

Andreas Schmitt Mathematical Sciences and STAG Research Centre

University of Southampton Southampton SO17 1BJ, United Kingdom

Phases of QCD at large baryon densities and applications to neutron stars

Outline

- Connecting QCD to astrophysical observables
 - Basics of QCD and phase diagram
 - Neutron stars as laboratories for dense (and hot) QCD
- Equation of state
 - Unpaired quark matter at asymptotically large densities
 - Nuclear matter in a simple approximation (intermezzo: thermal field theory)
- Color superconductivity
 - QCD gap equation
 - Color-flavor locking and other color superconductors
- Transport in dense QCD
 - Brief overview of transport in neutron stars
 - Bulk viscosity of (color-superconducting) quark matter

Outline

- Connecting QCD to astrophysical observables
 - $-\operatorname{Basics}$ of QCD and phase diagram
 - Neutron stars as laboratories for dense (and hot) QCD
- Equation of state
 - Unpaired quark matter at asymptotically large densities
 - Nuclear matter in a simple approximation (intermezzo: thermal field theory)
- Color superconductivity
 - $-\operatorname{QCD}$ gap equation
 - Color-flavor locking and other color superconductors
- Transport in dense QCD
 - Brief overview of transport in neutron stars
 - Bulk viscosity of (color-superconducting) quark matter

QCD Lagrangian

$$\mathcal{L} = \bar{\psi}(i\gamma^{\mu}D_{\mu} - M)\psi - \frac{1}{2}\mathrm{Tr}[G^{\mu\nu}G_{\mu\nu}]$$

- $4N_cN_f$ -dimensional quark spinor ψ
- quark masses $M = \text{diag}(m_u, m_d, m_s)$ (for $N_f = 3$)
- gluon field strength $G_{\mu\nu} = \partial_{\mu}A_{\nu} \partial_{\nu}A_{\mu} ig[A_{\mu}, A_{\nu}]$
- covariant derivative $D_{\mu} = \partial_{\mu} igA_{\mu}$

•
$$A_{\mu} = A^{a}_{\mu}T_{a}, G_{\mu\nu} = G^{a}_{\mu\nu}T^{a}$$
 with $SU(N_{c})$ generators T^{a}

QCD symmetries

$$\mathcal{L} = \bar{\psi}(i\gamma^{\mu}D_{\mu} - M)\psi - \frac{1}{2}\mathrm{Tr}[G^{\mu\nu}G_{\mu\nu}]$$

- gauge symmetry ("local"), $U = e^{ig\theta_a(X)T^a} \in SU(N_c)$ $\psi \to U\psi$, $A_\mu \to UA_\mu U^{-1} + \frac{i}{g}U\partial_\mu U^{-1}$
- QCD Lagrangian (approximately) invariant under $\frac{SU(N_c) \times SU(N_f)_R \times SU(N_f)_L \times U(1)_B}{SU(N_c) \times SU(N_f)_R \times SU(N_f)_L \times U(1)_B}$

– left- and right-handed spinors $\psi_{R/L} = P_{R/L}\psi$ with $P_{R/L} = (1 \pm \gamma^5)/2$

- chiral symmetry $SU(N_f)_R \times SU(N_f)_L$ approximate for nonzero M
- $U(1)_B$ associated to baryon number conservation
- $U(1)_A$ broken on the quantum level ("chiral anomaly")

Chiral symmetry breaking and confinement

- theory (Lagrangian) invariant under G (here U(1))
- $T > T_c$: symmetric phase
- $T < T_c$: symmetry spontaneously broken \rightarrow ground state invariant under $H \subset G$ (here H = 1)
- $\dim G/H$ many Goldstone modes (here 1)
- QCD: chiral condensate $\langle \bar{\psi}_L \psi_R \rangle$ spontaneously breaks $SU(N_f)_R \times SU(N_f)_L \rightarrow SU(N_f)_{R+L}$

 $\rightarrow 8$ pseudo-Goldstone modes for $N_f=3:~\pi^0,\pi^\pm,K^\pm,K^0,\bar{K}^0,\eta$

• confinement: Polyakov loop spontaneously breaks center symmetry \mathbb{Z}_{N_c} (exact for pure glue theory)

Asymptotic freedom

- D. J. Gross and F. Wilczek, PRL 30, 1343 (1973)
- H. D. Politzer, PRL 30, 1346-1349 (1973)
 - beta function ("running of the coupling")

$$\beta(\alpha_s) = Q^2 \frac{\partial \alpha_s(Q^2)}{\partial Q^2} = -\left(\frac{\alpha_s}{4\pi}\right)^2 \left(\beta_0 + \beta_1 \frac{\alpha_s}{4\pi} + \beta_2 \left(\frac{\alpha_s}{4\pi}\right)^2 + \dots\right), \qquad \alpha_s \equiv \frac{g^2}{4\pi}$$

• at two-loop order (use e.g. $\alpha_s(M_Z)$ to fix renormalization point Λ)

$$\frac{\alpha_s(Q^2)}{4\pi} = \frac{1 - \frac{2\beta_1 \ln L}{\beta_0^2 L}}{\beta_0 L}, \qquad L \equiv \ln \frac{Q^2}{\Lambda^2}$$

- QCD is weakly coupled at large energies/small distances
 → perturbative methods apply
- strong coupling at low energies/large distances (confinement)

QCD at nonzero T and μ_B

thermal field theory A. Schmitt, lecture notes (unpublished) M. Laine and A. Vuorinen, Lect. Notes Phys. 925, 1 (2016)

- recall partition function from statistical physics $Z \equiv \text{Tr} e^{-\beta(\hat{H}-\mu\hat{N})}$
- thermal quantum field theory: QCD partition function

$$Z = \int \mathcal{D}\bar{\psi}\mathcal{D}\psi\mathcal{D}A\,e^{\int_X\mathcal{L}}$$

$$\mathcal{L} = \bar{\psi}(i\gamma^{\mu}D_{\mu} + \mu\gamma^{0} - M)\psi - \frac{1}{2}\mathrm{Tr}[G^{\mu\nu}G_{\mu\nu}]$$

with chemical potentials $\mu = \text{diag}(\mu_u, \mu_d, \mu_s)$ and "imaginary time" $\tau \in [0, \beta]$

$$\int_X \equiv \int_0^\beta d\tau \int d^3x \,, \qquad X^\mu = (-i\tau, \mathbf{x}) \,, \qquad K^\mu = (-i\omega_n, \mathbf{k})$$

• (anti-)periodic boundary conditions for quarks (gluons) \rightarrow Matsubara frequencies $\omega_n = (2n+1)\pi T$ (fermions), $\omega_n = 2n\pi T$ (bosons)

QCD at nonzero T and μ_B

"brute force" evaluation of Z on a lattice ($\mu_B = 0$)

S. Borsanyi, Z. Fodor, C. Hoelbling, S. D. Katz, S. Krieg and K. K. Szabo, PLB 730, 99 (2014)

nonzero μ_B : usual methods for numerical evaluation fail ("sign problem", complex fermion determinant)

QCD phase diagram: simplest version

N. Cabibbo and G. Parisi, PLB 59, 67-69 (1975)

QCD phase diagram: conjectured phases

QCD phase diagram: theoretical methods

Theoretical tools for dense QCD

• QCD

- perturbative methods (at ultra-high densities)
- lattice QCD (however, sign problem)
- effective theories
 - $-\operatorname{chiral}$ effective theory in nuclear matter
 - effective theory of color-flavor locked quark matter
 - hydrodynamics
- phenomenological models
 - Nambu-Jona-Lasinio model
 - nucleon-meson models
 - Ginzburg-Landau model
- non-perturbative methods/improvements
 - functional renormalization group
 - gauge-gravity duality

QCD phase diagram: experimental input

Neutron stars: densest matter in the universe

mass ~ $(1-2)M_{\odot}$ radius ~ $10 \,\mathrm{km}$ density $\lesssim 10 \,n_0$

A. Schmitt, Lect. Notes Phys. 811, 1 (2010)

Compact star: simple view

Compact star: more detailed view

A. Watts et al., PoS AASKA 14, 043 (2015)

Compact stars involve all fundamental forces

electromagnetism (magnetic field evolution, ...)

gravity (stability of the star, gravitational waves, ...)

weak interactions (neutrino emissivity, ...)

strong interactions (nuclear & quark matter, ...)

Some astrophysical observations and their relation to fundamental physics

Masses and radii of neutron stars (page 1/3): masses

Shapiro delay

• heaviest known stars

 $M = 2.01 \pm 0.04 M_{\odot}$ J. Antoniadis *et al.*, Science 340, 6131 (2013)

 $M = 2.08 \pm 0.07 M_{\odot}$ E. Fonseca *et al.*, Astrophys.J.Lett. 915, L12 (2021)

Masses and radii of neutron stars (page 2/3): radii

 $\begin{array}{c} \mathbf{N} \mathbf{e} \mathbf{u} \mathbf{tron \ star \ Interior \ Composition \ Explore R} \\ \mathbf{(NICER)} \end{array}$

X-ray emission from hot spots

constrain allowed region in mass-radius plane T. E. Riley et al., Astrophys.J.Lett. 918, L27 (2021)

Masses and radii of neutron stars (page 3/3): constraints on equation of state

equation of state $P(\epsilon) + \text{TOV}$ equation $\rightarrow M(R)$

figure from http://www3.mpifr-bonn.mpg.de