

Intermediate mass dileptons as pre-equilibrium probes in heavy ion collisions

Maurice Coquet, HIC School 2022, IMT Atlantique Nantes

MC, Xiaojian Du, Jean-Yves Ollitrault, Sören Schlichting, Michael Winn

Phys.Lett.B 821 (2021) 136626 arXiv:2112.13876

Space-time evolution of heavy-ion collisions

- A+A collisions: different time scales described by different effective theories
- Late stages very accurately modeled by hydrodynamic descriptions of expanding near-equilibrium QGP
- A challenge : matching between far-fromequilibrium initial state and hydrodynamics

M.Strickland, Acta Physica Polonica B 45, 2355 (2014)

Dilepton production as a probe

- \bullet Electromagnetic interactions with the QGP have a small cross section
- Produced throughout the history of the collision
- \rightarrow probe entire space-time dynamics
- Dilepton carry extra information $\ :$ invariant mass \rightarrow not affected by blue-shift
- → Intermediate mass region (M > 1.5 GeV/c²)
 → <u>Characterized by quarks and gluons degrees</u> of freedom
- High mass \leftrightarrow High T \leftrightarrow early times

$$\frac{dN}{d^4x dM} \propto (MT)^{3/2} \exp\left(-\frac{M}{T}\right)$$

→ Highly sensitive to early-times/pre-equilibrium emission

The ideal spectrum: M_t scaling

• At LO, production by quark-antiquark annihilation :

$$\frac{dN^{l^+l^-}}{d^4xd^4K} = \int \frac{d^3p_1}{(2\pi)^3 2p_1} \frac{d^3p_2}{(2\pi)^3 2p_2} f_q(x,\mathbf{p}_1) f_{\bar{q}}(x,\mathbf{p}_2) |\mathcal{A}|^2 (2\pi)^4 \delta^{(4)}(P_1+P_2-K),$$

- Thermal dileptons from QGP dominate invariant mass spectrum for $M\gtrsim 1.5~GeV/c^2$

Start by considering local thermal equilibrium (LTE):

• Assuming <u>boost invariance</u> of the expanding QGP at early times, <u>neglecting transverse flow</u>, production rate **depends only on transverse mass** M_t :

$$\frac{dN^{l^+l^-}}{d^4K} = C \int d\mathbf{x}_{\perp} \int_0^\infty \tau d\tau \int_{-\infty}^{+\infty} dy_f \exp\left(-\frac{M_t \cosh(y-y_f)}{T(\mathbf{x}_{\perp},\tau)}\right)$$

• Further assuming conformal equation of state and uniform temperature profile in transverse plane, one finds the McLerran-Tomeila formula :

$$\left(\frac{dN^{l^+l^-}}{d^4K}\right)_{\rm ideal} = \frac{32N_c\alpha^2\sum_f q_f^2}{\pi^4} \frac{A_{\perp}(\tau T^3)^2}{M_t^6}$$

L. D. McLerran and T. Toimela, Phys. Rev. D31(1985), 545

 \rightarrow How pre-equilibrium effects manifest themselves in the spectra of dileptons ~?

Features of pre-equilibrium: pressure asymmetry

• At early times, rapid longitudinal expansion $\rightarrow P_L << P_T$

→ momentum anisotropy which **breaks** M_t scaling, favoring small masses for a given M_t value

• Local pressure isotropy occurs at late times, but applicability of viscous hydro can happen before $\rightarrow \tau_{hydro} << \tau_{eq}$

Features of pre-equilibrium: quark suppression

- Initial state theories predict a gluon-dominated medium at early times
 - \rightarrow quark suppression factor, defined as the ratio between quark and gluon energy density $\,:\,$

$$q_s(\tau) \propto \frac{e^{(q)}}{e^{(g)}} \left(T(\tau) \right)$$

- Transition of <u>highly gluon-dominated system</u> towards a chemically equilibrated medium
- Quark suppression implies suppression of dilepton production, which is a global factor \rightarrow preserving M_t scaling

X. Du, S. Schlichting: Phys. Rev. D 104, 054011 (2021) Phys. Rev. Lett. 127, 122301 (2021)

→ Calculated in the weak coupling regime with QCD kinetics

Out-of-equilibrium quark distributions

Distribution for quarks anisotropic in momentum space :

$$f_q(\tau, p_T, p_L) = q_s(\tau) f_{FD} \left(-\sqrt{p_T^2 + \xi^2(\tau) p_L^2 / \Lambda(\tau)} \right)$$

 \rightarrow Depend on Λ (anisotropic effective temperature), anisotropy parameter ξ calculated w/ P_{I} /e, and quark suppression factor q_{s}

 \rightarrow **Universality in pre-equilibrium** dynamics (attractor solutions) \rightarrow Can choose a specific calculation to constrain pre-equilibrium dynamics

Results: mass spectra

• Yields can be fitted by the formula :

 $\frac{dN^{l_+l_-}}{dMdy} = C\left(1 + \frac{M}{nT_0}\right)^{-n}$

with C = 0.5 GeV $^{\text{-1}}$ T $_{\text{0}}$ = 0.2 GeV and $n\simeq 5.3\left(1+4\frac{\eta}{s}\right)$

- $\eta/s \text{ is not}$ the viscosity in the hydro regime, controls **time scale of applicability of hydro**
- larger $\eta/s \rightarrow$ later thermalization \rightarrow temperature starts decreasing as $\tau^{\cdot 1/3}$ later on \rightarrow lower initial temperature for fixed final energy density
- Drell-Yan process calculated at NLO dominates dilepton production at high mass
- Very sensitive to quark suppression
 →access to early-stage chemistry

Estimating the transverse fluctuations

→ Modelling of event-by-event fluctuations (hot spots) using a TMD-Glauber model : parametrization of gluon distributions in nucleons + Glauber→ parameters tuned to reproduce ALICE data for $dN_{ch}/d\eta$

$$\frac{dN_g}{d^2\mathbf{b}d^2\mathbf{P}dy} = \frac{\alpha_s N_c}{\pi^4 \mathbf{P}^2 (N_c^2 - 1)} \int \frac{d^2\mathbf{k}}{(2\pi)^2} \, \Phi_A(x, \mathbf{b} + \mathbf{b}_0/2, \mathbf{k}) \, \Phi_B(x, \mathbf{b} - \mathbf{b}_0/2, \mathbf{P} - \mathbf{k})$$

 Important for large invariant mass region in more peripheral events

T. Lappi and S. Schlichting, Phys. Rev. D 97 (2018) no.3, 034034 S. Schlichting, X. Du, private communication

Results : M_t spectra

- Breaking of M_t scaling due to momentum anisotropy, favoring small masses for a given M_t value, is modest, compared to overall suppression of production yield due to quark suppression
- Spectra well fitted by the following formula :

$$\frac{dN^{l^+l^-}}{d^4K} \simeq \left(\frac{dN^{l^+l^-}}{d^4K}\right)_{\rm ideal} \frac{\left(1 + a\frac{\eta}{s}M_t^2/n\right)^{-n}}{\sqrt{1 + b\frac{\eta}{s}M^2}}$$

$$\begin{split} &a: M_t \text{ dependent suppression of the production, } b: breaking of M_t \text{ scaling} \\ &\rightarrow \text{ corrections to ideal yield linear in } \eta/s \text{ for small } \eta/s. \\ &\rightarrow \sim 1/M \text{ for large } \eta/s, \text{ showing breaking of } M_t \text{ scaling.} \end{split}$$

- Inverse slope of the $M_{_{\scriptscriptstyle t}}$ spectrum \rightarrow effective temperature $\,:\,$

$$T_{\rm eff}(M_t) \equiv -\left[\frac{d}{dM_t}\ln\left(\frac{dN^{l^+l^-}}{d^4K}\right)\right]^{-1} \quad \to \quad T_{\rm eff}(M_t) \simeq \frac{M_t}{6 + 2a\frac{\eta}{s}M_t^2}$$

• Drell-Yan dominates spectrum at high $M_t \rightarrow DY$ enhanced for larger values of M at fixed M_t , **opposite behavior to QGP emission**.

Backgrounds & scalings

- Main backgrounds in intermediate mass region : → semileptonic decays of heavy flavours (rejectable based on displacement from primary vertex)
 - \rightarrow Drell-Yan production in the initial state.
- Drell-Yan contribution calculated using DYTurbo software, evaluated at NLO with resummed NLL (+Sudakov form factor includes non-perturbative contribution)

Scaling properties

- System size/centrality: Ideal spectrum scales with system size like $(dN_{\rm ch}/d\eta)^{4/3}$
 - \rightarrow scales like space-time volume

 \to pre-equilibrium effects (a & b parameters) scale like $(dN_{\rm ch}/d\eta)^{\,{}_{-1/3}}$ (up to event by event fluct.)

<u>Collision energy</u>: Ideal spectrum scales with $\sqrt{s_{NN}}$ like $(dN_{ch}/d\eta)^2$

 \rightarrow pre-equilibrium effects scale like (dN $_{\rm ch}/d\eta$) $^{\mbox{\tiny -1}}$

Conclusion

- Dilepton spectrum gives access to η/s that controls the equilibration time (→ can be inferred by measuring the slope), as well as earlystage chemistry
- Distinguish experimentally QGP production from Drell-Yan production by studying variation of yield as a function of M at fixed M_t
- Our calculation : neglected transverse flow, sizeable effect for $\tau_{\rm T}$ > 5 fm/c. Estimated fraction of dilepton yield emitted after $\tau_{\rm T}$: for M_t =2 GeV 25% of spectrum, for M_t =3 GeV only 4% of the spectrum is late emission.

Thank you !

Backup

Results: time decomposition

- Since η /s controls time scale for applicability of hydrodynamics; depending on value of η /s considerable contributions from pre-equilibrium regime (w<1)
- \rightarrow larger viscosity \rightarrow later thermalization \rightarrow more contribution from pre-equilibrium

Pre-equilibrium dynamics

Effects of pre-equilibrium dynamics :

- Quarks are underpopulated relative to gluons at early times
- Momentum distributions of quarks and gluons are anisotropic (rapid longitudinal expansion)
- \rightarrow Encapsulated in parametrization of the quark distribution:

Strickland PRD 92, 025026 (2015), PRD 99 3, 034015 (2019)

$$f_q(\tau, p_T, p_L) = q_s(\tau) f_{FD} \left(-\sqrt{p_T^2 + \xi^2(\tau) p_L^2} / \Lambda(\tau) \right)$$

 \boldsymbol{q}_s : quark suppression factor, $\boldsymbol{\xi}$: anisotropy parameter, $\boldsymbol{\Lambda}$: anisotropic temperature

→ Evolution of parameters computed in QCD kinetics (X.Du Poster Session 1 T01) X. Du, S. Schlichting: PRD 104, 054011 (2021)

Pt

Pz

thermal

Pt

Pz

pre-equilibrium

Deviation from LTE calculation, more pronounced at high mass (\leftrightarrow early times \leftrightarrow fewer quarks). Relative suppression scales like :

$$Re^{-1}(M_t) \equiv \frac{\eta}{s} \frac{M_t^2}{\tau T^3}$$

 η/s : early time shear to entropy density ratio \rightarrow departure from local thermal equilibrium

• Fast longitudinal expansion \rightarrow pressure asymmetry \rightarrow momentum anisotropy which **breaks** M_t scaling, favoring small masses for a given M_t value

Pre-equilibrium dynamics

- Universality in pre-equilibrium dynamics (attractor solutions)
 - \rightarrow Can choose a specific calculation (QCD kinetics) to determine evolution of energy density and constrain pre-equilibrium dynamics
- For this, need final condition at late times (w>>1):

$$\frac{e(\tau)\tau^{4/3}}{e_{hydro}\tau_{hydro}^{4/3}} = \mathcal{E}(\tilde{w})$$

Giacalone, Mazeliauskas, Schlichting, Ph ys. Rev. Lett. 123, 262301 (2019)

$$e(\tau) \equiv \frac{\pi^2}{30} \nu_{\text{eff}} T_{\text{eff}}^4(\tau)$$

• Fixed by charged particle multiplicity in the final state \rightarrow final state entropy density $\frac{dS}{dN} \propto \frac{dN_{ch}}{dN} \approx 1900$

 $\frac{d \eta}{d \eta} \frac{d \eta}{d \eta} \approx 1900$ (For η =2 at 5.02 TeV)

Background suppression with LHCb

 \rightarrow Dominant background for intermediate mass dileptons in heavy ion collisions at 5.02 TeV : semileptonic decay of charm and beauty. ℓ^+

Rejection of background:

- \rightarrow impact parameter of the single-track muons
- \rightarrow longitudinal displacement of the secondary vertex
- LHCb upgrade 2 setup for heavy ion collisions would provide appropriate secondary vertexing

TMD-Glauber model T. Lappi and S. Schlichting, Phys. Rev. D 97 (2018) no.3, 034034 S. Schlichting, X. Du, private communication

• K_{T} factorization for gluon number density is assumed :

$$\frac{dN_g}{d^2\mathbf{b}d^2\mathbf{P}dy} = \frac{\alpha_s N_c}{\pi^4 \mathbf{P}^2 (N_c^2 - 1)} \int \frac{d^2\mathbf{k}}{(2\pi)^2} \, \Phi_A(x, \mathbf{b} + \mathbf{b}_0/2, \mathbf{k}) \, \Phi_B(x, \mathbf{b} - \mathbf{b}_0/2, \mathbf{P} - \mathbf{k})$$

- The gluon distributions are assumed to be adjoint dipole distribution and the GBW saturation model is used : $\Phi_{A,B}(x, \mathbf{b}, \mathbf{k}) = 4\pi^2 \frac{(N_c^2 - 1)}{N_c} \frac{\mathbf{k}^2}{Q_{s,A,B}^2(x, \mathbf{b})} \exp\left\{-\frac{\mathbf{k}^2}{Q_{s,A,B}^2(x, \mathbf{b})}\right\}$ With : $Q_{s,A,B}^2(x_{A,B}, \mathbf{b}) = Q_{s,p}^2(x_{A,B})\sigma_0 T_{A,B}(\mathbf{b})$ And $Q_{s,p,avg}^2 \approx \sqrt{s_{NN}} x_0 \left(\frac{C_A}{C_F} \left(\frac{Q_0}{\sqrt{s_{NN}} x_0}\right)\right)^{1/(2+\lambda)}$
- Integrating the gluon number density yields the initial energy density :

$$(e\tau)_0 = \frac{\alpha_s (N_c - 1)\sqrt{\pi}}{N_c} \frac{Q_A^2 Q_B^2}{\left(Q_A^2 + Q_B^2\right)^{5/2}} \left[2Q_A^4 + 7Q_A^2 Q_B^2 + 2Q_B^4\right]$$

Features of pre-equilibrium: pressure asymmetry

• At early times, rapid longitudinal expansion $\rightarrow P_L << P_T$

 \rightarrow Anisotropy of distributions in momentum space

M.Strickland, Acta Physica Polonica B 45, 2355 (2014)

For typical parameters (e.g. $\eta/s=0.32$) : w=1 $\rightarrow \tau=3 \text{ fm/c} \rightarrow pL/e=0.2$