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Hands-on session on:

Boosted thermal distributions

The final stage of the hydrodynamic evolution of a heavy-ion collision is an ideal gas of hadrons at
some freeze-out temperature, typically T ∼ 145 MeV, which is locally boosted by the velocity of
the fluid. The goal of these exercises is to study a few properties of boosted thermal distributions,
and see how much we can understand of anisotropic flow data from the LHC without going into
numerical calculations.

Ideal gas at rest

The momentum distribution of particles in an ideal gas at temperature T is given by Fermi-Dirac
or Bose-Einstein distributions, depending on whether their spin is half-integer or integer. For the
sake of simplicity, we use a Boltzmann distribution instead, which is a good approximation in
most cases. For each value of discrete quantum numbers (hadron species, spin projection Sz), the
phase-space density is

dN

d3xd3p
=

1

(2π)3
exp(−p0/T ),

where p0 =
√

p2 +m2 is the energy, and we use the natural system of units h̄ = c = kB = 1.

1. In the limit m ≪ T (set m to 0), integrate over p and obtain the density of particles per unit
volume dN/d3x as a function of T .

2. In the limit m ≫ T , specify the dependence of dN/d3x as a function of m and T , without
evaluating the numerical factors.

3. Experimentally, one measures yields per event of identified pions, kaons, protons, deuterons,
among other hadrons species. Which two would you pick in order to obtain a back-of-the-envelope
estimate of T , and how?

Boosted ideal gas

If the fluid has a velocity uµ, the distribution simply becomes:

dN

d3xd3p
=

1

(2π)3
exp(−pµuµ/T ),

where u0 =
√

1 + u2
x + u2

y + u2
z.

4. Determine for which value of p the distribution reaches its maximum. Interpret the result.

5. We choose the x axis as the direction of the fluid velocity, such that uy = uz = 0, and we use the
notation u ≡ ux. In the limit where T → 0, show that the components of momentum transverse to
the fluid velocity, py and pz, are small and Gaussian distributed. Integrate in order to obtain the

distribution of px. Introduce the notation mt ≡
√

m2 + p2x.

6. Which identified particles are best able to track the fluid velocity?



7. Simplify the result of question 5 for massless particles. Show that the probability distribution of
px does not depend on u and T separately, but only through a specific combination. Explain why
the m → 0 limit is special, using question 4 above as a guide.

8. Blast-wave fits are fits to transverse momentum spectra of identified particles using the boosted
ideal gas model, with parameters u and T . Which problem do you anticipate when trying to extract
u and T from pion spectra?

Anisotropic flow at low pt

9. We write px = pt cosϕ, py = pt sinϕ. Show that for a fluid moving in the x direction, the
distribution of ϕ for fixed pt has ϕ → −ϕ symmetry.

10. vn(pt) is then defined as the average value of cosnϕ. Determine how vn(pt) behaves as a
function of pt in the limit pt → 0.

Anisotropic flow at low temperature

11. We now consider the limit T → 0, where the particle momentum is parallel to the fluid velocity.
We assume that the sole dependence of the momentum distribution on ϕ comes from that of the
fluid velocity itself. If the fluid velocity has a cosnϕ modulation of the type u(ϕ) = 〈u〉+ ε cosnφ,
with ε ≪ 1, determine the corresponding vn(pt) to first order in ε, using the result of question 4.

Understanding LHC data

12. Below are data from the ALICE collaboration (arXiv:1606.06057) on v2(pt), v3(pt) and v4(pt)
for pions, kaons and protons in Pb+Pb collisions at

√
sNN = 2.76 TeV in the 10-20% centrality

window. Explain in detail what the results from questions 10 and 11 explain in these data. Point
out one feature which is in disagreement with this hydrodynamic model.
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13. In the case where the elliptic modulation, n = 2, dominates, evaluate v4(pt) to order ε2 along
the lines of question 11. Determine the value of v4(pt)/v2(pt)

2.

Hint : reexpress the ϕ distribution obtained in question 11 as a function of v2(pt).


