

CPT Symmetry Test

Mass measurements of the $\Xi(dss)$ and $\Omega(sss)$ with pp data collected with the ALICE detector during the LHC run II

Romain Schotter – PhD student 2020-2023

Supervisors : Antonin Maire & Boris Hippolyte

I) Motivations

II) Analysis details and results

III) An example of remaining systematic effects

IV) Current status

Motivations

- The Standard Model was initially built upon the invariance of the discrete symmetries of $|f(t, \vec{r})| = |f(t, \vec{r})|$
 - Charge conjugation (C),
 - Parity transformation (P),
 - Time reversal (T),

• And the combined **CPT-symmetry**

• Strong and electromagnetic interactions are invariant under these transformations

BUT the weak interaction violates CP-symmetry \rightarrow T is violated

Motivations

- Only the combined CPT-symmetry is conserved
 - \rightarrow 2 consequences :
 - 1) Particles and antiparticles share the same fundamental properties Ex : Lifetime, mass,... (except for the sign of the quantum numbers)
 - 2) Particles and antiparticles are created in pairs

 \rightarrow contradiction with astronomical observations (matter-antimatter asymmetry)

- CP violation is too small to account for the matter-antimatter asymmetry
 → need additionnal sources of symmetry violation including CPTsymmetry violation
- It is decisive to test CPT invariance, especially when a precision gain is possible

Motivations

MASS

• Previous mass measurements suffer of low statistics

Ω^- MASS

The fit assumes the Ω^- and $\overline{\Omega}^+$ masses are the same, and averages them to

VALUE (MeV)	EVTS	DOCUMENT ID	
1321.71 ± 0.07	OUR FIT		
$1321.70 \pm 0.08 \pm 0.05$	$2478 \pm \! 68$	ABDALLAH 2006E	Ξ
$\overline{\Xi}^+$ MASS			
$\overline{\Xi}^+$ MASS The fit uses the $\underline{\sigma}^-, \overline{\underline{\sigma}}^+$, and	. P masses and f	he $\overline{arsigma}^{-} - \overline{arsigma}^{+}$ mass difference. It assume:	s th
$\overline{\Xi}^+ \text{ MASS}$ The fit uses the $\underline{B}^-, \overline{\underline{B}}^+$, and $\overline{VALUE} (MeV)$.º masses and f	he $\underline{F}^ \overline{\overline{F}}^+$ mass difference. It assume: DOCUMENT ID	s th
$\overline{\Xi}^+ \text{ MASS}$ The fit uses the Ξ^- , $\overline{\Xi}^+$, and $\overline{VALUE} \text{ (MeV)}$ 1321.71 ± 0.07	EVTS	he $\Xi^ \overline{\Xi}^+$ mass difference. It assumes DOCUMENT ID	s th

 \overline{a}^+ and \overline{a} measure and the \overline{a} \overline{a}^+ mass difference. It easymptothat

VALUE (MeV)	EVTS	DOCUMENT ID		
$\textbf{1672.45} \pm \textbf{0.29}$	OUR FIT			
$\textbf{1672.43} \pm \textbf{0.32}$	OUR AVERAGE			
1673 ± 1	100	HARTOUNI	1985	
1673.0 ± 0.8	41	BAUBILLIER 1978		
1671.7 ± 0.6	27	HEMINGWAY 1978		
$\overline{\mathbf{\Omega}}^+$ MASS The fit assumes the \mathfrak{A}	$\overline{\it o}$ and $\overline{\it \Omega}^+$ masses are th	same, and averages t	hem toget	
VALUE (MeV)	EVTS	DOCUMENT ID		
$\textbf{1672.45} \pm \textbf{0.29}$	OUR FIT			
$\textbf{1672.5} \pm \textbf{0.7}$	OUR AVERAGE			
1672 ± 1	72	HARTOUNI	1985	
1673.1 ± 1.0	1	FIRESTONE	1971B	

 \rightarrow coming from the difficulty to produce as much matter as antimatter With the LHC, we have an excellent source of matter and antimatter !

- Goal : Using the ALICE detector
 - Provide new mass measurements of the Ξ and Ω
 - And compute their mass difference to test CPT invariance

I) Motivations

II) Analysis details and results

III) An example of remaining systematic effects

IV) Current status

The ALICE detector

ALICE is composed of 19 detection systems

The dataset

Objective : measure the mass of the Ξ and $\Omega,$ using LHC run II data

- Data :
 - ~ 2.2×10^9 pp collisions at $\sqrt{s} = 13$ TeV (LHC16 + LHC17 + LHC18)
 - Represents $\sim 140 \times 10^6$ cascade candidates
- Event Selection :
 - ESDs,
 - Revertexing,
 - kINT7 and/or kHighV0M (MB + high multiplicity),
 - Remove in bunch (MV) and out-of-bunch pile up (OOB)
- Analysis task :

https://github.com/alisw/AliPhysics/blob/master/PWGLF/STRANGENESS/ Cascades/Run2/AliAnalysisTaskStrangenessVsMultiplicityRun2

Analysis details

• Ξ and Ω will be studied in the following decay channel :

 Ξ and Ω are distinguished from the combinatorial background using topological selections

Ξ selections

• Ξ are reconstructed using topological selections

Ξ-(Ξ+)	Cut value
y	< 0.5
рТ	[1;5] GeV/c

• Cascade selections

DCA Bach To PV	> 0.04 cm
DCA Case daughters	< 1.3 cm
Casc Radius	> 0.5 cm
Casc Cos PA	> 0.97
Proper Lifetime	> 3 x 4.91 cm
Wrong PA	> 0.04

- Track selections :
 - $\bullet |\eta| < 0.8$
 - TPC refit
 - TPC Nbr Crossed Rows > 70
 - TPC PID Nsigma < 3

• V0 selections

DCA V0 to PV	> 0.04 cm
DCA Pos to PV	> 0.03 (0.04) cm
DCA Neg to PV	> 0.04 (0.03) cm
DCA V0 daughters	< 1.5 cm
V0 Radius	> 1.1 cm
V0 Cos PA	> 0.97
V0 Mass – A Mass	$< 0.008 \ { m GeV}/c^2$

- ITS hit requirements
 - Bachelor : SPD 0 OR 1
 - Proton : SSD 4 OR 5

Ω selections

ALICE

• Ω are reconstructed using topological selections

Ω -(Ω +)	Cut value
y	< 0.5
рТ	[1;5] GeV/c

• Cascade selections

DCA Bach To PV	> 0.04 cm		
DCA Case daughters	< 1.3 cm		
Casc Radius	> 0.5 cm		
Casc Cos PA	> 0.97		
Casc Mass - Ξ Mass	> 0.008 GeV/c2		
Proper Lifetime	> 3 x 2.46 cm		
Wrong PA	> 0.04		

- Track selections :
 - $\bullet |\eta| < 0.8$
 - TPC refit
 - TPC Nbr Crossed Rows > 70
 - TPC PID Nsigma < 3

• V0 selections

DCA V0 to PV	> 0.04 cm		
DCA Pos to PV	> 0.03 (0.04) cm		
DCA Neg to PV	> 0.04 (0.03) cm		
DCA V0 daughters	< 1.5 cm		
V0 Radius	> 1.1 cm		
V0 Cos PA	> 0.97		
V0 Mass - A Mass	$< 0.008 \text{ GeV/c}^2$		

- ITS hit requirements
 - Bachelor : SPD 0 OR 1
 - Proton : SSD 4 OR 5

Mass extraction

- Background substraction for inv. mass analysis :
 - Fit with a *modified* Gaussian + linear function

Modified Gaussian =
$$A \cdot \exp\left(-0.5u^{1+\frac{1}{1+0.5u}}\right)$$
; $u = \left|\frac{x-\mu}{\sigma}\right|$

Т

Т

First Ξ mass measurements

ALICE

$\mathbf{M_{PDG}(\Xi)} = 1321.71 \varnothing \pm 0.07 \varnothing ~ \mathbf{MeV/c^2}$

First Ω mass measurements

$\mathbf{M_{PDG}}(\Omega) = 1672.45 \varnothing \pm 0.29 \varnothing \ \mathbf{MeV/c^2}$

Systematic effects

- Main source of systematic uncertainties :
 - Topological selections
 - TPC selections
- Quantification of systematic uncertainties :
 - Vary these selections (14 selections)
 - Observe how the extracted mass and the error are distributed over 20 000 different set of selections

Variables	Default values	Range (Signal variation)
DCA Bach To PV	> 0.04 cm	[0.05–0.2] (19%)
DCA Casc daughters	< 1.3 cm	[0.4-1.2] (22%)
Casc Radius	> 0.5 cm	[0.5–1.6] (21%)
Casc Cos PA	> 0.97	[0.97-0.999] (55%)
Proper Lifetime	> 3 x 2.46 cm	[2.5-5] (27%)
DCA V0 to PV	> 0.04 cm	[0.06-0.2] (18%)
DCA Pos to PV	> 0.03 (0.04) cm	[0.04-0.5] (28%)
DCA Neg to PV	> 0.04 (0.03) cm	[0.04-0.5](29%)
DCA V0 daughters	< 1.5 cm	[0.4-1.2] (32%)
V0 Radius	> 1.1 cm	[1.2-5] (17%)
V0 Cos PA	> 0.97	[0.97-0.998] (50%)
V0 Mass – A Mass	$< 0.008 \ { m GeV}/c^2$	[0.002-0.007] (33%)

TPC Min Nbr Cr Rows	> 70	[90-110] (17%)
TPC PID	< 3σ	[1-3] (15%)

Systematic study results

• Mass values : WORK IN PROGRESS

Particle	$\frac{\rm Mass}{({\rm MeV}/c^2)}$	Tot Uncert. (MeV/c^2)	Stat. Uncert. (MeV/c^2)	Syst. Uncert. (MeV/c^2)	$\frac{\text{PDG Mass}}{(\text{MeV}/c^2)}$	PDG Tot Uncert. (MeV/c^2)
[1]	1321.774	0.013	0.005	0.012	1321.71	0.07
Ω	1672.596	0.022	0.015	0.017	1672.45	0.29

- Improve current PDG mass values by a factor ~5.5 for Ξ and ~13 for Ω
- Test CPT-invariance : mass difference values WORK IN PROGRESS

Particle	Mass diff. $(\times 10^{-5})$	Tot Uncert. $(\times 10^{-5})$	Stat. Uncert. $(\times 10^{-5})$	Syst. Uncert. $(\times 10^{-5})$	PDG Mass $diff(\times 10^{-5})$	PDG Tot Uncert $(\times 10^{-5})$
[I]	4.35	1.01	0.71	0.72	2.5	8.7
Ω	-0.44	2.20	1.75	1.32	1.44	7.98

- Improve current PDG mass diff. values by a factor ~9 for Ξ and 3.7 for Ω
- Mass difference ~ 0 : CPT still valid

I) Motivations

II) Analysis details and results

III) An example of remaining systematic effects

IV) Current status

Check : compare with PDG mass

Mass values : WORK IN PROGRESS

Particle	$\frac{\rm Mass}{({\rm MeV}/c^2)}$	Tot Uncert. (MeV/c^2)	Stat. Uncert. (MeV/c^2)	Syst. Uncert. (MeV/c^2)	$\frac{\text{PDG Mass}}{(\text{MeV}/c^2)}$	PDG Tot Uncert. (MeV/c^2)
Ξ	1321.774	0.013	0.005	0.012	1321.71	0.07
Ω	1672.596	0.022	0.015	0.017	1672.45	0.29

- Gap between our mass values and the PDG ones (almost 1σ for the Ξ)
- To check that the analysis is working properly :
 - Take a particle whose PDG mass is evaluated very precisely ($\sigma \sim \text{few keV/c}^2$),
 - Check that the mass extracted by the analysis corresponds to the PDG mass
- Here, this check will be done using Λ and K0s

 $m_{\rm PDG}(\Lambda) = 1115.683 \pm 0.006 \ {\rm MeV}/c^2$ $m_{\rm PDG}(K_S^0) = 497.611 \pm 0.013 \ {\rm MeV}/c^2$ p/\overline{p} = 7.89 cm

V0 candidate selections

- Candidates are Λ , anti- Λ and KOs
- V0 selections

Variables	Cut
Rapidity	< 0.5
Pt	[1; 5] GeV/c

• Track Selections

TPC refit	kTRUE
TPC PID N Sigma	< 3 o
Nbr crossed rows	> 70
η	< 0.8

• Topological selections

Variables	Cut A (K0s)
DCA V0 daughters	< 1.5 (1.0)
V0 Radius	> 0.5 cm
V0 Cos PA	> 0.97
V0 Lifetime	< 3x7.89 (3x2.686) cm
DCA V0 to PV	< 1 (0.06) cm
DCA Pos to PV	> 0.06 cm
DCA Neg to PV	> 0.06 cm

Mass shift

- Same procedure as for the Ξ and Ω
- The extracted mass is above the PDG mass by
 - ~ 300 keV/c^2 for Λ
 - ~ 600 keV/c^2 for K0s

- Once all tracks are reconstructed, they are **propagated to their point of closest approach to the primary vertex** (= hypothesis that all the tracks are primaries)
- In the propagation, corrections on the energy loss (based on PID used for tracking) are applied :

- Once all tracks are reconstructed, they are **propagated to their point of closest approach to the primary vertex** (= hypothesis that all the tracks are primaries)
- In the propagation, corrections on the energy loss (based on PID used for tracking) are applied :

- Once all tracks are reconstructed, they are **propagated to their point of closest approach to the primary vertex** (= hypothesis that all the tracks are primaries)
- In the propagation, corrections on the energy loss (based on PID used for tracking) are applied :

- Once all tracks are reconstructed, they are **propagated to their point of closest approach to the primary vertex** (= hypothesis that all the tracks are primaries)
- In the propagation, corrections on the energy loss (based on PID used for tracking) are applied :

- Once all tracks are reconstructed, they are **propagated to their point of closest approach to the primary vertex** (= hypothesis that all the tracks are primaries)
- In the propagation, corrections on the energy loss (based on PID used for tracking) are applied :

- Redo track propagation with the appropriate energy loss correction
 - Propagate the track to the inner wall of the TPC (w/ energy correction)
 - Go back to the decay point, applying energy correction w/ the correct PID assumption

ALICE

- Redo track propagation with the appropriate energy loss correction
 - Propagate the track to the inner wall of the TPC (w/ energy correction)
 - Go back to the decay point, applying energy correction w/ the correct PID assumption

- 1st step : propagate to the DCA to PV **without** energy correction
- 2nd step : propagate to the TPC with energy correction (hyp : PID used during tracking)

ALICE

- Redo track propagation with the appropriate energy loss correction
 - Propagate the track to the inner wall of the TPC (w/ energy correction)
 - Go back to the decay point, applying energy correction w/ the correct PID assumption

- 1st step : propagate to the DCA to PV **without** energy correction
- 2nd step : propagate to the TPC with energy correction (hyp : PID used during tracking)
- 3rd step : propagate back to decay point **with** energy correction (hyp : correct PID)

ALICE

- Redo track propagation with the appropriate energy loss correction
 - Propagate the track to the inner wall of the TPC (w/ energy correction)
 - Go back to the decay point, applying energy correction w/ the correct PID assumption

- 1st step : propagate to the DCA to PV **without** energy correction
- 2nd step : propagate to the TPC with energy correction (hyp : PID used during tracking)
- 3rd step : propagate back to decay point **with** energy correction (hyp : correct PID)

Λ Invariant mass

• To get an idea whether or not these corrections are going in the right direction

 \rightarrow look at the invariant mass

 $m_{\rm PDG}(\Lambda) = 1115.683 \pm 0.006~{\rm MeV}/c^2$

I) Motivations

II) Analysis details and results

III) An example of remaining systematic effects

IV) Current status

Ξ Invariant mass

- Look at dE/dx retrocorrection applied on cascades
- In MC data (LHC20i2b) :

 $m_{\rm PDG}(\Xi) = 1321.71 \pm 0.07~{\rm MeV}/c^2$

Ω Invariant mass

- Look at dE/dx retrocorrection applied on cascades
- In MC data (LHC20i2b) :

 $m_{\rm PDG}(\Omega) = 1672.45 \pm 0.23~{\rm MeV/c^2}$

Conclusion

- Current results :
 - Improve PDG mass and mass difference values by at least a factor 5 and 3 respectively
 - Mass difference ~ 0 : CPT still valid but further constrained
- A first glimpse on the complexity of such a measurement :
 - Our mass measurements have an offset wrt the PDG mass, mainly coming from extra energy addition during V0/cascade finding → corrected now
- All the systematics were not presented today :
 - Choice of the fit functions
 - B field precision
 - ...
- Next step :
 - Understand why our dE/dx retrocorrection works so well on Ω but not on Ξ

Backup slides

Systematic study strategy

- For each selection, a random number is extracted from the actual distribution of this variable in the variation range (using TUnuran)
- The new set of selections (14 selections) is then used to obtain the inv. mass distribution of the particle of interest (Ξ, Ω)
- This procedure is repeated 20 000 times
- For each set of selections *i*, we extract :
 - The measured mass μ_i \rightarrow store in an histogram \implies $\begin{cases} Mass = Mean = \bar{\mu} \\ \sigma_{syst} = RMS \end{cases}$
 - The error on the mass σ_i \rightarrow store in an histogram $\rightarrow \sigma_{stat} = \bar{\sigma}$

Systematic study strategy

- For each selection, a random number is extracted from the actual distribution of this variable in the variation range (using TUnuran)
- The new set of selections (14 selections) is then used to obtain the inv. mass distribution of the particle of interest (Ξ, Ω)
- This procedure is repeated 20 000 times
- For each set of selections *i*, we extract :
 - The measured mass difference $\Delta \mu_i / \mu_i^{\text{part}} = (\mu_i^{\overline{\text{part}}} \mu_i^{\text{part}}) / \mu_i^{\text{part}}$

$$\rightarrow \text{ store in an histogram} \implies \begin{cases} \frac{\Delta \text{Mass}}{\text{Mass}} = \text{Mean} = \frac{\Delta \mu_i}{\mu_i^{\text{part.}}} \\ \sigma_{\text{syst}} = \text{RMS} \end{cases}$$

• The error on the mass difference $\sigma_{(\mu_i^{\overline{\text{part}}} - \mu_i^{\text{part}})/\mu_i^{\text{part}}}$

 \rightarrow store in an histogram $\rightarrow \sigma_{\text{stat}} = \overline{\sigma}_{(\mu_i^{\text{part}} - \mu_i^{\text{part}})/\mu_i^{\text{part}}}$

Dependence of the mass shift

- The gap between the extracted mass and the PDG mass seems to depend on :
 - Radial position of the decay point
 - The transverse momentum

Invariant mass Vs radius

- The mass shift is dependent on the radial position of the V0
 - \rightarrow with retrocorrections, we'd expect the trend to be less pronounced

KOs Invariant mass

• To get an idea whether or not these corrections are going in the right direction

 \rightarrow look at the invariant mass

 $m_{\rm PDG}(K^0_S) = 497.611 \pm 0.013~{\rm MeV}/c^2$

The dataset

Objective : Correct for extra energy loss correction, using a MC sample.

- 2 MC samples :
 - General purpose, anchored on LHC18m (LHC21a5a)
 - Enriched in Ξ and Ω , anchored on LHC18i (LHC20i2b)
- Event Selection :
 - ESDs,
 - Revertexing,
 - kINT7 and/or kHighV0M (MB + high multiplicity),
 - Remove in bunch (MV) and out-of-bunch pile up (OOB)
- Analysis task :

https://github.com/alisw/AliPhysics/blob/master/PWGLF/STRANGENESS/ Cascades/Run2/AliAnalysisTaskStrangenessVsMultiplicityRun2

Candidate selections

- Candidates are **primary** Λ , anti- Λ and K0s
- V0 selections

Variables	Cut
Rapidity	< 0.5
Pt	[1; 5] GeV/c
MC association	YES

• Track Selections

TPC refit	kTRUE
TPC PID N Sigma	< 3 σ
Nbr crossed rows	> 70
η	< 0.8

• Topological selections

Variables	Cut ∧ (K0s)
DCA V0 daughters	< 1.5 (1.0)
V0 Radius	> 0.5 cm
V0 Cos PA	> 0.97
V0 Lifetime	< 3*7.89 (3*2.686) cm
DCA V0 to PV	< 1 (0.06) cm
DCA Pos to PV	> 0,06 cm
DCA Neg to PV	> 0.06 cm

Ξ selections

Candidates are <u>primary</u> Ξ

Ξ-(Ξ+)	Cut value
y	< 0.5
рТ	[1 ; 5] GeV/c
MC association	YES

• Cascade selections

DCA Bach To PV	> 0.04 cm
DCA Casc daughters	< 1.3 cm
Casc Radius	> 0.5 cm
Casc Cos PA	> 0.97
Proper Lifetime	> 3 x 4.91 cm
Wrong PA	> 0.04

- Track selections :
 - $\bullet |\eta| < 0.8$
 - TPC refit
 - TPC Nbr Crossed Rows > 70
 - TPC PID Nsigma < 3

• V0 selections

DCA V0 to PV	> 0.04 cm
DCA Pos to PV	> 0.03 (0.04) cm
DCA Neg to PV	> 0.04 (0.03) cm
DCA V0 daughters	< 1.5 cm
V0 Radius	> 1.1 cm
V0 Cos PA	> 0.97
V0 Mass – A Mass	< 0.008 GeV/c2

Ω selections

• Candidates are **<u>primary</u>** Ω

Ω -(Ω +)	Cut value
y	< 0.5
рТ	[1;5] GeV/c
MC association	YES

• Cascade selections

DCA Bach To PV	> 0.04 cm
DCA Casc daughters	< 1.3 cm
Casc Radius	> 0.5 cm
Casc Cos PA	> 0.97
Casc Mass - Ξ Mass	> 0.008 GeV/c2
Proper Lifetime	> 3 x 2.46 cm
Wrong PA	> 0.04

- Track selections :
 - $\bullet ~|\eta|~<~0.8$
 - TPC refit
 - TPC Nbr Crossed Rows > 70
 - TPC PID Nsigma < 3

• V0 selections

DCA V0 to PV	> 0.04 cm
DCA Pos to PV	> 0.03 (0.04) cm
DCA Neg to PV	> 0.04 (0.03) cm
DCA V0 daughters	< 1.5 cm
V0 Radius	> 1.1 cm
V0 Cos PA	> 0.97
V0 Mass - A Mass	< 0.008 GeV/c2

