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Solution of the hands-on session on:
Boosted thermal distributions

Ideal gas at rest

1. For massless particles, p0 = p. Integrating over solid angle, one replaces
∫
d3p = 4πp2dp. One

obtains
dN

d3x
=

4π

(2π)3

∫ ∞

0

p2 exp(−p/T )dT =
1

π2
T 3. (1)

2. In the limit m � T , we expand p0 ' m + 1
2mp

2, and we still use
∫
d3p = 4πp2dp for the

integration over solid angle:

dN

d3x
=

4π

(2π)3
exp

(
−m
T

)∫ ∞

0

p2 exp

(
− p2

2mT

)
dp. (2)

We then define the dimensionless integration variable x by p = x(mT )1/2. We obtain

dN

d3x
=

4π

(2π)3
exp

(
−m
T

)
(mT )3/2

∫ ∞

0

x2 exp

(
x2

2

)
dx ∝ (mT )3/2 exp

(
−m
T

)
. (3)

3. The above approximation is best for the heaviest particles. We can use it for protons, with mass
mp, and deuterons, with mass md ∼ 2mp. For each of these species, we must multiply Eq. (3) with
the number of spin states 2S + 1, with S = 1

2 for protons and S = 1 for deuterons. The volume
d3x cancels by taking the ratio Nd/Np, which only depends on T . One obtains after simplifications

Nd
Np

=
3

2
23/2 exp

(
−mp

T

)
. (4)

ALICE measures (Fig.16 of https://arxiv.org/pdf/1506.08951.pdf) Nd/Np ' 0.0036 in
Pb+Pb collisions at 2.76 TeV. Inverting the above equation with mp = 938 MeV, one obtains
T = 133 MeV.

A more careful investigation must take into account that roughly half of the observed pro-
tons are decay products of, typically, ∆ resonances. Hence, the number of “primordial” pro-
tons, as given by our statistical model, is smaller than the measured number (see Fig. 2 of
https://arxiv.org/pdf/1710.09425.pdf for an illustration). Taking this effect into account
results in a temperature higher by ∼ 15%.

Boosted ideal gas

4. dN/d3xd3p is maximum when pµuµ is minimum. We locate the minimum by imposing that the
derivative with respect to p vanishes:

∂

∂p
(p0u0 − p · u) = u0

∂p0

∂p
− u = 0. (5)



The derivative of the energy with respect to momentum is the velocity, according to Hamilton’s
equation: ∂p0/∂p = v = p/p0. We thus obtain

p

p0
=

u

u0
. (6)

The most probable value of the momentum is that for which the particle velocity is equal to the
fluid velocity. In other terms, the particle is at rest in the rest frame of the fluid. Then, the particle
4-momentum in the laboratory frame is pµ = muµ, and its energy in the rest frame of the fluid is
pµuµ = m.

5. If the fluid velocity is along the x axis, the expression of the momentum distribution simplifies
to:

dN

d3xd3p
=

1

(2π)3
exp

(
−p

0u0 − pxu
T

)
. (7)

If the temperature is small, the particle momentum is almost in the direction of the fluid velocity,
that is, py and pz are typically much smaller than px. We expand p0 to the leading non-trivial
order in py and pz:

p0 = (m2 + p2x + p2y + p2z)
1/2 = mt +

p2y + p2z
2mt

, (8)

where we have used the notation mt ≡
√
m2 + p2x. Inserting Eq. (8) in Eq. (7), we obtain:

dN

d3xd3p
=

1

(2π)3
exp

(
−mtu

0 − pxu
T

)
exp

(
−

p2y + p2z
2(mtT/u0)

)
. (9)

The distribution of (py, pz) is a Gaussian with width (2mtT/u
0)1/2. Note that for the most probable

value of px determined in the previous question, mt = mu0, hence the width reduces to (2mT )1/2,
which is the same result as for a nonrelativistic ideal gas. Integrating Eq. (9) over py and pz, we
obtain the distribution of px:

dN

d3xdpx
=

1

(2π)2
mtT

u0
exp

(
−mtu

0 − pxu
T

)
. (10)

If the mass m of the particle is large enough, the distribution of px is a Gaussian. This can be seen
by expanding the exponent to second order in px, around the maximum px = mu determined in
question 4. One must simply evaluate the second derivative d2mt/dp

2
x for this particular value of

px. One obtains (after some algebra, for which one can use a symbolic calculator)

−mtu
0 − pxu
T

= −m
T
− (px −mu)2

2mT (u0)2
, (11)

where the first term is the maximum determined in question 4, and the last term is the second-order
correction which, once inserted in the exponential, results in a Gaussian dispersion of px around
the maximum. The width of this distribution is (2mT )1/2u0. Note the dependence on u0, which is
a relativistic effect associated with Lorentz contraction. The distribution of px is broader than the
distribution of py and pz by a factor u0, so that the thermal dispersion appears elongated along
the direction of motion of the fluid.

6. We have seen that the most probable value of the momentum is mu, directly proportional to
the fluid 4-velocity. The dispersion around this most probable value is (2mT )1/2u0 according to



the previous question. The larger the mass, the smaller the relative dispersion. Massive particles
essentially follow the fluid, and we have seen in question 4 that their momentum is proportional to
m. In contrast, in a fluid at rest, the thermal momentum is proportional to (mT )1/2. The more
massive the particle, the larger the effect of the collective motion. This effect is usually referred to
as “radial flow” in the heavy-ion literature.

7. If m = 0, then mt = |px| and we simplify Eq. (10) accordingly. For positive px, we obtain:

dN

d3xdpx
=

1

(2π)2
pxT

u0
exp

(
−px(u0 − u)

T

)
. (12)

This is, up to a normalization constant, the probability distribution of px. It depends on u and T
only through the combination T/(u0−u) = T (u0+u), where we have used the identity (u0)2−u2 = 1.
As T decreases, the distribution of px does not become narrower, which is the essential difference
with massive particles studied in question 5. The reason is that massless particles cannot move
with the velocity of the fluid.

8. The pion is almost massless, in the sense that its mass is smaller (by a factor ∼ 4 at the LHC)
than its mean transverse momentum. The distribution of px determined in the previous question
is also that of the transverse momentum pt, since py is much smaller than px in the considered
limit. Hence, the only quantity that one can extract from the transverse momentum distribution
is T (u0 + u). In practice, a smaller temperature can be compensated by a larger fluid velocity u.
This is a well-known degeneracy of blast-wave fits.

Anisotropic flow at low pt

9. We replace px with pt cosϕ in Eq. (10):

dN

d3xdpx
=

1

(2π)2
mtT

u0
exp

(
−mtu

0 − ptu cosϕ

T

)
. (13)

Note that mt =
√
m2 + p2t is independent of ϕ. Hence the distribution only depends on cosϕ,

which has ϕ→ −ϕ symmetry.

10. One can expand this expression in powers of pt. Since the dependence on ϕ is only through the
combination pt cosϕ, any term in cosk ϕ comes with a factor pkt . Now, the Fourier series expansion
of cosk ϕ only involves harmonics of order n ≤ k. Hence, a term in cosnϕ can only result from the
expansion of cosk ϕ with k ≥ n, which goes with a factor pkt . In the limit pt → 0, only the smallest
value k = n contributes. Hence, vn(pt) ∝ pnt at low pt.

Anisotropic flow at low temperature

11. We evaluate the ϕ distribution using Eq. (10), where the dependence on ϕ comes from the
fluid velocity. In question 5, the x-axis had been chosen parallel to the fluid velocity. Now that the
fluid velocity has an angle ϕ with the x axis, we replace px with the transverse momentum pt in
the result. In addition, in the limit of low temperature, the exponential dominates and we neglect
the ϕ dependence from the pre-exponential factor:

dN

dϕ
∝ exp

(
−mtu

0(ϕ)− ptu(ϕ)

T

)
. (14)

We then assume u(ϕ) = 〈u〉 + ε cosnϕ. The ϕ dependence of u0(ϕ) is then given by the relation
u0(ϕ) = (1 + u(ϕ)2)1/2, which we expand to leading order in ε:

u0(ϕ) = (1 + 〈u〉2)1/2 +
〈u〉

(1 + 〈u〉2)1/2
ε cosnϕ = 〈u0〉+ 〈v〉ε cosnϕ, (15)



where, in the last equality, we have used the notations 〈u0〉 ≡ (1 + 〈u〉2)1/2 and 〈v〉 ≡ 〈u〉/〈u0〉.
Note that 〈v〉 is the fluid velocity averaged over ϕ. We insert these expressions into Eq. (14) and
we only keep the terms which depend on ϕ, i.e., we omit the overall factor which is independent of
ϕ:

dN

dϕ
∝ exp

(
−mt〈v〉ε cosnϕ− ptε cosnϕ

T

)
. (16)

We finally expand to first order in ε:

dN

dϕ
∝ 1 +

(
−mt〈v〉+ pt

T

)
ε cosnϕ. (17)

Finally, vn(pt) is defined as the average value of cosnϕ for a fixed pt:

vn(pt) ≡
∫ 2π

0
cosnϕdNdϕ dϕ∫ 2π

0
dN
dϕ dϕ

=
ε

2T
(−mt〈v〉+ pt) . (18)

For a massless particle (typically pions with not too low pt) , mt = pt, and Eq. (18) predicts that vn
is proportional to pt. It also predicts that at a given pt, vn(pt) decreases as the mass m increases.
This property is referred to as the mass ordering of anisotropic flow . This mass ordering is only
present for pt of order m or smaller, and disappears for larger values of pt for which mt ' pt. For
a more detailed derivation of this result, see https://arxiv.org/pdf/nucl-th/0506045.pdf.

Understanding LHC data

12. The result of question 10 explains the observation that the variation of vn with pt is flatter
for larger n. One then sees that, away from the low pt region, the pion vn increases linearly with
pt, as explained in question 11. The mass ordering predicted by Eq. (18) is also clearly observed
for pt ' m. Specifically, the ordering of the mass is pion<kaon<proton, and the ordering of vn is
opposite for fixed pt. Except for the low pt region, vn(pt) has a similar pt dependence for all n,
which is also in agreement with the result of question 11. Only the overall normalization varies
with n. This variation comes from the Fourier coefficient ε of the fluid velocity, which turns out to
decrease with harmonic order n, which is often the case for Fourier coefficients.

The only feature in the data which is in clear disagreement with our simple calculation is the
observation that the proton vn becomes slightly larger than the pion vn for the highest value of
pt shown in the figure. Generally, hydrodynamics fails to describe data for pt larger than 2 GeV.
Note, however, that this only corresponds to a very small fraction of the produced particles.

13. We use successively Eq. (16) and Eq. (18), in which we set n = 2, :

dN

dϕ
∝ exp

(
−mt〈v〉ε cos 2ϕ− ptε cos 2ϕ)

T

)
= exp (2v2(pt) cos 2ϕ)) . (19)

We then expand this equation to order ε2 or, equivalently, v2(pt)
2, and we use the identity cos2 2ϕ =

(1 + cos 4ϕ)/2:
dN

dϕ
∝ 1 + 2v2(pt) cos 2ϕ+ (v2(pt))

2
(1 + cos 4ϕ). (20)

We finally evaluate v4(pt) as in Eq. (18) and we obtain, to leading order:

v4(pt) =
1

2
(v2(pt))

2
. (21)

This has been recently verified, see Fig. 5 of https://arxiv.org/pdf/2005.12217.pdf by the
HADES collaboration.


