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Search tor the QCP critical point via Beam Energy Scan
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In equilibrium : (ON?) ~ &%, (ON?) ~ %%, (ON*) ~ € Stephanov., 08



Hydrodynamic fluctvations of
QGP

Overview

This talk : Freeze-out of Gaussian
fluctuations

Conservation laws
Finite time
Critical slowing down

STAR Collaboration, 21

| 0-5% central

Au+Au Collisions at RHIC _
Wi<05,04< P <20(GeVic) _
P [ === Stat error wem UrQMD
P .A Syst. error | -
n T — —r b -
- 1) 22 -1
of 2T
[ ———— 1
R T
- A 4
0.04 YA T
- & o 1
oosf ¥ 5 e —+
. 0O O +
N o e s v oo 1
ll ] ] L B |_
s, (GeV)

Cumulants of particle
multiplicities



Pynamics of fluctvations near the ceritical point

There are both stochastic and deterministic approaches to describing critical fluctuations.

~ a
Stochastic approach Deterministic approach

0y =-V- (ﬂux | + noise) (conservation) Otl/j = —V - flux [Wa G] .

: : Bluhm et al.
noise(x)noise(y)) ~ 6Wix —vy) FIT ’ - _
| & ’ 2020 0,G = relaxation |G — G®%; y

* Only one equation
- Noise gets larger for smaller lattice
spacing

* Peterministic equations
- Multiple equations to solve

Rajagopal et al, 19,
Puetal. 20

We use Hydro* framework. We’ll demonstrate the freeze-out in one of the available Hydro* simulation.




HYd rO"" Stephanov and Yin, 17

Hydro* is a deterministic approach to studying the dynamics of fluctuations.

Taken from Xin An's talk, QM 2019

Hydro breaks down when relaxation
rate of the slowest non-hydro mode
becomes comparable to the
expansion rate

* The fluctuations of § = s/n which relaxes parametricallyasl ~ ¢ — s
the slowest non-hydrodynamic mode

* Pynamics qoverned by hydrodynamics * relaxation equations for the two
point correlations of §



Hydro+ simulation

~ Tin MeV

* Hydrodynamics * relaxation equation for the
slowest non-hydrodynamic mode Stephanov & Yin, 2017
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Back reaction of out-of-equilibrium fluctvations on the EoS
neglected as they have been found to be less than sub-percent
level in Rajagopal et al, 19, Du et al, 20

Bailer and Romatschke, 2007

This talk :

Azimuthally symmetric, boost invariant hydrodynamic background with radial
expansion with fluctvations discussed in Rajagopal, Ridgway, Weller, Yin, 19



Evolution of fluctuations

Stephanov & Yin, 2017

Do= 0.25 fm ,éax = 3 fm

51 » * The slowest and the most singular mode
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Pemonstrating critical slowing
dOW" (2204.00639)

Lower Q@ modes are suppressed strongly due to conservation and relax more slowly
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Critical correlations in space
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We consider two isothermal freeze-out scenarios: T=140 MeV and T=156 MeV

Tr =140 MeV, Dy, = 0.25 fm

Conservation

— r=6fm
— r=3fm

— r=0fm

Conservation
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JdAx Ax? Pp(Ax) = ¢,

T =156 MeV, Dy = 0.25 fm

Ax (in fm)

Zero mode doesn’t
evolve
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Memory

Out-of equilibrium
fluctuations
“remember” their
past, so the
difference between
the two freeze-out
scenarios is not too
large



Traditional Cooper-Frye freeze-out
procedure
o (N2) = | s, | Dop* (1)

Ideal Boltzmann
gas

Matches the averages of conserved densities before
(hydrodynamic ) and after (hadron resonance gas) freeze_out

Poes not describe fluctuations

Hydrodynamic
QGP

Cooper and Frye, 74



Critical fluctvations in hadron resonance gas

* We incorporate the effects of critical fluctuations via the modification of particle masses due to
their interaction with a critical sigma field

0MA = GAO
t We mateh the two point
O {(fa) function of o to the two
fa = (fa) o
ds, A Al T IA S A point function of the Hydro*
| . mode, § = s/n
Modified
particle | A A
distribution <0(x L)o(x_) > ~ /" <5s(x L)O8(x_) >

(2204.00639)

r (6N3), = 827" JdSM Ji(x,) [dSy J{0c) (B5(x,)88(x_))
<5N31> = (N4) + <5N31>0




Effect of conservation laws on particle
(antilcorrelations at freeze-out

0.0
Conservation
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nservation

Enhancement at low Ay, anti-correlations at large Ay

The low Q modes contribute the most to rapidity correlations

(2204.00639)



Critical contribution fo

variance of proton multiplicities --
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* The fluctuations are reduced relative to equilibrium value (due to conser vation laws)
* The fluctuations are found to increase with D, (faster diffusion)

* Compared to the equilibrium scenario, the fluctuations are less sensitive to freeze-out temperature

(2204.00639)



Summary

* We have generalized the Cooper-Frye freeze-out procedure so that not only the averages, but also
the critical fluctvations of the conserved densities are matched on the freeze-out hypersurtace

* We have demonstrated the freeze-out in a semi-realistic scenario and estimated the dynamical
effects for the critical contribution to the Gaussian cumulants of proton multiplicity

* The fluctuations are less sensitive to the freeze-out temperature in an out-of-equilibrium scenario
unlike in an equilibrium case



Outlook

* The freeze-out procedure developed here can already be integrated into the full
numerical simulation of heavy ion collisions relevant for BES program

* Freeze-out of higher point fluctuations needs to be implemented and analyzed

* The procedure can be improved by adding less sinqular contributions and modes which are
not critical

Thank you!



