. This is a
general fact and the self-energy is given by all diagrams that cannot be divided into two by cutting one line. These
diagrams are called “one-particle irreducible (1PI)”, and thus Eq. (262) simplifies to

Π = −2

(
δ lnZI

δD0

)
1PI

. (269)

C. Evaluation of the first-order corrections

We can now compute the first-order contribution to the self-energy (264) and to the pressure from Eq. (240).
Making use of Eq. (72) we obtain

Π1 = 12λ
T

V

∑
K

1

ω2
n + ε2k

= Πvac
1 +ΠT

1 , (270)

with the temperature-independent vacuum part

Πvac
1 = Π1(T = 0) = 6λ

∫
d3k

(2π)3
1

εk
, (271)

and the temperature-dependent part

ΠT
1 = 12λ

∫
d3k

(2π)3
fB(εk)

εk
. (272)
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While ΠT
1 is finite, the vacuum part is divergent. This divergence comes from large momenta, k → ∞, and is thus

called ultraviolet divergence6.
This divergence requires a renormalization, such that we obtain the renormalized self-energy by subtracting the

vacuum part,

Πren
1 = Π1 −Π1(T = 0) . (273)

With this renormalization condition we could proceed directly to Eq. (279) to compute Πren
1 explicitly. Before doing

so, let us briefly discuss how the renormalization is usually implemented via counterterms in the Lagrangian.
To this end, we remember that the inverse propagator to first order in λ is [see Eq. (252)]

D−1(K) = ω2
n + k2 +m2 +Π1 . (274)

This shows that the self-energy plays the role of a mass squared if it is momentum-independent (which is the case in
our example of quartic interactions; this would be different for a cubic interaction term). The counterterm we thus
add to the Lagrangian is written as a mass term

L → L− 1

2
δm2φ2 . (275)

However, this term is treated as an interaction, i.e., δm2 has to be thought of as being of order λ. From Eq. (229)
we have concluded that the φ4 term produces a “double-bubble” diagram for the first-order correction. Analogously,
there is a “single-bubble” contribution (δm2 replacing a factor φ2, i.e., one closed loop) from δm2φ2, denoted as

〈
∫
X

δm2φ2〉0 = δm2〈
∫
X

φ2〉0 = (276)

Its contribution to the self-energy is then obtained from cutting one line,

δm2 = (277)

This contribution is now chosen such that the condition (273) is fulfilled, i.e.,

δm2 = −Πvac
1 . (278)

After this renormalization we can evaluate the first-order self-energy. For the massless case m = 0 (or, equivalently,
for large temperatures T � m) we can do so analytically,

Πren
1 = 12λ

∫
d3k

(2π)3
fB(εk)

εk
� λT 2 , (279)

where we used ∫ ∞

0

dx
x

ex − 1
=
π2

6
. (280)

We see that a massless boson acquires a thermal mass λT 2.
We can also compute the corrections to the pressure from interactions. To first order in the coupling, the pressure

is given by

P =
T

V
lnZ0 +

T

V
lnZ

(1)
I . (281)

We already know the pressure of the non-interacting system at large temperatures, see Eq. (81),

T

V
lnZ0 = −T

∫
d3k

(2π)3
ln

(
1− e−εk/T

)
� π2T 4

90
, (282)

6 In the next section we will encounter an infrared divergence, more intimately related to finite temperature effects.
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where we have dropped the T -independent contribution which is only an irrelevant shift in the pressure, where we
have approximated the expression for T � m, and where we have used∫ ∞

0

dxx2 ln(1− e−x) = −π
4

45
. (283)

With lnZ
(1)
I from Eq. (240) plus the contribution from the mass counterterm we have

lnZ
(1)
I = 3 − 1

2

= −3λ
V

T


T
V

∑
Q

D0(Q)


2

− 1

2
δm2

∑
Q

D0(Q) . (284)

Using the form of the self-energy (264) and the mass counterterm (278) and dividing both terms into vacuum and
temperature-dependent parts according to Eqs. (271) and (272) we have

lnZ
(1)
I = −V

T

1

48λ

(
Πvac

1 +ΠT
1

)2
+
V

T

1

24λ
Πvac

1

(
Πvac

1 +ΠT
1

)
=

V

T

1

48λ

[
(Πvac

1 )2 − (
ΠT

1

)2]
. (285)

Again, we drop the temperature-independent part to get

T

V
lnZ

(1)
I = −3λ

[∫
d3k

(2π)3
fB(εk)

εk

]2
� −λT

4

48
, (286)

again approximating for T � m and using Eq. (279). Putting Eqs. (282) and (286) together yields the pressure

P =
π2T 4

90

(
1− 15λ

8π2
+ . . .

)
. (287)

Exercise 6: Derive the lowest-order correction 〈S2
I 〉0 to lnZ for a Yukawa interaction LI = gψ̄ψφ, with a bosonic

scalar field φ and a fermionic field ψ. Give 〈S2
I 〉0 in terms of diagrams as well as in terms of momentum sums. (Note

that odd powers in the interaction term such as 〈SI〉0 vanish. Therefore 〈S2
I 〉0 is the lowest-order correction.)

[End of 10th lecture, Dec 16th, 2013.]

D. Infrared divergence and resummation of ring diagrams

We have seen above that the first-order self-energy Π1 gives rise to a thermal mass λT 2. In particular, if m = 0,
the scalar field acquires a finite mass only through a temperature effect. We shall in the following focus on the case
m = 0. For small energies and momenta, at most of the order of the thermal mass, ω2

n, k
2 � λT 2, the free inverse

propagator D−1
0 = ω2

n + k2 is (at most) of the order of λT 2, and, as we have seen, also the correction through the self
energy is of the order of λT 2. This indicates that the naive perturbation series might not be the correct procedure.
Indeed, we shall see in the following that one needs to “resum” a certain class of infinitely many diagrams because of
an infrared divergence, i.e., a divergence coming from small momenta (and energies), as the above simple argument
suggests. Another way of saying this is that the temperature introduces a new energy scale. If we work at zero
temperature, the only possible correction to the mass (squared) is of the form λm2. This is always parametrically
small compared to m2. Now, at nonzero temperature, the temperature itself can (and does) give a correction to the
mass (squared) of the form λT 2. And, even for arbitrarily small λ, if T is large enough compared to m, this is not a
small correction.
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Before we discuss the necessary resummation more systematically, let us show a very direct form of a resummation,
namely to use the full instead of the free propagator in the one-loop expression of the self-energy,

Π = 12λ
T

V

∑
K

D(K)

= 12λ
T

V

∑
K

1

D−1
0 (K) + Π

. (288)

This is a self-consistent equation for Π. Note that in our simple example of real φ4 theory Π does not depend on K. In
other more complicated theories where Π depends on four-momentum, Eq. (288) is a complicated integral equation.
But also here the general solution of (288) has to be done numerically. Writing

1

D−1
0 (K) + Π

= D0

∞∑
n=0

(−ΠD0)
n , (289)

we see that the self energy now is a loop which itself has any arbitrary number of self-energy insertions, which in
turn have self-energy insertions and so on. Such a sum, which formally includes all powers of the coupling constant,
is usually termed “resummation”. If we replace Π in the denominator of Eq. (288) by the first-order approximation
Π1, the corresponding diagrams consist of a loop with n loops attached to it, sometimes called “daisy”. Using the full
Π, each of the n loops itself gets additional loops, hence here we sum over “superdaisy” diagrams. (But note that,
even if the full self-energy is used, Eq. (288) still has the form of a one-loop self-energy, i.e., even in the “superdaisy”
resummation we only sum over a subset of all possible diagrams.)
We evaluate Eq. (288) as follows,

Π = 12λ

∫
d3k

(2π)3
T
∑
n

1

ω2
n + k2 +Π

= 12λ

∫
d3k

(2π)3
fB(

√
k2 +Π)√
k2 +Π

, (290)

where we used the Matsubara sum (72) and where we dropped the zero-temperature contribution. With the new

integration variable x =
√
k2/Π+ 1 we can write this as

1 =
6λ

π2

∫ ∞

1

dx
√
x2 − 1 fB(Π

1/2x) ,

=
6λ

π2

∫ ∞

1

dx

√
x2 − 1

exΠ1/2/T − 1
. (291)

If one wants to keep all superdaisy diagrams, one has to proceed numerically now.

Exercise 7: Solve Eq. (291) numerically and plot Π1/2/T as a function of λ. Compare this curve with the result
(279) for Π1.

We can extract an analytical result by using the expansion∫ ∞

1

dx
√
x2 − 1 fB(ux) =

2π2

u2

[
1

12
− u

4π
+O(u2 lnu)

]
. (292)

Inserting this expansion into Eq. (291), solving the resulting equation for Π and expanding in powers of λ yields

Π = λT 2 − 3T 2λ3/2

π
+ . . . (293)

Interestingly, besides the first-order term, we have found a term proportional to λ3/2. We shall see now that this
power also appears in the thermodynamic potential, and we shall see that it is related to the infrared divergence of
certain diagrams.
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Let us start from Eq. (247) and separate the first-order contribution which we already have computed,

lnZI = 〈SI〉0 +
∞∑

N=2

〈SN
I 〉0,connected

N !
. (294)

The second-order diagrams are given in Eqs. (246). We see that the first of these diagrams, Eq. (246a) can be written
as

=
Π2

1

122
V

∑
n

∫
d3k

(2π)3
1

(ω2
n + k2)2

. (295)

For n = 0 the integrand goes like 1/k2 which is infrared divergent. One can check that the second diagram, given
in Eq. (246b) does not have this property. The solution to this apparent problem is to resum all diagrams of this
“dangerous” kind as we did above for the self energy. More precisely, these are the “daisy” diagrams, where N loops
are attached to an interior loop (sometimes also called “ring” diagrams). We have

∞∑
N=2

〈SN
I 〉0,connected,daisy

N !
=

∞∑
N=2

1

N !
6N2N−1N !

N

(N loops)

=
∞∑

N=2

1

N !
6N2N−1N !

N
V

∑
n

∫
d3k

(2π)3
(−Π1)

N

12N
D0(K)N

=
V

2

∑
n

∫
d3k

(2π)3

∞∑
N=2

1

N
[−Π1D0(K)]N

= −V
2

∑
n

∫
d3k

(2π)3
{ln [1 + Π1D0(K)]−Π1D0(K)}

= −V
2

∑
n

∫
d3k

(2π)3

[
ln

(
1 +

λT 2

ω2
n + k2

)
− λT 2

ω2
n + k2

]
(296)

The origin of the combinatorical factors is: 6N for choosing one pair of lines from each of the N crosses; 2N−1 for the
number of ways to connect the chosen pairs of lines to obtain a ring diagram; N !/N for the number of ways to order
the N loops around the ring. Let us again look at the zero Matsubara mode, n = 0. All other Matsubara modes give
contributions of higher order in λ (remember that naively, i.e., ignoring any infrared divergence, one would expect
every single diagram of the sum to be of order λ2 or higher). With the noninteracting and first-order results (282)
and (286) we thus find the pressure

P � π2T 4

90
− λT 4

48
− T

2

∫
d3k

(2π)3

[
ln

(
1 +

λT 2

k2

)
− λT 2

k2

]
. (297)

The integral is given by∫
dk k2

[
ln

(
1 +

a2

k2

)
− a2

k2

]
= −2a3

3
arctan

k

a
− a2k

3
+
k3

3
ln

(
1 +

a2

k2

)
. (298)

Therefore, for the upper boundary we need

−2a3

3
arctan

Λ

a
= −πa

3

3
+O

(
1

Λ

)
,

Λ3

3
ln

(
1 +

a2

Λ2

)
=
a2Λ

3
+O

(
1

Λ

)
, (299)

and consequently ∫ ∞

0

dk k2
[
ln

(
1 +

a2

k2

)
− a2

k2

]
= −πa

3

3
. (300)
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Therefore, ∫
d3k

(2π)3

[
ln

(
1 +

λT 2

k2

)
− λT 2

k2

]
= −λ

3/2T 3

6π
, (301)

and thus

P =
π2T 4

90

[
1− 15

8

λ

π2
+

15

2

(
λ

π2

)3/2

+ . . .

]
. (302)

Consequently, we have found that the next term in the perturbation series of the pressure is not of order λ2, but of
order λ3/2, as we have seen above for the self-energy.

IX. BOSE-EINSTEIN CONDENSATION OF AN INTERACTING BOSE GAS

A. Spontaneous symmetry breaking and the Goldstone theorem

In Sec. V we have discussed Bose-Einstein condensation of a non-interacting field. Now, having discussed the basics
of an interacting theory, we revisit this effect. The inclusion of interactions is not only more realistic for possible
applications, but also will give us a better conceptual understanding of Bose-Einstein condensation. In particular,
we shall see that Bose-Einstein condensation is an example of spontaneous symmetry breaking and the Goldstone
theorem which are extremely important concepts in various fields of theoretical physics. Another consequence of
including interactions is that we can compute the condensate for fixed chemical potential, and not only for fixed
charge density, as we have done in Sec. V.
We use the same Lagrangian as in Sec. V, see for instance Eq. (95), i.e., we include a chemical potential, but now

also include an interaction term as in the previous section,

L = |(∂0 − iµ)ϕ|2 − |∇ϕ|2 −m2|ϕ|2 − λ|ϕ|4 . (303)

This Lagrangian is invariant under U(1) rotations ϕ→ e−iαϕ. As in Sec. V we introduce real fields via

ϕ =
1√
2
(ϕ1 + iϕ2) , (304)

which leads to the Lagrangian

L =
1

2

[
(∂0ϕ1)

2 + (∂0ϕ2)
2 − (∇ϕ1)

2 − (∇ϕ2)
2 + 2µ(ϕ2∂0ϕ1 − ϕ1∂0ϕ2) + (µ2 −m2)(ϕ2

1 + ϕ2
2)−

λ

2
(ϕ2

1 + ϕ2
2)

2

]
.

(305)
As discussed above for the noninteracting case, we separate the zero-mode φi, allowing for Bose condensation, ϕi →
ϕi + φi (remember Eq. (96)). Then the Lagrangian becomes

L = −U + L(2) + L(3) + L(4), (306)

with

U =
m2 − µ2

2
(φ21 + φ22) +

λ

4
(φ21 + φ22)

2 , (307a)

L(2) = −1

2

[−(∂0ϕ1)
2 − (∂0ϕ2)

2 + (∇ϕ1)
2 + (∇ϕ2)

2 − 2µ(ϕ2∂0ϕ1 − ϕ1∂0ϕ2)

+ (m2 − µ2)(ϕ2
1 + ϕ2

2) + λ(3φ21 + φ22)ϕ
2
1 + λ(φ21 + 3φ22)ϕ

2
2 + 4λφ1φ2ϕ1ϕ2

]
, (307b)

L(3) = −λ(φ1ϕ1 + φ2ϕ2)(ϕ
2
1 + ϕ2

2) , (307c)

L(4) = −λ
4
(ϕ2

1 + ϕ2
2)

2 . (307d)

Here we have assumed that the condensate is constant in space and time, i.e., all derivative terms ∂µφi vanish.
We can ignore the terms linear in the fluctuations because of the following
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> mµ

φ

Ω

φ

Ω

< mµ

FIG. 3: Illustration of the zero-temperature tree-level potential Ω for µ < m (left) and µ > m (right). In the latter case, the
order parameter acquires a nonzero value at a fixed, but arbitrary value on the bottom circle of the potential, thus breaking
the U(1) symmetry “spontaneously”.

Exercise 8: Show that the contributions linear in the fluctuations vanish after using the classical equations of
motion for φ1, φ2. Hint: You need to keep the space-time dependence of φ1, φ2 and drop a boundary term (assuming
that the fields vanish at infinity). The classical equations of motion are the equations of motion obtained from U .

Remarkably, besides the obvious quartic interaction term L(4), there is an interaction term cubic in the fields,
induced by the condensate φi. (Note that here we use the term “condensate” for what is, in the particle physics
context, also called “vacuum expectation value” for the field, or shortly “vev”.) Both interaction terms will lead to
loop corrections as discussed in the previous section. However, let us first discuss the “tree-level” contributions.
Again, for symmetry reasons, we can choose φ2 = 0 and denote φ ≡ φ1. Then, the potential becomes

U(φ2) =
m2 − µ2

2
φ2 +

λ

4
φ4 , (308)

and, following the same steps as in Sec. V, the tree-level propagator is

D−1
0 (K) =

(
−K2 +m2 + 3λφ2 − µ2 −2ik0µ

2ik0µ −K2 +m2 + λφ2 − µ2

)
. (309)

Note that D0 knows about the interaction, although we have only considered the terms quadratic in the fields. This
is because of the condensate which appears together with the coupling constant λ. Again following the steps in Sec.
V we obtain the tree-level thermodynamic potential,

Ω

V
= U(φ2) +

T

2V
Tr ln

D−1
0 (K)

T 2
. (310)

Firstly, let us discuss the zero-temperature case, T = 0. In this case, the thermodynamic potential is simply the
potential U ,

Ω(T = 0)

V
=
m2 − µ2

2
φ2 +

λ

4
φ4 . (311)

Minimization of Ω with respect to φ yields the ground state (corresponding to the state with maximal pressure). For
chemical potentials |µ| < m, the minimum is at φ = 0. In accordance with our observation in the noninteracting
theory, this means that there is no condensation in this case. One rather needs a negative coefficient in front of the
φ2 term for condensation, i.e, |µ| > m (negative “mass parameter squared” in field-theoretical treatments without
chemical potential). In this case, the potential has a “mexican hat” or “bottom of a wine bottle” shape, see Fig. 3 (we
consider a repulsive interaction for which λ > 0; otherwise the potential would be unbounded from below, indicating
an unstable system). Remember that we started from a complex field ϕ, hence the rotationally symmetric wine bottle
potential. The minimum is now at φ �= 0. Such a minimum cannot be invariant under U(1). However, all possible
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minima are degenerate, i.e., we are free to choose an arbitrary direction (and have already done this by choosing
φ = φ1). This mechanism, where the Lagrangian has a symmetry which is not respected by the ground state, is
called spontaneous symmetry breaking, as already briefly mentioned in Sec. V. The object that breaks the symmetry
and which is zero in the symmetric phase (here the condensate φ) is called the order parameter. Other examples of
spontaneous symmetry breaking are:

• ferromagnetism; in this case, the rotational symmetry SO(3) is, by alignment of all microscopic spins and hence
a nonzero magnetization, broken down to U(1).

• chiral symmetry breaking; here, the order parameter is a condensate of pairs of a left-handed antiquark and a
right-handed quark (or vice versa), and the so-called chiral group SU(Nf)L × SU(NF )R (with Nf being the
number of quark flavors) is broken down to the group of joint left- and right-handed rotations SU(Nf)L+R.

• superconductivity; in this case, the order parameter is a condensate of Cooper pairs, breaking the electromagnetic
gauge group U(1)em

• the Higgs mechanism, where the the Higgs field breaks the electroweak group SU(2)I × U(1)Y of isospin I and
hypercharge Y down to the electromagnetic U(1)em.

For µ2 > m2 we can easily solve the minimization condition

∂Ω(T = 0)

∂φ
= 0 ⇒ φ2 =

µ2 −m2

λ
. (312)

Additionally, there is of course the trivial solution φ = 0; but, as we easily see, this solution corresponds to a maximum
of the free energy and thus to an unstable state.
[End of 11th lecture, Jan 13th, 2014.]
Next, let us discuss the excitations of the system on top of the condensate background. The poles of the tree-level

propagator D0 (i.e., the zeros of the determinant of the inverse propagator D−1
0 ) correspond to the quasiparticle

energies, which we denote by ε±k . They can be used to compute the Tr ln (which is the same as ln det). Defining

m2
1 ≡ m2 + 3λφ2 , (313a)

m2
2 ≡ m2 + λφ2 , (313b)

we obtain (cf. Eq. (100))

ln det
D−1

0 (K)

T 2
= ln

∏
K

1

T 4
[(−K2 +m2

1 − µ2)(−K2 +m2
2 − µ2)− 4µ2k20 ]

= ln
∏
K

1

T 4
[(ε+k )

2 − k20 ][(ε
−
k )

2 − k20 ]

=
∑
K

[
ln

(ε+k )
2 − k20
T 2

+ ln
(ε−k )

2 − k20
T 2

]
. (314)

The quasiparticle energies are

ε±k =

√
E2

k + µ2 ∓
√
4µ2E2

k + δM4 , (315)

where we abbreviated

Ek ≡
√
k2 +M2 , (316)

and

M2 ≡ m2
1 +m2

2

2
= m2 + 2λφ2 , (317a)

δM2 ≡ m2
1 −m2

2

2
= λφ2 . (317b)
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FIG. 4: Dispersions εk without (left, µ < m) and with (right, µ > m) Bose condensation. In the latter case, one of the modes
becomes gapless with a linear behavior for small momenta k, see Eqs. (320) and (321). Such a “Goldstone mode” appears
always for a spontaneously broken global symmetry.

We recover the usual particle and antiparticle dispersions when we set the coupling constant to zero, λ = 0. In this
case, we have M = m and δM = 0, and

ε±k =
√
k2 +m2 ∓ µ . (318)

Performing the Matsubara sum in Eq. (314) as usual, inserting the result into the thermodynamic potential (310) and
dropping the vacuum contribution yields

Ω

V
=
m2 − µ2

2
φ2 +

λ

4
φ4 + T

∑
e=±

∫
d3k

(2π)3
ln

(
1− e−εek/T

)
. (319)

Inserting the solution for the condensate (312) into the definition of M and δM from Eq. (317), we obtain M2 =
2µ2 −m2, δM2 = µ2 −m2 and thus

ε±k =

√
k2 + (3µ2 −m2)∓

√
4µ2k2 + (3µ2 −m2)2 . (320)

We see that ε+k becomes gapless, i.e., ε+k=0 = 0, as shown in Fig. 4. We can expand this mode for small momenta to
obtain

ε+k �
√

µ2 −m2

3µ2 −m2
k =

√
M2 − µ2

M2 + µ2
k . (321)

This gapless mode with linear dispersion relation is called the Goldstone mode. Its presence is of great importance
since one is very often interested in the low-energy limit of a theory. The Goldstone mode can be excited with
arbitrarily small energy. As a consequence, it is populated for arbitrarily small temperature. Moreover, its presence is
a very general fact, due to the Goldstone theorem which says that in any system with a spontaneously broken global
symmetry there is a gapless mode.7

The second mode does have an energy gap and behaves quadratically for small k,

ε−k =
√
2
√
3µ2 −m2 +

1

2
√
2

5µ2 −m2

(3µ2 −m2)3/2
k2 . (322)

7 Notice the specification global symmetry. For a local symmetry, for instance in the case of superconductivity, the Goldstone mode is
“eaten up” by the gauge fields, giving rise to a magnetic screening mass, the Meissner mass. Another example is the Higgs mechanism
where the spontaneous breaking of the electroweak group gives rise to the massive W± and Z bosons.
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B. Symmetry restoration at finite temperature

At a certain temperature, called critical temperature Tc, the symmetry will be restored, i.e., the ground state will
be symmetric under the original symmetry group. In our case this means that for T > Tc we have φ = 0 (in the
case of a ferromagnet the magnetization vanishes above the critical temperature, there called Curie temperature;
in a superconductor, the condensate of Cooper pairs vanishes above Tc etc.). The general treatment of symmetry
restoration and the determination of the critical temperature is complicated. Here we shall first discuss the qualitative
picture which gives a good physical understanding for the symmetry restoration process. We shall do so with the help
of a very simple approximation. We shall also see that this approximation has obvious problems.
For the sake of simplicity let us set µ = 0. This means, in order to have condensation at small temperatures, we

need a negative mass parameter squared. Therefore, we introduce the positive square c2 via

m2 = −c2 . (323)

The tree-level propagator is now diagonal,

D−1
0 (K) =

(
−K2 − c2 + 3λφ2 0

0 −K2 − c2 + λφ2

)
, (324)

and the excitations energies become

ε±k =
√
k2 +m2

2/1 , m2
2 = λφ2 − c2 , m2

1 = 3λφ2 − c2 . (325)

The potential in Eq. (319) now is

Ω

V
= −c

2

2
φ2 +

λ

4
φ4 + T

∑
e=±

∫
d3k

(2π)3
ln

(
1− e−εek/T

)

= −c
2

2
φ2 +

λ

4
φ4 +

T 4

2π2

∑
i=1,2

∫ ∞

0

dxx2 ln
(
1− e−

√
x2+(mi/T )2

)

� −c
2

2
φ2 +

λ

4
φ4 − T 4π2

45
+
T 2(m2

1 +m2
2)

24
, (326)

where we have used the high-temperature approximation T 2 � c2 and∫ ∞

0

dxx2 ln
(
1− e−

√
x2+y2

)
= −π

4

45
+
π2

12
y2 +O(y3) , (327)

Now, with Eq. (325) this becomes, ordered in powers of φ,

Ω

V
=

(
−c

2

2
+
λT 2

6

)
φ2 +

λ

4
φ4 − T 4π2

45
− c2T 2

12
. (328)

This result shows that the coefficient of the quadratic term becomes larger with increasing temperature until it
becomes positive for temperatures larger than the critical temperature

T 2
c =

3c2

λ
. (329)

This indicates a second-order phase transition to the restored phase. (A first-order phase transition can only occur if
there was also a cubic term φ3.) We can compute the condensate as a function of temperature and find

φ2(T ) =
c2

λ
− T 2

3
⇒ φ(T ) =

Tc√
3

√
1− T 2

T 2
c

, (330)

for T < Tc and φ = 0 for T > Tc.
This approximation has the following severe problem. With Eqs. (325) and (330) we observe that the excitation

energies are given by the following masses (for T < Tc),

m2
2 = −λT

2

3
, (331a)

m2
1 = 2c2 − λT 2 . (331b)
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For T = 0 we recover the gapless Goldstone mode and the gapped mode. However, for nonzero temperature, the
Goldstone mode acquires an imaginary energy for small momenta which is obviously unphysical. It is no surprise that
the applied approximation is incomplete, since we know from the previous section that loops can give corrections to
the potential of the order of λT 2. This is exactly the order which was responsible for the symmetry restoration above.
Therefore, in the next subsection we improve our result by including loop corrections.
[End of 12th lecture, Jan 20th, 2014.]

C. Including loop corrections

So far we have ignored the contributions from the interaction terms (307c) and (307d) in the Lagrangian. From
Sec. VIIIA we know that the quartic term gives rise to the “double-bubble” diagram in the thermodynamic potential.
The cubic term gives an additional contribution, such that up to two loops we find the contributions (omitting the
arrows in the loop diagrams)

lnZtwo loops
I = 3 + 3 (332)

Note that now each line denotes a 2 × 2 propagator, given in Eq. (309). Naively, one might say that the second
diagram is suppressed compared to the first because of the number of vertices, which each comes with one power
of the coupling constant λ. However, there is a condensate sitting on the vertices of the second diagram. We have
seen above that the condensate is proportional to the inverse of λ1/2, and thus the power counting does not work in
the usual way. Nevertheless we shall neglect the second diagram for simplicity. The self-energy that arises from this
diagram depends on four-momentum (in contrast to the self-energy arising from the first diagram). For an estimate of
the self-energy from the second diagram we restrict ourselves to the low-momentum, large-temperature approximation
and consider a scalar propagator instead of the full 2× 2 structure.

Exercise 9: Show that the momentum-dependent self-energy

Σ(P ) ≡ φ2λ2
T

V

∑
K

D0(P −K)D0(K) (333)

with the propagator D0(K) = 1/(k20 − ε2k), ε
2
k = k2 +m2, is given in the p0 = 0, p → 0, T � m limit by

lim
p→0

Σ(0,p) � φ2λ2T

8πm
. (334)

(Hint: Use the result from Exercise 1 for the Matsubara sum.)

As we shall see below (and can guess from our results for the real scalar field), the contribution of the first diagram
(with quartic interactions) is ∝ λT 2. We can thus neglect the contribution from the second diagram if the condensate
is small, more precisely if (µ2 −m2)/m � T , i.e., if the chemical potential is only slightly larger than the mass and
thus only allows for a small condensate.
To find the result for the first diagram we write the interaction Lagrangian (307d) as

L(4) = −Λabcd ϕaϕbϕcϕd , a, b, c, d ∈ {1, 2} , (335)

with a symmetrized tensor,

Λabcd =
λ

12
(δabδcd + δacδbd + δadδbc) . (336)

The tensor structure comes from the two components of the complex field ϕ and replaces the scalar λ for the case of
a single scalar field. Consequently,

lnZ
(1)
I = −3Λabcd

T

V

∑
K

Dab
0 (K)

∑
Q

Dcd
0 (Q) , (337)
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where Dab
0 are the components of the 2× 2 propagator

D0(K) =
1

[(ε+k )
2 − k20 ][(ε

−
k )

2 − k20 ]

(
−K2 +m2

2 − µ2 2ik0µ

−2ik0µ −K2 +m2
1 − µ2

)
. (338)

This propagator is obtained from the inverse propagator (309) by using the expression for the inversion of a 2 × 2
matrix

A =

(
a b
c d

)
⇒ A−1 =

1

detA

(
d −b
−c a

)
. (339)

Inserting the tensor (336) into Eq. (337) and performing the sum over a, b, c, d yields

lnZ
(1)
I = −λ

4

T

V


3


∑

Q

D11
0 (Q)


2

+ 3


∑

Q

D22
0 (Q)


2

+ 2
∑
Q

D11
0 (Q)

∑
K

D22
0 (K)


 , (340)

where we have used that the Matsubara sum over the off-diagonal components D12
0 = −D21

0 vanishes. Therefore we
are left with the diagonal components. The self-energy (which, due to the definition (252) now is also a 2× 2 matrix)
can now be determined from the relation (269). With Eq. (337) the self-energy of first order in λ is

Πab = −2
δ lnZ

(1)
I

δDab
0

= 12Λabcd
T

V

∑
Q

Dcd
0 (Q)

= λ(δabδcd + δacδbd + δadδbc)
T

V

∑
Q

Dcd
0 (Q) . (341)

Written as a matrix, this is

Π = λ
T

V

∑
Q

(
3D11

0 (Q) +D22
0 (Q) 0

0 D11
0 (Q) + 3D22

0 (Q)

)
. (342)

This matrix can of course also be obtained from taking the derivatives with respect to Dab
0 from the explicit expression

(340). Using two different line styles for the two modes 1 and 2 we can bring Eqs. (340) and (342) into a diagrammatic
form,

4 lnZ
(1)
I = 3 + 3 + 2 , (343)

and

Π11 = −3 − , (344a)

Π22 = −3 − . (344b)

As a check, we see that these self-energy diagrams arise from cutting the respective lines in Eq. (343). If we ignore the
second degree of freedom we recover the form of the self-energy (265) for a real scalar field (the different prefactor,
12 vs. 3, is due to the different normalization of the coupling constant in the Lagrangian, λ vs. λ/4, which originates
from the normalization of the real fields ϕ1, ϕ2 in Eq. (304)).
To evaluate the self-energy from Eq. (342) we again set µ = 0 for simplicity. The result will give us the loop

corrections to the masses given in Eq. (331). In the high-temperature approximation, T � m1,m2, the propagators
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of the two modes become identical, D11
0 � D22

0 � −1/K2. Then we can use the results of Sec. VIII C to obtain, after
subtracting the vacuum contribution,

λ
T

V

∑
Q

D11
0 (Q) � λ

T

V

∑
Q

D22
0 (Q) � λT 2

12
, (345)

i.e., Π11 � Π22 � λT 2/3. Consequently, the corrected masses of the two modes are, for T < Tc,

m2
2 +Π11 = 0 , (346a)

m2
1 +Π22 = 2

(
c2 − λT 2

3

)
=

2λT 2
c

3

(
1− T 2

T 2
c

)
, (346b)

where we have used Eqs. (329) and (331). We see that the Goldstone mode now remains gapless up to T = Tc as it
should be. Moreover, the other mode becomes gapless at the phase transition. Then, for T > Tc, both masses become
identical, m2

1 = m2
2 = −c2 + λT 2/3 ≥ 0.

The case of a nonvanishing chemical potential is similar. However, in this case, the gapped mode has an energy gap
even at T = Tc, where the energy is µ (as opposed to 0 in the case without chemical potential). For a self-consistent
treatment of this case see for instance Sec. III in Ref. [10].
[End of 13th lecture, Jan 27th, 2014.]

X. THE PHOTON PROPAGATOR IN A QED PLASMA

A. Photon polarization tensor

From Exercise 6 we know the structure of the self-energy diagrams for fermions interacting via a bosonic field
through the Yukawa interaction. In QED, discussed in Sec. VII, electrons interact in a similar way with photons,
namely through an interaction term

LI = eψ̄γµAµψ , (347)

cf. Eq. (182). From this expression we can construct the one-loop photon self-energy

Πµν(Q) =

Q
K

K −Q

= e2
T

V

∑
K

Tr[γµG0(K)γνG0(P )] , (348)

where the trace is taken over Dirac space, where we have abbreviated

P ≡ K −Q , (349)

and where the electron propagator is given by Eq. (153). A gauge interaction is of course different from a simple
Yukawa interaction. We shall come to the subtleties related to gauge invariance in the next subsection. First we
compute the photon self-energy, also called polarization tensor. For simplicity, we shall consider the ultrarelativistic
limit m = 0 and set the chemical potential to zero, µ = 0. Then, the fermion propagator simply becomes

G0(K) = −γ
µKµ

K2
. (350)

With the trace

Tr[γµγσγνγρ] = 4(gµσgνρ + gµρgσν − gµνgσρ) , (351)

where gµν = diag(1,−1,−1,−1) is the metric tensor, we obtain

Tr[γµγ
σKσγνγ

ρPρ] = 4(KµPν +KνPµ − gµνK · P ) . (352)
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In the following we need to treat the following three cases separately,

Π00(Q) = 4e2
T

V

∑
K

k0p0 + k · p
(k20 − k2)(p20 − p2)

, (353a)

Π0i(Q) = Πi0(Q) = 4e2
T

V

∑
K

k0pi + kip0
(k20 − k2)(p20 − p2)

, (353b)

Πij(Q) = 4e2
T

V

∑
K

kipj + kjpi + δij(k0p0 − k · p)
(k20 − k2)(p20 − p2)

. (353c)

The Matsubara sum over k0 is taken over fermionic Matsubara frequencies since the loop is an electron loop. Since
the external momentum Q belongs to the photon, the Matsubara frequencies in q0 are bosonic. Therefore we can use
the result from Exercise 4. With the relations

1− fF (ε1)− fF (ε2) =
fF (ε1)fF (ε2)

fB(ε1 + ε2)
= −fF (−ε1)fF (−ε2)

fB(−ε1 − ε2)
, (354a)

fF (ε1)− fF (ε2) =
fF (−ε1)fF (ε2)
fB(−ε1 + ε2)

= −fF (ε1)fF (−ε2)
fB(ε1 − ε2)

, (354b)

we can write Eq. (168) as (changing q0 to −q0)

T
∑
k0

(k0 + ξ1)(k0 − q0 + ξ2)

(k20 − ε21)[(k0 − q0)2 − ε22]
=

1

4ε1ε2

{[
(ε1 − ξ1)(ε2 − ξ2)

q0 + ε1 − ε2
− (ε1 + ξ1)(ε2 + ξ2)

q0 − ε1 + ε2

]
[f(ε1)− f(ε2)]

+

[
(ε1 + ξ1)(ε2 − ξ2)

q0 − ε1 − ε2
− (ε1 − ξ1)(ε2 + ξ2)

q0 + ε1 + ε2

]
[1− f(ε1)− f(ε2)]

}
. (355)

Since eventually only fermionic distribution functions occur we have abbreviated f ≡ fF . Consequently, since the
dispersions in our massless approximation are εk = k, Eqs. (353) become

Π00 = e2
∫

d3k

(2π)3

[(
1

q0 + k − p
− 1

q0 − k + p

)
(1 + k̂ · p̂)(fk − fp)

+

(
1

q0 − k − p
− 1

q0 + k + p

)
(1− k̂ · p̂)(1− fk − fp)

]
, (356a)

Π0i = −e2
∫

d3k

(2π)3

[(
1

q0 + k − p
+

1

q0 − k + p

)
(p̂i + k̂i)(fk − fp)

+

(
1

q0 − k − p
+

1

q0 + k + p

)
(p̂i − k̂i)(1 − fk − fp)

]
, (356b)

Πij = e2
∫

d3k

(2π)3

[(
1

q0 + k − p
− 1

q0 − k + p

)
[δij(1 − k̂ · p̂) + k̂ip̂j + k̂j p̂i](fk − fp)

+

(
1

q0 − k − p
− 1

q0 + k + p

)
[δij(1 + k̂ · p̂)− k̂ip̂j − k̂j p̂i](1− fk − fp)

]
. (356c)

where we have abbreviated fk ≡ f(k) and the unit vector k̂ ≡ k/k. We now apply the so-called “Hard Thermal
Loop (HTL)” approximation [11], where the dominant contribution comes from fermion momenta k ∼ T (called
“hard”), and the photon momentum is of the order of q0, q ∼ eT (called “soft”). In this spirit, we approximate the
denominators in Eqs. (356) as (remember p = |k− q|)

q0 ± k ∓ p � q0 ± q · k̂ , q0 ± k ± p � ±2k , (357)
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and the distribution functions as

fk − fp � q · k̂ ∂fk
∂k

, 1− fk − fp � 1− 2fk . (358)

Now, to compute Π00 first note that k̂ · p̂ = 1+O(q2/k2), hence we can neglect the second line in Eq. (356a). Thus,

Π00 � 2e2
∫

d3k

(2π)3

(
1

q0 + q · k̂ − 1

q0 − q · k̂

)
q · k̂ ∂fk

∂k

= 4e2
∫

d3k

(2π)3
q · k̂

q0 + q · k̂
∂fk
∂k

= 4e2
∫

d3k

(2π)3

(
1− q0

q0 + q · k̂

)
∂fk
∂k

. (359)

In the second step we have used that the angular integral gives the same result for both terms: with θ being the angle

between k̂ and q̂, and x ≡ cos θ, one changes the integration variable x → −x in the first term to obtain the second
term. Hence we can drop the second term and obtain a factor 2. In the third step we have separated the q0 = 0 part.8

To compute Πi0 in the HTL approximation, we can again neglect the second line in Eq. (356b) since p̂i − k̂i is of
the order of q/k. The remaining term, being of order one, is

Πi0 � −2e2
∫

d3k

(2π)3

(
1

q0 + q · k̂ +
1

q0 − q · k̂

)
q · k̂ k̂i ∂fk

∂k

= 4e2
∫

d3k

(2π)3
q0

q0 + q · k̂ k̂i
∂fk
∂k

. (360)

In Πij , the second line cannot be neglected. The first term is analogous to the first term in Π00 and we obtain

Πij = 2e2
∫

d3k

(2π)3

[
2

(
1− q0

q0 + q · k̂

)
k̂ik̂j

∂fk
∂k

− 1

k
(δij − k̂ik̂j)(1 − 2fk)

]
. (361)

The 1 in the factor 1 − 2fk is the vacuum contribution which has to be subtracted as discussed for the case of the
self-energy in φ4 theory. Then, with ∫

dΩ

4π
k̂ik̂j =

δij
3
, (362)

we see via partial integration that only one term in Eq. (361) survives,∫
d3k

(2π)3

[
k̂ik̂j

∂fk
∂k

+
1

k
(δij − k̂ik̂j)fk

]
=

δij
6π2

∫ ∞

0

dk

(
k2
∂fk
∂k

+ 2kfk

)
= 0 . (363)

Consequently, we are left with

Πij = −4e2
∫

d3k

(2π)3
q0

q0 + q · k̂ k̂ik̂j
∂fk
∂k

. (364)

In all three results (359), (360), and (364) we have the same k integral which we can perform exactly,∫ ∞

0

dk k2
∂fk
∂k

= −T
2

2

∫ ∞

0

dx
x2

1 + coshx
= −T

2π2

6
. (365)

8 Note that the limits q0 → 0, q → 0 do not commute. We shall see in the subsequent sections that different limits correspond to different
physics.
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Consequently, we have

Π00 = −2m2

(
1−

∫
dΩ

4π

q0

q0 + q · k̂

)
, (366a)

Π0i = −2m2

∫
dΩ

4π

q0k̂i

q0 + q · k̂ , (366b)

Πij = 2m2

∫
dΩ

4π

q0k̂ik̂j

q0 + q · k̂ , (366c)

where we defined

m2 ≡ e2T 2

6
. (367)

B. Photon propagator

After having computed the polarization tensor, we want to use the result to determine the photon modes in the
plasma. To this end, we need the photon propagator D(Q). In a covariant gauge ∂µA

µ = 0 with gauge-fixing
parameter ρ the free inverse propagator is

D−1
0,µν(Q) = Q2gµν −

(
1− 1

ρ

)
QµQν . (368)

(Cf. the inverse propagator in axial gauge in Eq. (214).) Physical quantities must of course be independent of ρ.
Inversion gives

D0,µν(Q) =
gµν
Q4

− (1 − ρ)
QµQν

Q4
. (369)

(One can easily check that Dµν
0 D−1

0,νσ = gµσ = δµσ .) Let us now introduce projection operators PL, PT via

P 00
T = P 0i

T = P i0
T = 0 , (370a)

P ij
T = δij − q̂iq̂j , (370b)

and

Pµν
L =

QµQν

Q2
− gµν − Pµν

T . (371)

Both PT and PL are 4-transverse to Q, i.e., QµP
µν
L = QµP

µν
T = 0. The projector PT is 3-transverse, while PL is

3-longitudinal. We have Pµν
L PL,νσ = −Pµ

L,σ, P
µν
T PT,νσ = −Pµ

T,σ, P
µν
L PT,νσ = Pµν

T PL,νσ = 0. In terms of these
projectors, the photon self-energy can be written as

Πµν(Q) = F (Q)PL,µν +G(Q)PT,µν , (372)

with scalar functions F and G. This follows from rotational invariance and the tranversality property of the self-energy
QµΠ

µν = 0 (in non-abelian gauge theories, the structure of the self-energy is more complicated). For the full inverse
propagator we then find

D−1
µν = D−1

0,µν +Πµν = (F −Q2)PL,µν + (G−Q2)PT,µν +
QµQν

ρ
, (373)

such that

Dµν(Q) =
PL,µν

F (Q)−Q2
+

PT,µν

G(Q)−Q2
+ ρ

QµQν

Q4
. (374)
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(Again, one checksD−1
µνD

νσ = g σ
µ .) To obtain an explicit form for F we may for instance consider the (00)-component

of Eq. (372), which yields9

F (Q) =
Q2

q2
Π00(Q) . (375)

To obtain G, we multiply Eq. (372) with P σµ
T and take the σ = i, ν = j component. This yields

G(Q) =
1

2
(δjk − q̂j q̂k)Πkj = Πxx(Q) , (376)

where, in the second step, we have chosen a reference frame in which q points into the z-direction, in which case we
also have Πxx = Πyy.
We can now use our results from the previous subsection. With Eq. (366a) we find

F (Q) = −2m2Q
2

q2

(
1− 1

2

∫ 1

−1

dx
q0

q0 + qx

)

= −2m2Q
2

q2

(
1− q0

2q
ln
q0 + q

q0 − q

)
, (377)

and with Eq. (366c)

G(Q) =
m2

2π

∫ 2π

0

dϕ

∫ π

0

dθ sin θ
q0 sin

2 θ cos2 ϕ

q0 + q cos θ

=
m2q0
2

∫ 1

−1

dx
1− x2

q0 + qx

=
m2q0
q

(
q0
q

− Q2

2q2
ln
q0 + q

q0 − q

)

= m2 − 1

2
F (Q) . (378)

In both functions F and G the Legendre function of the second kind

Q0(x) =
1

2
ln
x+ 1

x− 1
(379)

appears. This function is defined in the complex plane, cut from -1 to 1. Consequently, F (Q) and G(Q) are defined
in the complex q0 plane, cut from −q to q. For timelike Q2 > 0 (q0 real), F and G are real, while for spacelike Q2 < 0
they become complex.

C. Debye screening

In order to discuss the physical meaning of the photon propagator with the functions F and G, we first consider
a static point charge Q in the plasma. The resulting potential in position space then is given by the function F (see
chapter 6.3 in Ref. [2] for more details)

V (r) = Q
∫

d3q

(2π)3
eiq·r

q2 + F (q0 = 0,q)
. (380)

9 We may also express F in terms of Π0i by multiplying both sides of Eq. (372) with Pσµ
L and take the σ = i, ν = 0 component of the

resulting equation. After a few lines of algebra one finds F (Q) = Q2

qq0
q̂jΠj0.
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For F = 0 we recover the usual Coulomb potential V (r) = Q/r. The effect of F is to screen this potential,

V (r) =
Q
r
e−rmD , (381)

with the so-called Debye screening mass

m2
D ≡ F (q0 = 0, q → 0) = −Π00(q0 = 0, q → 0) =

e2T 2

3
. (382)

This screening is easy to understand: since we are at finite temperature, there are electrons end positrons in the
system. Say Q is a negative charge, then positrons will be attracted and screen the charge. They do so on a length
scale given by the inverse Debye mass. In other words, looking from far away (from distances much larger than m−1

D )

one cannot see the charge. One has to come closer (up to distances ∼ m−1
D or closer) to resolve the charge.

There is no magnetic screening mass, G(q0 = 0, q → 0) = 0. The magnetic screening mass becomes non-vanishing
in a superconductor (→ Meissner mass), where magnetic fields are screened.

D. Plasma oscillations and Landau damping

Next we discuss the collective excitations in the plasma. (See, besides the textbooks by LeBellac and Kapusta, Ref.
[12] for details.) To this end, we consider the spectral density, given by

ρL,T (Q) ≡ 1

π
ImDL,T (Q) , (383)

where the longitudinal and transverse parts of the photon propagator are defined as

DL(Q) =
Q2

q2
1

F (Q)−Q2
=

1

Π00(Q)− q2
, (384a)

DT (Q) =
1

G(Q)−Q2
, (384b)

where we have used Eq. (375). The imaginary part in Eq. (383) has to be understood as the imaginary part of the
retarded propagator, limε→0 ImDL,T (q0 + iε,q), ε > 0.
Expanding

Π00(q0 + iε,q) � Π00(q0,q) + iε∂Π00(q0,q)− ε2

2
∂2Π00(q0,q) , (385)

(with the abbreviation ∂ ≡ ∂
∂q0

), we can write

ImDL(q0 + iε,q) � −
[
ImΠ00 + εRe∂Π00 − ε2

2
Im ∂2Π00

]

×
{
(ReΠ00 − q2)2 + (ImΠ00)

2 + 2ε[ImΠ00 Re ∂Π00 − (ReΠ00 − q2)Im ∂Π00]

+ε2[(Re ∂Π00)
2 + (Im ∂Π00)

2 − (ReΠ00 − q2)Re ∂2Π00 − ImΠ00Im ∂2 Π00]
}−1

. (386)

As discussed above, the imaginary parts of F and G are nonzero if and only if the four-momentum Q is spacelike,
q2 − q20 > 0. In this case, the limit ε→ 0 can be taken without any subtleties: all terms proportional to any order of
ε can simply be discarded, and we obtain

q2 − q20 > 0 : lim
ε→0

1

π
ImDL(q0 + iε,q) = − 1

π

ImΠ00

(ReΠ00 − q2)2 + (ImΠ00)2
. (387)

This is different for timelike momenta, q20 − q2 > 0, where the imaginary part of Π00 vanishes. In this case, we have

q20 − q2 > 0 : lim
ε→0

1

π
ImDL(q0 + iε,q) = − lim

ε→0

1

π

ε∂Π00

(Π00 − q2)2 + ε2[(∂Π00)2 − (Π00 − q2)∂2Π00]

= − 1

∂Π00
δ

(
Π00 − q2

∂Π00

)

= −sgn(∂Π00) δ(Π00 − q2) , (388)
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FIG. 5: Longitudinal (plasmon) and transverse modes in a QED plasma. ωP ≡ eT/3, m2 ≡ e2T 2/6.

where we have used

lim
ε→0

1

π

ε

x2 + ε2
= δ(x) . (389)

For the transverse part we proceed analogously. As a result, the longitudinal and transverse parts of the spectral
function are

ρL(Q) = −sgn

(
∂Π00

∂q0

)
δ(Π00 − q2)−Θ(q2 − q20)

1

π

ImΠ00

(ReΠ00 − q2)2 + (ImΠ00)2
, (390a)

ρT (Q) = −sgn

(
∂(G− q20)

∂q0

)
δ(G−Q2)−Θ(q2 − q20)

1

π

ImG

(ReG−Q2)2 + (ImG)2
. (390b)

Since Π00 and G are both even in q0 we can write

Π00 − q2 = (q0 − ωL)(q0 + ωL) , G−Q2 = (q0 − ωT )(q0 + ωT ) . (391)

The zeros ωL,T (q) have to be determined numerically, see Fig. 5. They correspond to quasiparticle dispersions. We
see that besides the transverse photon there is another, longitudinal degree of freedom. This is due to the plasma in
which the photon propagates, hence the name plasmon for this quasiparticle.
We can rewrite the quasiparticle contribution to the spectral density with the help of the general formula

δ[f(x)] =
∑
x0

δ(x− x0)

|f ′(x0)| , (392)

where x0 are the zeros of the function f(x). We thus first compute

∂Π00

∂q0
=

1

q0

(
Π00 − 3ω2

P q
2

Q2

)
=

1

q0

(
q20 − ω2

L + q2 − 3ω2
P q

2

Q2

)
, (393)

where we have defined the plasma frequency

ω2
P =

2

3
m2 =

e2T 2

9
. (394)

This yields

∂Π00

∂q0

∣∣∣∣
q0=±ωL

= ∓q
2(3ω2

P − ω2
L + q2)

ωL(ω2
L − q2)

. (395)

One can check that the result is negative (positive) for the upper (lower) sign for all q.
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And, analogously, for the transverse component,

∂(G− q20)

∂q0
=

1

q0

[
(G−m2)(3q20 − q2)

Q2
− 2q20 +m2

]
, (396)

and thus

∂(G− q20)

∂q0

∣∣∣∣
q0=±ωT

= ∓3ω2
Tω

2
P − (ω2

T − q2)2

ωT (ω2
T − q2)

. (397)

Consequently, the spectral densities from Eqs. (390) become

ρL(Q) =
ωL(ω

2
L − q2)

q2(3ω2
P + q2 − ω2

L)
[δ(q0 − ωL)− δ(q0 + ωL)]− 1

π

Θ(q2 − q20) ImΠ00

(ReΠ00 − q2)2 + (ImΠ00)2
, (398a)

ρT (Q) =
ωT (ω

2
T − q2)

3ω2
Pω

2
T − (ω2

T − q2)2
[δ(q0 − ωT )− δ(q0 + ωT )]− 1

π

Θ(q2 − q20) ImG

(ReG−Q2)2 + (ImG)2
. (398b)

The spacelike part of the spectral functions describes Landau damping. This is related to scattering processes of the
photon off electrons and positrons in the plasma. Through these processes energy is dissipated, i.e., the photon is
“damped”.
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