

Quarkonium production: open and new questions to be answered in hadronic collisions for nucleus-nucleus studies in 2030

J.P. Lansberg

IJCLab Orsay - Paris Saclay U. - CNRS

Prospectives en QCD au delà de 2030

JCCLab, March 10-11, 2022

Quarkonium production

For a recent review, see JPL. arXiv:1903.09185 [hep-ph] (Phys.Rept. 889 (2020) 1)

J.P. La	.nsberg	(IJ	CLab)	
---------	---------	-----	-------	--

For a recent review, see JPL. arXiv:1903.09185 [hep-ph] (Phys.Rept. 889 (2020) 1)

• No consensus on the mechanism at work in quarkonium production

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

For a recent review, see JPL. arXiv:1903.09185 [hep-ph] (Phys.Rept. 889 (2020) 1)

- No consensus on the mechanism at work in quarkonium production
- Yet, nearly all approaches assume a factorisation between the production of the heavy-quark pair, QQ, and its hadronisation into a meson

For a recent review, see JPL. arXiv:1903.09185 [hep-ph] (Phys.Rept. 889 (2020) 1)

- No consensus on the mechanism at work in quarkonium production
- Yet, nearly all approaches assume a factorisation between the production of the heavy-quark pair, QQ, and its hadronisation into a meson
- Different approaches differ essentially in the treatment of the hadronisation

For a recent review, see JPL. arXiv:1903.09185 [hep-ph] (Phys.Rept. 889 (2020) 1)

- No consensus on the mechanism at work in quarkonium production
- Yet, nearly all approaches assume a factorisation between the production of the heavy-quark pair, QQ, and its hadronisation into a meson
- Different approaches differ essentially in the treatment of the hadronisation
- 3 fashionable models:

For a recent review, see JPL. arXiv:1903.09185 [hep-ph] (Phys.Rept. 889 (2020) 1)

- No consensus on the mechanism at work in quarkonium production
- Yet, nearly all approaches assume a factorisation between the production of the heavy-quark pair, QQ, and its hadronisation into a meson
- Different approaches differ essentially in the treatment of the hadronisation
- 3 fashionable models:
 - COLOUR EVAPORATION MODEL: application of quark-hadron duality; only the invariant mass matters; bleaching via (numerous) soft gluons ?

For a recent review, see JPL. arXiv:1903.09185 [hep-ph] (Phys.Rept. 889 (2020) 1)

- No consensus on the mechanism at work in quarkonium production
- Yet, nearly all approaches assume a factorisation between the production of the heavy-quark pair, QQ, and its hadronisation into a meson
- Different approaches differ essentially in the treatment of the hadronisation
- 3 fashionable models:
 - COLOUR EVAPORATION MODEL: application of quark-hadron duality; only the invariant mass matters; bleaching via (numerous) soft gluons ?
 - COLOUR SINGLET MODEL: hadronisation w/o gluon emission; each emission costs $\alpha_s(m_O)$ and occurs at short distances; bleaching at the pair-production time

For a recent review, see JPL. arXiv:1903.09185 [hep-ph] (Phys.Rept. 889 (2020) 1)

- No consensus on the mechanism at work in quarkonium production
- Yet, nearly all approaches assume a factorisation between the production of the heavy-quark pair, QQ, and its hadronisation into a meson
- Different approaches differ essentially in the treatment of the hadronisation
- 3 fashionable models:
 - COLOUR EVAPORATION MODEL: application of quark-hadron duality; only the invariant mass matters; bleaching via (numerous) soft gluons ?
 - COLOUR SINGLET MODEL: hadronisation w/o gluon emission; each emission costs $\alpha_s(m_Q)$ and occurs at short distances; bleaching at the pair-production time
 - COLOUR OCTET MECHANISM (encapsulated in NRQCD): higher Fock states of the mesons taken into account; QQ can be produced in octet states with different quantum # as the meson; bleaching with semi-soft gluons ?

For a recent review, see JPL. arXiv:1903.09185 [hep-ph] (Phys.Rept. 889 (2020) 1)

- No consensus on the mechanism at work in quarkonium production
- Yet, nearly all approaches assume a factorisation between the production of the heavy-quark pair, QQ, and its hadronisation into a meson
- Different approaches differ essentially in the treatment of the hadronisation
- 3 fashionable models:
 - COLOUR EVAPORATION MODEL: application of quark-hadron duality; only the invariant mass matters; bleaching via (numerous) soft gluons ?
 - COLOUR SINGLET MODEL: hadronisation w/o gluon emission; each emission costs $\alpha_s(m_Q)$ and occurs at short distances; bleaching at the pair-production time
 - Solution OCTET MECHANISM (encapsulated in NRQCD): higher Fock states of the mesons taken into account; $Q\bar{Q}$ can be produced in octet states with different quantum # as the meson; bleaching with semi-soft gluons ?

Impact on quarkonia as QGP tools:

For a recent review, see JPL. arXiv:1903.09185 [hep-ph] (Phys.Rept. 889 (2020) 1)

- No consensus on the mechanism at work in quarkonium production
- Yet, nearly all approaches assume a factorisation between the production of the heavy-quark pair, QQ, and its hadronisation into a meson
- Different approaches differ essentially in the treatment of the hadronisation
- 3 fashionable models:
 - COLOUR EVAPORATION MODEL: application of quark-hadron duality; only the invariant mass matters; bleaching via (numerous) soft gluons ?
 - COLOUR SINGLET MODEL: hadronisation w/o gluon emission; each emission costs $\alpha_s(m_Q)$ and occurs at short distances; bleaching at the pair-production time
 - COLOUR OCTET MECHANISM (encapsulated in NRQCD): higher Fock states of the mesons taken into account; QQ can be produced in octet states with different quantum # as the meson; bleaching with semi-soft gluons ?

Impact on quarkonia as QGP tools: likely but non trivial to derive

J.P. Lansberg	(IJCLab)
---------------	----------

• 1974: J/ψ (and ψ') discovery: the November revolution

ヘロト ヘヨト ヘヨト ヘヨト

- 1974: J/ψ (and ψ') discovery: the November revolution
- 1997: First prompt χ_c inclusive crosss section out by CDF

Clear issue with the CSM

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- 1974: J/ψ (and ψ') discovery: the November revolution
- 1997: First prompt χ_c inclusive crosss section out by CDF

Clear issue with the CSM

• 2007: Run2 CDF prompt inclusive J/ψ and ψ' polarisation out by CDF NRQCD under tension

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- 1974: J/ψ (and ψ') discovery: the November revolution
- 1997: First prompt χ_c inclusive crosss section out by CDF

Clear issue with the CSM

- 2007: Run2 CDF prompt inclusive J/ψ and ψ' polarisation out by CDF NRQCD under tension
- 2012: Discovery of $\chi_b(3P)$ below the $B\bar{B}$ threshold by ATLAS The $\Upsilon(3S)$ is no more fully direct

- 1974: J/ψ (and ψ') discovery: the November revolution
- 1997: First prompt χ_c inclusive crosss section out by CDF

Clear issue with the CSM

- 2007: Run2 CDF prompt inclusive J/ψ and ψ' polarisation out by CDF NRQCD under tension
- 2012: Discovery of $\chi_b(3P)$ below the $B\bar{B}$ threshold by ATLAS The $\Upsilon(3S)$ is no more fully direct
- 2015: First prompt η_c inclusive cross section out by LHCb NRQCD cannot describe the world J/ψ data

- 1974: J/ψ (and ψ') discovery: the November revolution
- 1997: First prompt χ_c inclusive crosss section out by CDF

Clear issue with the CSM

- 2007: Run2 CDF prompt inclusive J/ψ and ψ' polarisation out by CDF NRQCD under tension
- 2012: Discovery of $\chi_b(3P)$ below the $B\bar{B}$ threshold by ATLAS The $\Upsilon(3S)$ is no more fully direct
- 2015: First prompt η_c inclusive cross section out by LHCb NRQCD cannot describe the world J/ψ data
- What's next ?

HL-LHC quarkonium-physics case: E. Chapon et al. arXiv:2012.14161 (PPNP 122 (2021) 103906)

<ロ> (日) (日) (日) (日) (日)

HL-LHC quarkonium-physics case: E. Chapon et al. arXiv:2012.14161 (PPNP 122 (2021) 103906)

• Measurement of χ_c cross sections (and feed-down to J/ψ) down to $P_T = 0$ [maybe using the $J/\psi\mu\mu$ channel]

HL-LHC quarkonium-physics case: E. Chapon et al. arXiv:2012.14161 (PPNP 122 (2021) 103906)

- Measurement of χ_c cross sections (and feed-down to J/ψ) down to $P_T = 0$ [maybe using the $J/\psi\mu\mu$ channel]
- Idem for χ_b 's, in particular for $\chi_b(3P)$: unknown for P_T below 20 GeV
- χ_c and χ_b should be studied for themselves (specifically for $P_T \rightarrow 0$): only a handful of studies; still very poorly known !

HL-LHC quarkonium-physics case: E. Chapon et al. arXiv:2012.14161 (PPNP 122 (2021) 103906)

- Measurement of χ_c cross sections (and feed-down to J/ψ) down to $P_T = 0$ [maybe using the $J/\psi\mu\mu$ channel]
- Idem for χ_b 's, in particular for $\chi_b(3P)$: unknown for P_T below 20 GeV
- χ_c and χ_b should be studied for themselves (specifically for $P_T \rightarrow 0$): only a handful of studies; still very poorly known !
- Update of the η_c cross-section measurement, extend to $P_T < m_c$ to extract the gluon TMDs

HL-LHC quarkonium-physics case: E. Chapon et al. arXiv:2012.14161 (PPNP 122 (2021) 103906)

- Measurement of χ_c cross sections (and feed-down to J/ψ) down to $P_T = 0$ [maybe using the $J/\psi\mu\mu$ channel]
- Idem for χ_b 's, in particular for $\chi_b(3P)$: unknown for P_T below 20 GeV
- χ_c and χ_b should be studied for themselves (specifically for $P_T \rightarrow 0$): only a handful of studies; still very poorly known !
- Update of the η_c cross-section measurement, extend to $P_T < m_c$ to extract the gluon TMDs
- First prompt η'_c cross-section measurement

HL-LHC quarkonium-physics case: E. Chapon et al. arXiv:2012.14161 (PPNP 122 (2021) 103906)

- Measurement of χ_c cross sections (and feed-down to J/ψ) down to $P_T = 0$ [maybe using the $J/\psi\mu\mu$ channel]
- Idem for χ_b 's, in particular for $\chi_b(3P)$: unknown for P_T below 20 GeV
- χ_c and χ_b should be studied for themselves (specifically for $P_T \rightarrow 0$): only a handful of studies; still very poorly known !
- Update of the η_c cross-section measurement, extend to $P_T < m_c$ to extract the gluon TMDs
- First prompt η'_c cross-section measurement
- First prompt h_c cross-section measurement

HL-LHC quarkonium-physics case: E. Chapon et al. arXiv:2012.14161 (PPNP 122 (2021) 103906)

- Measurement of χ_c cross sections (and feed-down to J/ψ) down to $P_T = 0$ [maybe using the $J/\psi\mu\mu$ channel]
- Idem for χ_b 's, in particular for $\chi_b(3P)$: unknown for P_T below 20 GeV
- χ_c and χ_b should be studied for themselves (specifically for $P_T \rightarrow 0$): only a handful of studies; still very poorly known !
- Update of the η_c cross-section measurement, extend to $P_T < m_c$ to extract the gluon TMDs
- First prompt η'_c cross-section measurement
- First prompt h_c cross-section measurement
- Confirm the prompt $\psi(2S)$ polarisation measurement

[going longitudinal at large P_T and y]

HL-LHC quarkonium-physics case: E. Chapon et al. arXiv:2012.14161 (PPNP 122 (2021) 103906)

- Measurement of χ_c cross sections (and feed-down to J/ψ) down to $P_T = 0$ [maybe using the $J/\psi\mu\mu$ channel]
- Idem for χ_b 's, in particular for $\chi_b(3P)$: unknown for P_T below 20 GeV
- χ_c and χ_b should be studied for themselves (specifically for $P_T \rightarrow 0$): only a handful of studies; still very poorly known !
- Update of the η_c cross-section measurement, extend to $P_T < m_c$ to extract the gluon TMDs
- First prompt η'_c cross-section measurement
- First prompt h_c cross-section measurement
- Confirm the prompt $\psi(2S)$ polarisation measurement

[going longitudinal at large P_T and y]

• Absolute prompt χ_c polarisation measurement

[Currently only a ratio was measured]

HL-LHC quarkonium-physics case: E. Chapon et al. arXiv:2012.14161 (PPNP 122 (2021) 103906)

- Measurement of χ_c cross sections (and feed-down to J/ψ) down to $P_T = 0$ [maybe using the $J/\psi\mu\mu$ channel]
- Idem for χ_b 's, in particular for $\chi_b(3P)$: unknown for P_T below 20 GeV
- χ_c and χ_b should be studied for themselves (specifically for $P_T \rightarrow 0$): only a handful of studies; still very poorly known !
- Update of the η_c cross-section measurement, extend to $P_T < m_c$ to extract the gluon TMDs
- First prompt η'_c cross-section measurement
- First prompt h_c cross-section measurement
- Confirm the prompt $\psi(2S)$ polarisation measurement

[going longitudinal at large P_T and y]

• Absolute prompt χ_c polarisation measurement

[Currently only a ratio was measured]

• First η_b measurement

J.P. Lansberg (IJCLab)

Feed downs from the excited states

Non trivial kinematical effects

Hadroproduction

JPL. arXiv:1903.09185 [hep-ph] (Phys.Rept. 889 (2020) 1)

イロト イボト イヨト イヨト

Feed downs from the excited states

Non trivial kinematical effects

Hadroproduction

JPL. arXiv:1903.09185 [hep-ph] (Phys.Rept. 889 (2020) 1)

Photoproduction:

- the *b* feed down is barely known.
- χ_c feed down expected to be small but never measured.

J.P. Lansberg (IJCLab)

Quarkonium production

March 10, 2022 5 / 13

Feed downs from the excited states

Non trivial kinematical effects

Hadroproduction

JPL. arXiv:1903.09185 [hep-ph] (Phys.Rept. 889 (2020) 1)

J.P. Lansberg (IJCLab)

Quarkonium production

5/13

Theoretical wishlist for *pp* collisions

HL-LHC quarkonium-physics case: E. Chapon et al. arXiv:2012.14161 (PPNP 122 (2021) 103906)

Theoretical wishlist for *pp* collisions

HL-LHC quarkonium-physics case: E. Chapon et al. arXiv:2012.14161 (PPNP 122 (2021) 103906)

• Advance to NNLO, finally ...

ヘロト ヘヨト ヘヨト ヘヨト

Theoretical wishlist for pp collisions

HL-LHC quarkonium-physics case: E. Chapon et al. arXiv:2012.14161 (PPNP 122 (2021) 103906)

- Advance to NNLO, finally ...
- High Energy factorisation at NLO

ヘロト ヘヨト ヘヨト ヘヨト

・ロト ・聞 ト ・ ヨト ・ ヨト

• Differential measurements of inclusive $\psi(2S)$ photo and electro-production

イロト イボト イヨト イヨト

- Differential measurements of inclusive $\psi(2S)$ photo and electro-production
- First measurement of inclusive χ_c photo and electro-production

(D) (A) (A) (A) (A)

- Differential measurements of inclusive $\psi(2S)$ photo and electro-production
- First measurement of inclusive χ_c photo and electro-production
- First measurement of inclusive η_c photo and electro-production

- Differential measurements of inclusive $\psi(2S)$ photo and electro-production
- First measurement of inclusive χ_c photo and electro-production
- First measurement of inclusive η_c photo and electro-production
- Same for bottomonia

- Differential measurements of inclusive $\psi(2S)$ photo and electro-production
- First measurement of inclusive χ_c photo and electro-production
- First measurement of inclusive η_c photo and electro-production
- Same for bottomonia
- then the polarisation

- Differential measurements of inclusive $\psi(2S)$ photo and electro-production
- First measurement of inclusive χ_c photo and electro-production
- First measurement of inclusive η_c photo and electro-production
- Same for bottomonia
- then the polarisation
- First measurement of $e^+e^- \rightarrow \psi(2S) + X_{\text{non }c\bar{c}}$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Theoretical wishlist for *ep* and *ee* collisions

J.P. Lans	berg (I	JCLab)
-----------	---------	--------

æ

Theoretical wishlist for *ep* and *ee* collisions

• Advance to NNLO, finally ...

New Observables (in inclusive quarkonium hadroproduction)

For a recent review, see JPL. arXiv:1903.09185 [hep-ph] (Phys.Rept. 889 (2020) 1)

Observables	Experiments	CSM	CEM	NRQCD	Interest
Ϳ∕ψ+Ϳ∕ψ	LHCb, CMS, ATLAS, D0 (+NA3)	NLO, NNLO*	NLO	LO	Prod. Mechanism (CS dominant) + DPS + gluon TMD
J/ψ+D	LHCb	LO	LO ?	LO	Prod. Mechanism (c to J/psi fragmentation) + DPS
J/ψ+Υ	DO	(N)LO	NLO	LO	Prod. Mechanism (CO dominant) + DPS
J/ψ+hadron	STAR	LO		LO	B feed-down; Singlet vs Octet radiation
J/ψ+Z	ATLAS	NLO	NLO	Partial NLO	Prod. Mechanism + DPS
J/ψ+W	ATLAS	LO	NLO	NLO (?)	Prod. Mechanism (CO dominant) + DPS
J/ψ vs mult.	ALICE,CMS (+UA1)				Initial vs Final state effects ?
J/ψ in jet.	LHCb, CMS	LO		LO	Prod. Mechanism (?)
J/ψ(Ƴ) + jet					Prod. Mechanism (QCD corrections)
Isolated J/ψ(Υ)					Prod. Mechanism (CS dominant ?)
J/ψ+b				LO	Prod. Mechanism (CO dominant) + DPS
Y+D	LHCb	LO	LO ?	LO	DPS
Υ+γ		NLO, NNLO*	LO ?	LO	Prod. Mechanism (CO LDME mix) + gluon TMD/PDF
Y vs mult.	CMS				
Υ+Ζ		NLO	LO ?	LO	Prod. Mechanism + DPS
Υ+Υ	CMS	NLO ?	NLO	LO ?	Prod. Mechanism (CS dominant ?) + DPS + gluon TMD

J.P. Lansberg (IJCLab)

▶ ▲ 重 ▶ 重 ∽ ९ . March 10, 2022 9 / 13

J.P. Lansberg ((\mathbf{I})	JCLa	.b)
-----------------	----------------	------	-----

・ロト ・聞 ト ・ ヨト ・ ヨト

æ

• $J/\psi + b$ via for instance prompt-nonprompt $J/\psi + J/\psi$ production

イロト イポト イヨト イヨト

- $J/\psi + b$ via for instance prompt-nonprompt $J/\psi + J/\psi$ production
- $J/\psi + \eta_c$

JPL, H.S. Shao PRL 111, 122001 (2013)

イロト イポト イヨト イヨト 二日

- $J/\psi + b$ via for instance prompt-nonprompt $J/\psi + J/\psi$ production
- $J/\psi + \eta_c$

JPL, H.S. Shao PRL 111, 122001 (2013)

• $J/\psi + D$ without P_T cut on the D

- $J/\psi + b$ via for instance prompt-nonprompt $J/\psi + J/\psi$ production
- $J/\psi + \eta_c$

JPL, H.S. Shao PRL 111, 122001 (2013)

- $J/\psi + D$ without P_T cut on the D
- Quarkonium + jets
- Isolated quarkonium cross-section measurement

- $J/\psi + b$ via for instance prompt-nonprompt $J/\psi + J/\psi$ production
- $J/\psi + \eta_c$

JPL, H.S. Shao PRL 111, 122001 (2013)

- $J/\psi + D$ without P_T cut on the D
- Quarkonium + jets
- Isolated quarkonium cross-section measurement
- $J/\psi + J/\psi$:

JPL, C. Pisano, F. Scarpa, M. Schlegel, PLB 784(2018)217

- $d\sigma/dP_T^{\psi\psi}$ in different bins of $M_{\psi\psi}$ to study the gluon TMD f_1^g
- Measure the azimuthal modulations to extract $h_1^{\perp g}$

[the distribution of linearly polarised gluons]

• Feed-down pattern to confirm SPS/DPS dominance J.P.L., H.S. Shao PLB 751 (2015) 479

- $J/\psi + b$ via for instance prompt-nonprompt $J/\psi + J/\psi$ production
- $J/\psi + \eta_c$

JPL, H.S. Shao PRL 111, 122001 (2013)

- $J/\psi + D$ without P_T cut on the D
- Quarkonium + jets
- Isolated quarkonium cross-section measurement
- $J/\psi + J/\psi$:

JPL, C. Pisano, F. Scarpa, M. Schlegel, PLB 784(2018)217

- $d\sigma/dP_T^{\psi\psi}$ in different bins of $M_{\psi\psi}$ to study the gluon TMD f_1^g
- Measure the azimuthal modulations to extract $h_1^{\perp g}$
 - [the distribution of linearly polarised gluons]
- Feed-down pattern to confirm SPS/DPS dominance J.P.L., H.S. Shao PLB 751 (2015) 479
- $\Upsilon + b$ via for instance $\Upsilon +$ nonprompt J/ψ

Theoretical wishlist or new observables in *pp* collisions :

J.P. Lansberg	(IJCLab)
---------------	----------

Theoretical wishlist or new observables in *pp* collisions :

• Advance to NLO for the measured observables

イロト イボト イヨト イヨト

Theoretical wishlist or new observables in *pp* collisions :

- Advance to NLO for the measured observables
- Global NRQCD NLO fits with all the measured observables

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 三

J.P.	Lans	berg 1	(I)	[C]	Lab)
------	------	--------	-----	-----	------

▲ロト ▲御ト ▲理ト ▲理ト

• Improved precision on the R_{pA} for Υ and J/ψ from b

(日) (四) (三) (三)

- Improved precision on the R_{pA} for Υ and J/ψ from b
- R_{pA} measurement for χ_c

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Improved precision on the R_{pA} for Υ and J/ψ from b
- R_{pA} measurement for χ_c
- R_{pA} measurement for η_c

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Improved precision on the R_{pA} for Υ and J/ψ from b
- R_{pA} measurement for χ_c
- R_{pA} measurement for η_c
- R_{pA} vs. $\cos \theta$ to look at possible modifications of the J/ψ polarisation
- Measurement in the fixed-target mode at the LHC

(100 more stat than at RHIC !)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Improved precision on the R_{pA} for Υ and J/ψ from b
- R_{pA} measurement for χ_c
- R_{pA} measurement for η_c
- R_{pA} vs. $\cos \theta$ to look at possible modifications of the J/ψ polarisation
- Measurement in the fixed-target mode at the LHC

(100 more stat than at RHIC !)

• Quarkonium nPDF studies at NLO (esp. important for the scale uncertainty)

- Improved precision on the R_{pA} for Υ and J/ψ from b
- R_{pA} measurement for χ_c
- R_{pA} measurement for η_c
- R_{pA} vs. $\cos \theta$ to look at possible modifications of the J/ψ polarisation
- Measurement in the fixed-target mode at the LHC

(100 more stat than at RHIC !)

イロト イポト イヨト イヨト 二日

- Quarkonium nPDF studies at NLO (esp. important for the scale uncertainty)
- Eloss + nPDF studies (+ CIM for excited states)

B.Trzeciak et al.Few-Body Syst (2017) 58:148; C. Hadjidakis, et al. Phys. Rept. 911 (2021) 1.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

B.Trzeciak et al.Few-Body Syst (2017) 58:148; C. Hadjidakis, et al. Phys. Rept. 911 (2021) 1.

• Like for nPDF studies, multiple quarkonium studies are needed

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

B.Trzeciak et al.Few-Body Syst (2017) 58:148; C. Hadjidakis, et al. Phys. Rept. 911 (2021) 1.

- Like for nPDF studies, multiple quarkonium studies are needed
 Clear need for a reliable of heading
- Clear need for a reliable *pA* baseline

B.Trzeciak et al.Few-Body Syst (2017) 58:148; C. Hadjidakis, et al.Phys. Rept. 911 (2021) 1.

- Like for nPDF studies, multiple quarkonium studies are needed
- Clear need for a reliable *pA* baseline

J.P. Lansberg (IJCLab)

• Statistical-uncertainty projections (accounting for background subtraction)

Quarkonium production

[No nuclear modifications assumed, $\mathcal{L}_{PbXe} = 30 \text{ nb}^{-1}$]

March 10, 2022 13 / 13