Charmonium production as a function of charged-particle multiplicity in p-Pb collisions with ALICE at the LHC

Theraa TORK IJCLab, IN2P3-CNRS

Unexpected behaviors, point to the creation of QGP, where observed in small systems:

- Elliptic flow of charged particles: long-range angular correlation. JHEP 10.1007/09(2010).
- Enhanced production of strange hadrons similar to Pb-Pb collisions. Nature Phys 13, 535-539 (2017).

Unexpected behaviors, point to the creation of QGP, where observed in small systems:

- Elliptic flow of charged particles: long-range angular correlation. JHEP 10.1007/09(2010).
- Enhanced production of strange hadrons similar to Pb-Pb collisions. Nature Phys 13, 535-539 (2017).

Unexpected behaviors, point to the creation of QGP, where observed in small systems:

- Elliptic flow of charged particles: long-range angular correlation. JHEP 10.1007/09(2010).
- Enhanced production of strange hadrons similar to Pb-Pb collisions. Nature Phys 13, 535-539 (2017).

How to interpret these behaviors ?

Several possible scenarios:

Unexpected behaviors, point to the creation of QGP, where observed in small systems:

- Elliptic flow of charged particles: long-range angular correlation. JHEP 10.1007/09(2010).
- Enhanced production of strange hadrons similar to Pb-Pb collisions. Nature Phys 13, 535-539 (2017).

How to interpret these behaviors ?

Several possible scenarios:

• QGP droplets: Formation of QGP medium in high multiplicity events.

Unexpected behaviors, point to the creation of QGP, where observed in small systems:

- Elliptic flow of charged particles: long-range angular correlation. JHEP 10.1007/09(2010).
- Enhanced production of strange hadrons similar to Pb-Pb collisions. Nature Phys 13, 535-539 (2017).

How to interpret these behaviors ?

Several possible scenarios:

- QGP droplets: Formation of QGP medium in high multiplicity even
- Multiparton interactions: Several parton-parton interactions in a single hardon-hadron collisions.

Unexpected behaviors, point to the creation of QGP, where observed in small systems:

- Elliptic flow of charged particles: long-range angular correlation. JHEP 10.1007/09(2010).
- Enhanced production of strange hadrons similar to Pb-Pb collisions. Nature Phys 13, 535-539 (2017).

How to interpret these behaviors ?

Several possible scenarios:

- QGP droplets: Formation of QGP medium in high multiplicity even
- Multiparton interactions: Several parton-parton interactions in a single hardon-hadron collisions.

Our main motivation is to study MPIs in small systems

• Double Quarkonia production

- Direct probe for MPIs.
- Information about single quarkonia production.

Needs a lot of statistics to perform differential cross section.

• Double Quarkonia production

- Direct probe for MPIs.
- Information about single quarkonia production.

Needs a lot of statistics to perform differential cross section.

- Quarkonia production vs charged-particle multiplicity
 - Indirect probe for MPIs.
 - Provide information for the soft and hard QCD process.

Double Quarkonia production

- Direct probe for MPIs.
- Information about single quarkonia production.

Needs a lot of statistics to perform differential cross section.

• Quarkonia production vs charged-particle multiplicity

- Indirect probe for MPIs.
- Provide information for the soft and hard QCD process.

Charmonium production as a function of charged-particle multiplicity with the ALICE experiment.

Why charmonia ?

- c-quarks are created during the perturbative QCD.
 Due to their heavy mass ~ 1.5 GeV.
- The bound state is formed during non perturbative QCD.
 Binding energy is few MeV.

Why charmonia ?

- c-quarks are created during the perturbative QCD.
 Due to their heavy mass ~ 1.5 GeV.
- The bound state is formed during non perturbative QCD.
 Binding energy is few MeV.

Why charmonia ?

- c-quarks are created during the perturbative QCD.
 Due to their heavy mass ~ 1.5 GeV.
- The bound state is formed during non perturbative QCD.
 Binding energy is few MeV.

Provide an excellent tool to test perturbative and non perturbative QCD processes.

Charmonia

Charmonia

Charmonia

ALICE detector

Muon Spectrometer

J/ψ, ψ(2S) → μ⁻μ⁺ 2.5 < y_{lab}< 4.0

I. Front absorber.

II. Muon tracking chambers.

III. Dipole magnet 3T.m.

IV. Muon trigger chambers.

Central barrel

Measure charged-particle multipicity

- V0 scintillators.
- Silicon pixel detector (SPD)

Charmonia production in p-Pb collisions

Nuclear environment effects

• Initial state effects

©b. Diab

Nuclear environment effects

• Initial state effects

- Initial state effects
 - Parton shadowing: due to modification of PDFs in nuclei.

- Initial state effects
 - Parton shadowing: due to modification of PDFs in nuclei.

- Initial state effects
 - Parton shadowing: due to modification of PDFs in nuclei.
 - Color Glass Condensate (CGC), i.e medium with high density of small Bjorken-*x* gluons.

- Initial state effects
 - **Parton shadowing:** due to modification of PDFs in nuclei.
 - Color Glass Condensate (CGC), i.e medium with high density of small Bjorken-*x* gluons.

Nuclear environment effects

- Initial state effects
 - **Parton shadowing:** due to modification of PDFs in nuclei.
 - Color Glass Condensate (CGC), i.e medium with high density of sr
- Initial-Final state effects:

©b. Diab

- Initial state effects
 - Parton shadowing: due to modification of PDFs in nuclei.
 - Color Glass Condensate (CGC), i.e medium with high density of small Bjorken-*x* gluons.
- Initial-Final state effects:

- Initial state effects
 - Parton shadowing: due to modification of PDFs in nuclei.
 - Color Glass Condensate (CGC), i.e medium with high density of small Bjorken-*x* gluons.
- Initial-Final state effects:
 - Fully coherent energy loss:by partons via gluon emission.

- Initial state effects
 - **Parton shadowing:** due to modification of PDFs in nuclei.
 - Color Glass Condensate (CGC), i.e medium with high density of small Bjorken-*x* gluons.
- Initial-Final state effects:
 - Fully coherent energy loss:by partons via gluon emission.

Nuclear environment effects

- Initial state effects
 - **Parton shadowing:** due to modification of PDFs in nuclei.
 - Color Glass Condensate (CGC), i.e medium with high density of sr
- Initial-Final state effects:
 - Fully coherent energy loss:by partons via gluon emission.

©b. Diab

Final state effects

Nuclear environment effects

- Initial state effects
 - Parton shadowing: due to modification of PDFs in nuclei.
 - Color Glass Condensate (CGC), i.e medium with high density of small Bjorken-*x* gluons.
- Initial-Final state effects:
 - Fully coherent energy loss:by partons via gluon emission.
 - Final state effects

٠

- Initial state effects
 - **Parton shadowing:** due to modification of PDFs in nuclei.
 - Color Glass Condensate (CGC), i.e medium with high density of small Bjorken-*x* gluons.
- Initial-Final state effects:
 - Fully coherent energy loss:by partons via gluon emission.
 - Final state effects
 - Interaction with comoving particles.

Particle production vs multiplicity

Multiplicity dependence of J/ψ production

- J/ψ yields increase with dN_{ch} / dη in both rapidity regions.
- Faster (Slower) than linear increase observed at backward (forward) rapidity.
- The different behavior likely due to different Bjorken-*x* regions probed.

Multiplicity dependence of J/ψ production

- J/ ψ yields increase with dN_{ch}/d η in both rapidity regions.
- Faster (Slower) than linear increase observed at backward (forward) rapidity.
- The different behavior likely due to different Bjorken-*x* regions probed.

Multiplicity dependence of J/ψ production

- J/ψ yields increase with dN_{ch} / dη in both rapidity regions.
- Faster (Slower) than linear increase observed at backward (forward) rapidity.
- The different behavior likely due to different Bjorken-*x* regions probed.

p-Pb (p-going direction)

J/ψ vs multiplicity in p-Pb collisions

EPOS describes the behavior of J/ψ vs multiplicity in both rapidity regions.

Multiplicity dependence of $\psi(2S)$ production

- The $\psi(2S)$ yield increases with increasing $\,dN_{_{ch}}/d\eta$ in p-Pb collisions.

arXiv:2204.10253

Theraa TORK

- Percolation+ comovers+EPSO9 calculation predicts the trend of the measurements
 - Large uncertainty at forward rapidity due to EPSO9 nPDF uncertainty.

- Similar behavior of J/ ψ and ψ (2S) vs dN_{ch}/d η in p-Pb.
- Similar trend of the $\psi(2S)$ -to-J/ ψ ratio vs multiplicity in both rapidity regions.
- The comovers calculation describes the data within statistical and systematic uncertainties.

arXiv:2204.10253

Comparison to pp collisions at 13 TeV

Multiplicity dependence of $\psi(2S)$ production $\psi(2S)$ is the radial excited state of $1/\psi$

- $\psi(2S)$ yields increase linearly with $dN_{ch}/d\eta$.
- PYTHIA 8.2 predicts the trend of the measurements at the probed multiplicities.

Multiplicity dependence of $\psi(2S)$ production $\psi(2S)$ is the radial excited state of $1/\psi$

dN_{ch}/dη

- Similar behavior for J/ ψ and ψ (2S) vs multiplicity.
- Measurements are compatible with available models within uncertainties:
 - Comovers: predicts a stronger suppression of ψ(2S) at high multiplicity.
 - PYTHIA 8.2 : suggests a flat $\psi(2S)$ -to- J/ ψ ratiger $_{12}$

Conclusion

- J/ψ yield at forward and backward rapidity as a function of charged-particle multiplicity is described by EPOS calculation, that includes both initial and final state effects.
- $\psi(2S)$ measurements at large rapidities are not conclusive due to limited statistics.
- More stringent tests of the models are needed to disentangle initial and final-state effects.

LHC RUN 3 will bring constraints to MPI modeling thanks to higher statistics expected for data.

Thank you !

Nuclear PDF

