

DIS dijet production beyond eikonal accuracy

Arantxa Tymowska

for Heavy Ion collisions in the QCD phase diagram

06/07/2022

Work in progress in collaboration with Tolga Altinoluk, Guillaume Beuf and Alina Czajka

Arantxa Tymowska

GDR-QCD

06/07/2022

DIS in QCD

We have three Lorentz invariant quatities

- $q^2 = -Q^2$: virtuality of the incoming photon
- $x = \frac{Q^2}{2PQ}$: longitudinal momentum fraction carried by the parton
- $s \simeq 2PQ$: energy of the colliding system $s = \frac{Q^2}{x}$

Two different ways to go to high energies

- We take a fixed x and $Q^2 \rightarrow \infty$
- Density of partons decreases
- System becomes more dilute
- Evolution given by DGLAP

Regge-Gribov limit

- We take a fixed Q^2 and $x \to 0$
- Density of partons increases
- System becomes more dense
- Causes saturation

Color Glass Condensate (I)

- Regge-Gribov limit: $x \rightarrow 0$
- At small $x \rightarrow$ saturation
- In this regime we use the Color Glass Condensate to describe a scattering process

The interaction between projectile and the target: each parton coming from the projectile picks up a Wilson line during the interaction

$$\mathcal{U}_{R}(x) = \mathcal{P}_{+}exp[ig \int dx^{+}T_{R}^{a}A_{a}^{-}(x^{+},x_{\perp})]$$

CGC formalism used for dilute-dense scattering so we apply Semi-classical approximation

- Dense target: classical background field $A^{\mu}_{a}(x)$
- Dilute projectile: virtual photon treated in perturbation theory

CGC formalism used for dilute-dense scattering so we apply Semi-classical approximation

- Dense target: classical background field $A^{\mu}_{a}(x)$
- Dilute projectile: virtual photon treated in perturbation theory

We also adopt Eikonal approximation which amount to taking the high energy limit $s \to \infty$. Beyond eikonal limit give corrections of order 1/s. We can obtain this limit boosting the target in following way:

$$A^{\mu}_{a}(x) \rightarrow \begin{cases} \gamma_{t}A^{-}_{a}(\gamma_{t}x^{+}, \frac{1}{\gamma_{t}}x^{-}, x_{\perp}) \\ \frac{1}{\gamma_{t}}A^{+}_{a}(\gamma_{t}x^{+}, \frac{1}{\gamma_{t}}x^{-}, x_{\perp}) \\ A^{i}_{a}(\gamma_{t}x^{+}, \frac{1}{\gamma_{t}}x^{-}, x_{\perp}) \end{cases}$$

The Eikonal approximation is given by:

• $A^{\mu}_{a}(x) \propto \delta(x^{+})$

< A 1

표 문 문

The Eikonal approximation is given by:

•
$$A^{\mu}_{a}(x) \propto \delta(x^{+})$$

•
$$A^{\mu}_{a}(x) \simeq \delta^{\mu-} A^{-}_{a}(x)$$

Image: A matrix

표 문 문

The Eikonal approximation is given by:

- $A^{\mu}_{a}(x) \propto \delta(x^{+})$
- $A^{\mu}_{a}(x) \simeq \delta^{\mu-}A^{-}_{a}(x)$
- $A^{\mu}_{a}(x) \simeq A^{\mu}_{a}(x^{+}, \vec{x})$

47 ▶

э

The Eikonal approximation is given by:

- $A^{\mu}_{a}(x) \propto \delta(x^{+})$
- $A^{\mu}_a(x) \simeq \delta^{\mu-} A^-_a(x)$
- $A^{\mu}_{a}(x) \simeq A^{\mu}_{a}(x^{+}, \vec{x})$

In order to get the full next-to eikonal corrections we include:

• Target with finite width: transverse motion of the parton within the medium

The Eikonal approximation is given by:

- $A^{\mu}_{a}(x) \propto \delta(x^{+})$
- $A^{\mu}_{a}(x) \simeq \delta^{\mu-}A^{-}_{a}(x)$
- $A^{\mu}_{a}(x)\simeq A^{\mu}_{a}(x^{+},\vec{x})$

In order to get the full next-to eikonal corrections we include:

- Target with finite width: transverse motion of the parton within the medium
- Interactions with the perpendicular component of the field T. Altinoluk, G. Beuf. A.Czajka, A.Tymowska (2021) [arXiv:2012.03886] see also G.A.Chirilli [arXiv:1807.11435], [arxiv:2101.12744]

The Eikonal approximation is given by:

- $A^{\mu}_{a}(x) \propto \delta(x^{+})$
- $A^{\mu}_{a}(x) \simeq \delta^{\mu-}A^{-}_{a}(x)$
- $A^{\mu}_{a}(x)\simeq A^{\mu}_{a}(x^{+},\vec{x})$

In order to get the full next-to eikonal corrections we include:

- Target with finite width: transverse motion of the parton within the medium
- Interactions with the perpendicular component of the field T. Altinoluk, G. Beuf. A.Czajka, A.Tymowska (2021) [arXiv:2012.03886] see also G.A.Chirilli [arXiv:1807.11435], [arxiv:2101.12744]
- Taking into account x⁻ -dependence
 T. Altinoluk, G. Beuf (2021) [arXiv:2109.01620]

We want to calculate DIS dijet production at next-to eikonal order for the inclusive case

The process will be one of the focus for future EIC experiments.

Lower energies at EIC compared to LHC \rightarrow NEik corrections

Diagrams for DIS dijet production at NEik

We need contributions from photon splitting into quark-antiquark pair First diagrams contributes at both eikonal and next-to eikonal order

Second diagram contributes only at next-to eikonal order and vanishes when taking the longitudinal polarization of the photon.

Quark propagator at NEik order

The quark propagator through the whole medium is given by:

$$\begin{split} S_{F}(x,y) &= \int \frac{d^{3}\underline{p}}{(2\pi)^{3}} \int \frac{d^{3}\underline{k}}{(2\pi)^{3}} \theta(p^{+})\theta(k^{+})e^{-ix\cdot\bar{p}} e^{iy\cdot\bar{k}} \int dz^{-}e^{iz^{-}(p^{+}-k^{+})} \int d^{2}z \, e^{-iz\cdot(p-k)} \times \frac{(\bar{p}+m)}{2p^{+}} \gamma^{+} \left\{ \mathcal{U}_{F}\left(\frac{L^{+}}{2},-\frac{L^{+}}{2};z,z^{-}\right) \right. \\ &\left. -\frac{(p^{j}+k^{j})}{2(p^{+}+k^{+})} \int_{-\frac{L^{+}}{2}}^{\frac{L^{+}}{2}} dz^{+} \left[\mathcal{U}_{F}\left(\frac{L^{+}}{2},z^{+};z,z^{-}\right) \overleftarrow{\mathcal{D}}_{z^{j}} \overleftarrow{\mathcal{U}}_{F}\left(z^{+},-\frac{L^{+}}{2};z,z^{-}\right) \right] \\ &\left. -\frac{i}{(p^{+}+k^{+})} \int_{-\frac{L^{+}}{2}}^{\frac{L^{+}}{2}} dz^{+} \left[\mathcal{U}_{F}\left(\frac{L^{+}}{2},z^{+};z,z^{-}\right) \overleftarrow{\mathcal{D}}_{z^{j}} \overrightarrow{\mathcal{D}}_{z^{j}} \mathcal{U}_{F}\left(z^{+},-\frac{L^{+}}{2};z,z^{-}\right) \right] \\ &\left. +\frac{[\gamma^{i},\gamma^{j}]}{4(p^{+}+k^{+})} \int_{-\frac{L^{+}}{2}}^{\frac{L^{+}}{2}} dz^{+} \mathcal{U}_{F}\left(\frac{L^{+}}{2},z^{+};z,z^{-}\right) gt \cdot \mathcal{F}_{ij}(z) \mathcal{U}_{F}\left(z^{+},-\frac{L^{+}}{2};z,z^{-}\right) \right\} \frac{(\check{k}+m)}{2k^{+}} \end{split}$$

06/07/2022

-477 ▶

э

LSZ reduction formula

 $S\mbox{-matrix}$ element for the virtual photon splitting into a quark-antiquark pair is

$$S_{q_1\bar{q}_2\leftarrow\gamma*} = -iee_f \frac{Q}{q^+} g^+_{\mu} \lim_{x^+,y^+\to\infty} \int d^2 x \int dx^- \int d^2 y \int dy^- \int d^4 z$$

 $\times e^{-iq\cdot z} e^{ik_1\cdot x} e^{ik_2\cdot y} \bar{u}(1)\gamma^+ S_F(x,z)_{\beta\alpha}(-\gamma^{\mu}) S_F(z,y)_{\alpha\delta}\gamma^+ v(2)$

Amplitudes

We can write the amplitude divided in two contributions.

First the generalized Eikonal contribution where we don't have momentum conservation compared to Eikonal because of common b^- in the Wilson lines

$$\begin{split} \mathcal{S}_{q_{1}\tilde{q}_{2}\leftarrow\gamma*}^{\mathrm{L-Eik}} &= -\frac{ee_{f}Q}{2\pi} \delta_{h_{2},-h_{1}} \theta \Big(q^{+}+k_{1}^{+}-k_{2}^{+}\Big) \theta \Big(q^{+}-k_{1}^{+}+k_{2}^{+}\Big) \int db^{-} e^{ib^{-}(k_{1}^{+}+k_{2}^{+}-q^{+})} \\ &\times \int_{\mathsf{v},\mathsf{w}} e^{-i\mathsf{v}\cdot\mathsf{k}_{1}} e^{-i\mathsf{w}\cdot\mathsf{k}_{2}} \frac{\sqrt{k_{1}^{+}k_{2}^{+}}}{(q^{+})^{2}} (q^{+}+k_{1}^{+}-k_{2}^{+}) (q^{+}-k_{1}^{+}+k_{2}^{+}) \mathcal{K}_{0}(\hat{Q}|\mathsf{v}-\mathsf{w}|) \Big(\mathcal{U}_{F}(\mathsf{v},b^{-})\mathcal{U}_{F}^{\dagger}(\mathsf{w},b^{-})-1\Big) \end{split}$$

where we have

$$\hat{Q} = \sqrt{m^2 + Q^2 rac{(q^+ + k_1^+ - k_2^+)(q^+ - k_1^+ + k_2^+)}{4(q^+)^2}}$$
 $ar{Q} = \sqrt{m^2 + Q^2 rac{k_1^+ k_2^+}{(q^+)^2}}$

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Amplitudes

$$\begin{split} &i\mathcal{M}_{\mathbf{q},\mathbf{q}_{2}-\gamma:\mathbf{k}}^{\mathrm{L-NElk}} = -\frac{iee_{f}}{2\pi} \delta_{h_{2},-h_{1}} 2\pi \delta(k_{2}^{+}+k_{1}^{+}-q^{+}) \theta(k_{1}^{+}) \theta(k_{2}^{+}) \int d^{2}\mathbf{v} \int d^{2}\mathbf{w} \ e^{-i\mathbf{v}\cdot\mathbf{k}_{1}} \ e^{-i\mathbf{w}\cdot\mathbf{k}_{2}} \ \frac{4\sqrt{k_{1}^{+}k_{2}^{+}}k_{1}^{+}k_{2}^{+}}{(k_{1}^{+}+k_{2}^{+})^{2}} \\ &\times \left\{ K_{0}(\bar{Q}|\mathbf{w}-\mathbf{v}|) \right. \\ &\times \left[\frac{1}{2k_{1}^{+}} \int_{-\frac{L^{+}}{2}}^{\frac{L^{+}}{2}} d\mathbf{v}^{+} \mathcal{U}_{F}\left(\frac{L^{+}}{2},\mathbf{v}^{+};\mathbf{v}\right) \left(-ih_{1}\epsilon^{ij}g\mathbf{t} \cdot \mathcal{F}_{ij}(\mathbf{v}) - \frac{k_{1}^{i}}{2} \overrightarrow{\mathcal{D}_{u'}} \overrightarrow{\mathcal{D}_{u'}} \right) \mathcal{U}_{F}\left(\mathbf{v}^{+}, -\frac{L^{+}}{2};\mathbf{v}\right) \mathcal{U}_{F}^{\dagger}(\mathbf{w}) \\ &+ \frac{1}{2k_{2}^{+}} \int_{-\frac{L^{+}}{2}}^{\frac{L^{+}}{2}} d\mathbf{w}^{+} \mathcal{U}_{F}(\mathbf{v}) \mathcal{U}_{F}^{\dagger}\left(\mathbf{w}^{+}, -\frac{L^{+}}{2};\mathbf{w}\right) \left(-ih_{1}\epsilon^{ij}g\mathbf{t} \cdot \mathcal{F}_{ij}(\mathbf{w}) + \frac{k_{2}^{i}}{2} \overrightarrow{\mathcal{D}_{u'}} - i\overrightarrow{\mathcal{D}_{u'}} \overrightarrow{\mathcal{D}_{u'}} \right) \mathcal{U}_{F}^{\dagger}\left(\frac{L^{+}}{2}, \mathbf{w}^{+};\mathbf{w}\right) \right] \\ &+ \frac{i}{2} \frac{w^{j} - v^{j}}{|\mathbf{w} - \mathbf{v}|} \left[\vec{Q}K_{1}(\bar{Q}|\mathbf{w} - \mathbf{v}|) \right. \\ &\times \left[\frac{1}{2k_{1}^{+}} \int_{-\frac{L^{+}}{2}}^{\frac{L^{+}}{2}} d\mathbf{w}^{+} \mathcal{U}_{F}\left(\frac{L^{+}}{2}, \mathbf{v}^{+};\mathbf{v}\right) \overrightarrow{\mathcal{D}_{u'}} \mathcal{U}_{F}\left(\mathbf{v}^{+}, -\frac{L^{+}}{2};\mathbf{v}\right) \mathcal{U}_{F}^{\dagger}(\mathbf{w}) \\ &+ \frac{1}{2k_{2}^{+}} \int_{-\frac{L^{+}}{2}}^{\frac{L^{+}}{2}} d\mathbf{w}^{+} \mathcal{U}_{F}(\mathbf{v}) \mathcal{U}_{F}^{\dagger}\left(\mathbf{w}^{+}, -\frac{L^{+}}{2};\mathbf{w}\right) \overrightarrow{\mathcal{D}_{u'}} \mathcal{U}_{F}^{\dagger}\left(\frac{L^{+}}{2}, \mathbf{w}^{+};\mathbf{w}\right) \right] \right\} \end{aligned}$$

$$\begin{split} &i\mathcal{M}_{q_{1}\bar{q}_{2}\leftarrow\gamma*}^{L-Elk-corr} = -\frac{iee_{f}}{2\pi}\hat{Q}_{h_{2},-h_{1}}2\pi\delta(k_{1}^{+}+k_{2}^{+}-q^{+})\theta(k_{1}^{+})\theta(k_{2}^{+}) \\ &\times \int d^{2}v\int d^{2}w \, e^{-iv\cdot k_{1}} \, e^{-iw\cdot k_{2}} \, \frac{2\sqrt{k_{1}^{+}k_{2}^{+}}}{(q^{+})^{2}}(k_{2}^{+}-k_{1}^{+}) \\ &\times \left[K_{0}(\bar{Q}|w-v|) - 2k_{1}^{+}k_{2}^{+} \frac{Q^{2}|w-v|}{(q^{+})^{2}}K_{1}(\bar{Q}|w-v|)\right] \left(\mathcal{U}_{F}(v,b^{-})\overleftarrow{\partial_{-}}\mathcal{U}_{F}^{\dagger}(w,b^{-})\right)\Big|_{b^{-}=0} \end{split}$$

Arantxa Tymowska

э.

Amplitude for transverse polarization

$$\begin{split} &i\mathcal{M}_{q_{1}\bar{q}_{2}\leftarrow\gamma*}^{\mathrm{T-Eik-Gen}} = -\frac{iee_{f}\,\epsilon_{\lambda}^{n}}{2\pi}\theta(q^{+}+k_{1}^{+}-k_{2}^{+})\theta(q^{+}-k_{1}^{+}+k_{2}^{+})\int\,db^{-}e^{ib^{-}(k_{1}^{+}+k_{2}^{+}-q^{+})}\int_{v,w}e^{-iv\cdot\mathbf{k}_{1}}\,e^{-iw\cdot\mathbf{k}_{2}}\\ &\frac{i}{2q^{+}}\bar{u}(1)\gamma^{+}\Big[2\gamma^{n}mq^{+}\mathcal{K}_{0}(\hat{Q}|w-v|) - \Big(4ih_{1}\epsilon^{mn}q^{+}-2\delta^{mn}(k_{1}^{+}-k_{2}^{+})\Big)\frac{i\hat{Q}(w^{m}-v^{m})}{|w-v|}\mathcal{K}_{1}(\hat{Q}|w-v|)\Big]\\ &\times\Big(\mathcal{U}_{F}(v,b^{-})\mathcal{U}_{F}^{\dagger}(w,b^{-}) - 1\Big)v(2) \end{split}$$

with

$$\begin{split} \hat{Q} &= \sqrt{m^2 + Q^2} \frac{(q^+ + k_1^+ - k_2^+)(q^+ - k_1^+ + k_2^+)}{4(q^+)^2} \\ & \epsilon_T^+ = 0 \\ & \epsilon_T^- = -\frac{q^k}{q^+} \epsilon_\lambda^k = 0 \\ & \epsilon_T^k = -\epsilon_\lambda^k \end{split}$$

Image: A matrix and a matrix

æ

Amplitude for transverse polarization: NEik corrections

$$\begin{split} i\mathcal{M}_{q_{1}q_{2}=\gamma^{*}}^{\text{hessel}-T-NElk} &= \frac{ee_{f} \, \epsilon_{\lambda}^{N}}{2\pi} \theta(k_{1}^{+}) \theta(k_{2}^{+}) 2\pi \delta(k_{1}^{+}+k_{2}^{+}-q^{+}) \int d^{2}v \int d^{2}w \, e^{-iv \cdot k_{1}} \, e^{-iw \cdot k_{2}} \, \bar{u}(1)\gamma^{+} \\ &\times \left\{ \left[\gamma^{n} m K_{0}(\bar{Q}|w-v|) - \left(2ih_{1}\epsilon^{mn} - \delta^{mn} \frac{(k_{1}^{+}-k_{2}^{+})}{q^{+}}\right) \frac{i\bar{Q}(w^{m}-v^{m})}{|w-v|} \, K_{1}(\bar{Q}|w-v|) \right] \right. \\ &\times \left[\frac{1}{2k_{1}^{+}} \int_{-\frac{t^{+}}{2}}^{\frac{t^{+}}{2}} dv^{+} \mathcal{U}_{F}\left(\frac{L^{+}}{2},v^{+};v\right) \\ &\times \left(-ih_{1}\epsilon^{i}\bar{g}t \cdot \mathcal{F}_{ij}(v) - \frac{k_{1}^{i}}{2} \widehat{\mathcal{D}}_{vi}^{-} - i\widehat{\mathcal{D}}_{vi}^{-} \widehat{\mathcal{D}}_{vi}^{-} \right) \mathcal{U}_{F}\left(v^{+}, -\frac{L^{+}}{2};v\right) \mathcal{U}_{F}^{\dagger}(w) \\ &+ \frac{1}{2k_{2}^{+}} \int_{-\frac{t^{+}}{2}}^{\frac{t^{+}}{2}} dw^{+} \mathcal{U}_{F}(v) \mathcal{U}_{F}^{\dagger}\left(w^{+}, -\frac{L^{+}}{2};w\right) \\ &\times \left(ih_{2}\epsilon^{ij}gt \cdot \mathcal{F}_{ij}(w) + \frac{k_{2}^{i}}{2} \widehat{\mathcal{D}}_{wi}^{-} - i\widehat{\mathcal{D}}_{wi}^{-} \widehat{\mathcal{D}}_{wi}^{-} \right) \mathcal{U}_{F}^{\dagger}\left(\frac{L^{+}}{2}, w^{+};w\right) \right] \\ &+ \left[\frac{i\bar{Q}(w^{i}-v^{i})}{(2|w-v|} \, K_{1}(\bar{Q}|w-v|)\gamma^{n} m \right. \\ &- \frac{1}{2} \left(2ih_{1}\epsilon^{mn} - \delta^{mn} \frac{(k_{1}^{+}-k_{2}^{+})}{q^{+}} \right) \left(\frac{\bar{Q}}{|w-v|} \left(\delta^{mj} - \frac{2(w^{m}-v^{m})(w^{j}-v^{j})}{(w-v)^{2}} \right) \mathcal{K}_{1}(\bar{Q}|w-v|) \right) \\ &- \frac{\bar{Q}^{2}(w^{m}-v^{m})(w^{j}-v^{j})}{(w-v)^{2}} \mathcal{K}_{0}(\bar{Q}|w-v|) \right) \right] \\ &\times \left[\frac{1}{2k_{1}^{+}} \int_{-\frac{t^{+}}{2}}^{\frac{t^{+}}{2}} dw^{+} \mathcal{U}_{F}\left(\frac{L^{+}}{2},v^{+};v\right) \widehat{\mathcal{D}}_{w}^{-} \mathcal{U}_{F}\left(v^{+}, -\frac{L^{+}}{2};v\right) \mathcal{U}_{F}^{\dagger}(w) \\ &+ \frac{1}{2k_{2}^{+}} \int_{-\frac{t^{+}}{2}}^{\frac{t^{+}}{2}} dw^{+} \mathcal{U}_{F}(v) \mathcal{U}_{F}^{\dagger}\left(w^{+}, -\frac{L^{+}}{2};w\right) \widehat{\mathcal{D}}_{w}^{-} \mathcal{U}_{F}\left(\frac{L^{+}}{2},w^{+};w\right) \right] \right\} v(2) \end{aligned}$$

Arantxa Tymowska

06/07/2022

3

Amplitude for transverse polarization: NEik corrections

$$\begin{split} &i\mathcal{M}_{q_{1}\bar{q}_{2}\leftarrow\gamma*}^{\text{bef}} = -iee_{f}\,\epsilon_{\lambda}^{n}\theta(k_{1}^{+})\theta(k_{2}^{+})2\pi\delta(k_{1}^{+}+k_{2}^{+}-q^{+})\frac{L^{+}}{2}\frac{(-i)}{4k_{1}^{+}k_{2}^{+}} \\ &\times\int d^{2}ve^{-iv\cdot(k_{1}+k_{2})}\bar{u}(1)\gamma^{+}v(2)\Big[2ih_{1}\epsilon^{mn}(k_{1}^{+}+k_{2}^{+})-\delta^{mn}(k_{1}^{+}-k_{2}^{+})\Big]\Big(\mathcal{U}_{F}(v)\overleftrightarrow{\partial_{v^{m}}}\mathcal{U}_{F}^{\dagger}(v)\Big) \end{split}$$

$$\begin{split} &i\mathcal{M}_{q_{1}\dot{q}_{2}\leftarrow\gamma*}^{\mathrm{bef}-\mathrm{T-Eik-corr}} = -\frac{iee_{f}}{2\pi}\theta(q^{+}+k_{1}^{+}-k_{2}^{+})\theta(q^{+}-k_{1}^{+}+k_{2}^{+})\int db^{-}e^{ib^{-}(k_{1}^{+}+k_{2}^{+}-q^{+})} \\ &\times\int d^{2}\mathsf{v}\int d^{2}\mathsf{w}\,e^{-i\mathsf{v}\cdot\mathsf{k}_{1}}\,e^{-i\mathsf{w}\cdot\mathsf{k}_{2}}\,\frac{i}{2q^{+}}\bar{u}(1)\gamma^{+}\bigg\{\bigg[i\gamma^{n}mq^{+}(k_{1}^{+}-k_{2}^{+})\frac{2Q^{2}}{(q^{+})^{2}}|\mathsf{v}-\mathsf{w}|\mathcal{K}_{1}(\hat{Q}|\mathsf{v}-\mathsf{w}|) \\ &+2\frac{(\mathsf{v}^{n}-\mathsf{w}^{n})}{|\mathsf{v}-\mathsf{w}|}\hat{Q}\mathcal{K}_{1}(\hat{Q}|\mathsf{v}-\mathsf{w}|) - \Big(2ih_{1}\epsilon^{mn}q^{+}-\delta^{mn}(k_{1}^{+}-k_{2}^{+})\Big)(\mathsf{v}^{m}-\mathsf{w}^{m})\frac{Q^{2}(k_{1}^{+}-k_{2}^{+})}{2(q^{+})^{2}}\mathcal{K}_{0}(\hat{Q}|\mathsf{v}-\mathsf{w}|)\bigg] \\ &\times\mathcal{U}_{F}(\mathsf{v},b^{-})\overleftarrow{\partial}\mathcal{U}_{F}^{\dagger}(\mathsf{w},b^{-})\bigg\}_{\delta\beta}\mathsf{v}(2) \end{split}$$

$$\begin{split} i\mathcal{M}_{q_{1}\bar{q}_{2}\leftarrow\gamma*}^{T(in)} &= -ee_{f}\,\epsilon_{\lambda}^{n}(q)\theta(k_{1}^{+})\theta(k_{2}^{+})2\pi\delta(k_{1}^{+}+k_{2}^{+}-q^{+})\int d^{2}z\int_{-L^{+}/2}^{L^{+}/2}dz^{+}e^{-iz\cdot(k_{1}+k_{2})}e^{-iz^{+}(q^{-}-k_{1}^{-}-k_{2}^{-})} \\ &\times 2\sqrt{k_{1}^{+}k_{2}^{+}}\delta_{h_{1},-h_{2}}\left\{\mathcal{U}_{F}\left(\frac{L^{+}}{2},z^{+};z\right)\left(2i\epsilon^{in}\left(h_{1}\frac{\overleftarrow{D}_{z^{i}}}{2k_{1}^{+}}+h_{2}\frac{\overrightarrow{D}_{z^{i}}}{2k_{2}^{+}}\right)+\left(\frac{\overleftarrow{D}_{z^{n}}}{2k_{1}^{+}}+\frac{\overrightarrow{D}_{z^{n}}}{2k_{2}^{+}}\right)\right)\mathcal{U}_{F}^{\dagger}\left(\frac{L^{+}}{2},z^{+};z\right)\right\} \end{split}$$

Arantxa Tymowska

Image: A matrix of the second seco

포 문 문

Outlook

- We computed the amplitudes for the case of photon longitudinal and transverse polarization for DIS dijet production at full NEik order from the gluon background field
- Next-to eikonal corrections include:
 - $\bullet~$ Relaxing the shockwave approximation \rightarrow transverse motion through the target
 - Including interactions with transverse component of the background field
 - Taking into account z^- -dependence \rightarrow effects of longitudinal momentum exchange with the target
- Computation of the cross section for longitudinal and transverse polarization of the photon (in progress)
- NEik effect from the quark background field not yet included

Thank you for your attention