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High multiplicity events in small systems

Unexpected behaviors, point to the creation of QGP, where observed in small systems:
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Unexpected behaviors, point to the creation of QGP, where observed in small systems:
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* Enhanced production of strange hadrons similar to Pb-Pb collisions.

How to interpret these behaviors ?

Several possible scenarios:
* QGP droplets: Formation of QGP medium in high multiplicity even

* Multiparton interactions: Several parton-parton interactions in a
single hardon-hadron collisions.
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Where to look for MPIs? some tools

* Double Quarkonia production
* Direct probe for MPIs.
* Information about single quarkonia production.
Need:s a lot of statistics to perform differential cross section.

* Quarkonia production vs charged-particle multiplicity
* Indirect probe for MPls.
* Provide information for the soft and hard QCD process.

Charmonium production as a function of charged-particle multiplicity with the ALICE
experiment.
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Why charmonia ?

* c-quarks are created during the perturbative QCD.
Due to their heavy mass ~ 1.5 GeV.

* The bound state is formed during non perturbative QCD.
Binding energy is few MeV.
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Why charmonia ?

* c-quarks are created during the perturbative QCD.
Due to their heavy mass ~ 1.5 GeV.

* The bound state is formed during non perturbative QCD.
Binding energy is few MeV.

Provide an excellent tool to test perturbative and non
perturbative QCD processes.
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ALICE detector
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Muon Spectrometer

)/, Y(2S) - pp
2.5<¢y_ <40

. Front absorber.
ll. Muon tracking chambers.
lIl. Dipole magnet 3T.m.

IV. Muon trigger chambers.
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Central barrel

Measure charged-particle multipicity

o SE SRS e VO scintillators.
l’" il e Silicon pixel detector (SPD)
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SPD
In|<1.4
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Charmonia production in p-Pb
collisions
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Cold nuclear matter effects

Nuclear environment effects

* |nitial state effects

- Parton shadowing: due to modification of PDFs in nuclei.
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Cold nuclear matter effects

Nuclear environment effects

* Initial state effects

- Parton shadowing: due to modification of PDFs in nuclei.

— Color Glass Condensate (CGC), i.e medium with high density of small Bjorken-x gluons.
* Initial- state effects:

- Fully coherent energy loss:by partons via gluon emission.

. state effects

— Interaction with comoving particles.
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Particle production vs multiplicity

yields of charmonia normalised
to the their average yields
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Multiplicity dependence of ]/y production
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Multiplicity dependence of ]/y production
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Multiplicity dependence of ]/y production
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J/@ vs multiplicity in p-Pb collisions
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Multiplicity dependence of y(2S) production
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 The y(2S) yield increases with increasing dN_, /dn in p-Pb collisions.
* Percolation+ comovers+EPSO9 calculation predicts the trend of the measurements
* Large uncertainty at forward rapidity due to EPSO9 nPDF uncertainty. 15/22
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Multiplicity dependence of y(2S)-over-J/y production
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« Similar behavior of |/y and Y(2S) vs dN_ / dn in p-Pb.
 Similar trend of the Y(2S)-to-]/y ratio vs multiplicity in both rapidity regions.
* The comovers calculation describes the data within statistical and systematic uncertainties.
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Comparison to pp collisions at 13 TeV
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 Y(2S)yields increase linearly with dN_ /dn.

* PYTHIA 8.2 predicts the trend of the
measurements at the probed multiplicities.
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Multiplicity dependence of @(2S)
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w(2S) is the radial excited state of |/w

ALICE, pp, Vs = 13 TeV

y(2S) » utu,25< Yoms <40
¢ Data

\
\
\
\
\
\
\

L PYTHIAB2 /l -
L PYTHIA8.2 (no CR) ’ s /:'__
i @—~*j;-/’* g
: o B :
i o2 i
SEE e ]
i / + 1% norm. unc. not shown N
_’(*I" 1 i | [ 1 1 | 1 1 1 | 1 3
0 2 4 6

dNCh / dT] INEL>0

AN, /dn) e

(ST)h

18/22


https://arxiv.org/abs/2204.10253

Multiplicity dependence of @(2S) production

P(2S) is the radial excited state of |/yp
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* Similar behavior for |/y and y(2S) vs multiplicity.

* Measurements are compatible with available models
within uncertainties:
* Comovers: predicts a stronger suppression of
W(2S) at high multiplicity.
* PYTHIA 8.2 : suggests a flat Y(2S)-to- |/y ratig,, »,
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Conclusion

* J/wyield at forward and backward rapidity as a function of charged-particle multiplicity is described by EPOS
calculation, that includes both initial and final state effects.

*  Y(2S) measurements at large rapidities are not conclusive due to limited statistics.

*  More stringent tests of the models are needed to disentangle initial and final-state effects.

LHC RUN 3 will bring constraints to MPI modeling thanks to higher statistics expected for data.
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Thank you !
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