Open questions on energy loss and nuclear PDF effects on heavy flavour production in pA collisions

François Arleo

Subatech, Nantes

GDR QCD workshop – Prospectives in QCD beyond 2030 Orsay, March 2022

Two for tea

Hadron production in pA collisions affected by 2 nuclear effects

- Fully coherent energy loss (FCEL)
 - ▶ predicted from first principles in pQCD, leading to small uncertainty
- Nuclear parton distribution functions (nPDF)
 - not calculable, extracted from global fits to data
- Strength of FCEL/nPDF effects depend on $x_{\rm F}$, $x_{\rm 2}$, Q, $\sqrt{s}.$.

Two for tea

Hadron production in pA collisions affected by 2 nuclear effects

- Fully coherent energy loss (FCEL)
 - ▶ predicted from first principles in pQCD, leading to small uncertainty
- Nuclear parton distribution functions (nPDF)
 - not calculable, extracted from global fits to data
- Strength of FCEL/nPDF effects depend on $x_{\rm F}$, $x_{\rm 2}$, Q, $\sqrt{s}.$.

R No single effect is able to reproduce all data available, both are needed

- Medium-induced gluon radiation due to multiple scattering in nuclei
- FCEL spectrum computed perturbatively in various frameworks
- Average energy loss

$$\Delta E_{
m FCEL} \propto lpha_{s} \; rac{Q_{s}}{M_{\perp}} \; E$$

FA Peigné Sami, 1006.0818, FA Peigné, 1204.4609, 1212.0434 Armesto et al. 1207.0984 FA Kolevatov Peigné, 1402.1671, Peigné Kolevatov 1405.4241 Liou Mueller 1402.1647, Munier Peigné Petreska 1603.01028

- Medium-induced gluon radiation due to multiple scattering in nuclei
- FCEL spectrum computed perturbatively in various frameworks
- Average energy loss

$$\Delta E_{
m FCEL} \propto lpha_{s} \; rac{Q_{s}}{M_{\perp}} \; E$$

- Important at all collision energies, especially at large $x_{\rm F}$ (or y)
- Needs color in both initial & final state
 - Affects hadron production in pA collisions
 - ▶ No effect on W/Z nor Drell-Yan, no effect in DIS
- Mass dependence
 - weaker effects on Υ and jets

FCEL phenomenology

- FCEL effects modelled using the least number of assumptions
 - depends on one physical parameter: transport coefficient \hat{q}
- Applied to a variety of processes in pA collisions
 - quarkonia (2012-2014)
 - light hadrons (2020)
 - open heavy-flavour hadrons (2021)
 - atmospheric neutrinos from D decays (2021)
- Small uncertainties
 - $\blacktriangleright\,$ typically $\lesssim 10\%$ relative uncertainty on $R_{_{\rm PA}}$
- Naturally explain forward J/ψ suppression at all energies

• J/ψ from fixed-target to LHC

FA Peigné, 1212.0434

• D-meson in pPb collisions at LHC

FA Jackson Peigné, 2107.05871

- Accounts for typically half of the observed suppression
- Small relative uncertainty ($\lesssim 10\%$)

François Arleo

nPDF

- Parton distribution functions are modified in nuclei
 - evidence at large x from EMC/NMC measurements in DIS
- Cannot be calculated, extracted from data global fits
 - nuclear DIS: structure functions F₂
 - ▶ pA collisions: DY, W/Z, jets, hadrons (π at RHIC, D at LHC)
 - latest releases include nCTEQ15, EPPS21, nNNPDF3.0
- Expected shadowing at small x_2
 - \blacktriangleright leads to hadron suppression at high \sqrt{s} and large y
 - strength of shadowing unknown due to poor constraints from data
- Leads to x_2 scaling for hadron suppression: $R_{_{pA}}(x_2,\sqrt{s}) = R_{_{pA}}(x_2)$
 - known to be strongly violated in the case of forward hadron suppression

nPDF

Hoyer Vänttinen Sukhatme 1990

- J/ψ suppression is **not** a scaling function of x_2
- Evidence for nuclear effects beyond nPDF

FA Naïm Platchkov 2019

- J/ψ suppression is **not** a scaling function of x_2
- Evidence for nuclear effects beyond nPDF

François Arleo

- Strong x_2 violation in light hadron production
- BRAHMS forward data discarded in global fit analyses after EPS08
 - without reason a priori, except tension with other data sets

Which nPDF global fit strategy

- FCEL uncertainties \ll nPDF uncertainties
- Given the FCEL effects on hadron production, how should nPDF be extracted from data?

- FCEL uncertainties \ll nPDF uncertainties
- Given the FCEL effects on hadron production, how should nPDF be extracted from data?
- ✓ Focus on observables insensitive to FCEL
 - F_2 in DIS, weak bosons, Drell-Yan (and jets) in pA collisions
 - Lacks constraints at small x (until EIC)
- ✓ Include FCEL in the pQCD calculation and then fit data
 - Reliable nPDF estimate
 - Strong constraints from all data available
 - Challenging
 FA Jackson Peigné Watanabe, work in progress

nNNPDF3.0 (w/ and w/o LHCb D meson data)

Huge uncertainty on gluon shadowing

nNNPDF, 2201.12363

- Strong constraints given by forward D-meson data
 - key measurements... but affected by FCEL
- Several other attempts

Kusina Lansberg Schienbein Shao 2012.11462

Eskola Paakkinen Paukkunen Salgado 2112.12462

François Arleo

Open questions on FCEL and nPDF in pA collisions

GDR workshop 2022 8 / 11

Reweighting nPDF, w/ and w/o FCEL

Given a new data set, PDF can be conveniently reweighted X Ignore FCEL :

 $\mathcal{P}(\mathbf{f}_{\mathsf{A}} | \mathsf{pQCD} \cap \mathsf{world data})$

- 'Statistically good' fits can be obtained, including LHCb data
- Strong constraints... but unreliable result
- Include FCEL

 $\mathcal{P}(f'_{\mathsf{A}}|\operatorname{pQCD}\cap\operatorname{\mathsf{FCEL}}\cap\operatorname{world}\operatorname{\mathsf{data}})$

- Part of the nuclear dependence cannot be attributed to nPDF
- Different physical processes with different scaling properties
- ▶ Resulting nPDF extracted from data will not be the same: $f'_A \neq f_A$

Reweighting nPDF, w/ and w/o FCEL

Given a new data set, PDF can be conveniently reweighted

 $\mathcal{P}(f'_{\mathsf{A}} | \mathsf{FCEL} \cap \mathsf{LHCb} \mathsf{ data})$

 $\mathcal{P}(f_{\mathsf{A}} \mid \mathsf{no} \mathsf{FCEL} \cap \mathsf{LHCb} \mathsf{ data})$

 $f'_{A} \neq f_{A}$

FCEL and nPDF in 2030 (and beyond)

It is difficult to make predictions, especially about the future. – Karl Kristian Steincke

Pre-EIC

- FCEL will be included in the extraction of nPDF
- Precise ($\sim 10\%$?) and reliable extraction of nPDF at small x
 - using forward hadron production, prompt photons, Drell-Yan

LHC + EIC

- Evidence for physics beyond nPDF from the raw comparison of forward hadron production in pA collisions and in SIDIS
- Consistency of the nPDF+FCEL framework between LHC and EIC

- FCEL predicted from first principles with small uncertainty
- Affects significantly hadron production in pA collisions
- Ignoring FCEL in nPDF global fits leads to wrong nPDF extractions
- nPDF global fit strategy should either
 - exclude measurements of hadron production in pA collisions
 - include FCEL in the theoretical framework
- EIC will be crucial to compare to LHC pA data