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High multiplicity events in small systems 

Unexpected behaviors, point to the creation of QGP, where observed in small systems:

● Elliptic flow of charged particles: long-range angular correlation.
  JHEP 10.1007/09(2010).

● Enhanced production of strange hadrons similar to Pb-Pb collisions.
           Nature Phys 13, 535–539 (2017). 
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● Enhanced production of strange hadrons similar to Pb-Pb collisions.
           Nature Phys 13, 535–539 (2017). 

How to interpret these behaviors ?
   Several possible scenarios:

● QGP droplets: Formation of QGP  medium in high multiplicity events.

● Multiparton interactions:  Several parton-parton interactions in a 
single hardon-hadron collisions.

Our main motivation is to study MPIs in small systems 3 / 22
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● Direct probe for MPIs.
● Information about single quarkonia production.

Needs a lot of statistics to perform differential cross section.  

● Quarkonia production vs charged-particle multiplicity
● Indirect probe for MPIs.
● Provide information for the soft and hard QCD process.

Charmonium production as a function of charged-particle multiplicity with the ALICE 
experiment.
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Theraa TORK

Why charmonia ? 

● c-quarks are created during the perturbative QCD.
Due to their heavy mass ~ 1.5 GeV.

● The bound state is formed during non perturbative QCD.
Binding energy is few MeV.

 

Provide an excellent tool to test perturbative and non 
perturbative QCD processes.
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Muon Spectrometer 

II

III

IV
I

I. Front absorber. 

II. Muon tracking chambers. 

III. Dipole magnet 3T.m.

IV. Muon trigger chambers.

J/ , (2S)  ψ, ψ(2S) → ψ, ψ(2S) → → µ-µ+

2.5 < ylab< 4.0
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Central barrel

● V0 scintillators. 
● Silicon pixel detector (SPD) 

Measure charged-particle multipicity
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Charmonia production in p-Pb 
collisions 
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Nuclear environment effects 

©b. Diab

11 / 22



Theraa TORK

Cold nuclear matter effects

● Initial state effects

Nuclear environment effects 

11 / 22



Theraa TORK

Cold nuclear matter effects

● Initial state effects

– Parton shadowing: due to modification of PDFs in nuclei.

Nuclear environment effects 

11 / 22



Theraa TORK

Cold nuclear matter effects

● Initial state effects

– Parton shadowing: due to modification of PDFs in nuclei.

Nuclear environment effects 

11 / 22



Theraa TORK

Cold nuclear matter effects

● Initial state effects

– Parton shadowing: due to modification of PDFs in nuclei.

– Color Glass Condensate (CGC), i.e medium with high density of small Bjorken-x gluons. 

Nuclear environment effects 

11 / 22



Theraa TORK

Cold nuclear matter effects

● Initial state effects

– Parton shadowing: due to modification of PDFs in nuclei.

– Color Glass Condensate (CGC), i.e medium with high density of small Bjorken-x gluons. 

Nuclear environment effects 

11 / 22



Theraa TORK

Cold nuclear matter effects

● Initial state effects

– Parton shadowing: due to modification of PDFs in nuclei.

– Color Glass Condensate (CGC), i.e medium with high density of small Bjorken-x gluons. 

● Initial-Final state effects:

Nuclear environment effects 

©b. Diab

11 / 22



Theraa TORK

Cold nuclear matter effects

● Initial state effects

– Parton shadowing: due to modification of PDFs in nuclei.

– Color Glass Condensate (CGC), i.e medium with high density of small Bjorken-x gluons. 

● Initial-Final state effects:

Nuclear environment effects 

11 / 22



Theraa TORK

Cold nuclear matter effects

● Initial state effects

– Parton shadowing: due to modification of PDFs in nuclei.

– Color Glass Condensate (CGC), i.e medium with high density of small Bjorken-x gluons. 

● Initial-Final state effects:

– Fully coherent energy loss:by partons via gluon emission.

Nuclear environment effects 

11 / 22



Theraa TORK

Cold nuclear matter effects

● Initial state effects

– Parton shadowing: due to modification of PDFs in nuclei.

– Color Glass Condensate (CGC), i.e medium with high density of small Bjorken-x gluons. 

● Initial-Final state effects:

– Fully coherent energy loss:by partons via gluon emission.

Nuclear environment effects 

11 / 22



Theraa TORK

Cold nuclear matter effects

● Initial state effects

– Parton shadowing: due to modification of PDFs in nuclei.

– Color Glass Condensate (CGC), i.e medium with high density of small Bjorken-x gluons. 

● Initial-Final state effects:

– Fully coherent energy loss:by partons via gluon emission.

● Final state effects 

Nuclear environment effects 

©b. Diab

11 / 22



Theraa TORK

Cold nuclear matter effects

● Initial state effects

– Parton shadowing: due to modification of PDFs in nuclei.

– Color Glass Condensate (CGC), i.e medium with high density of small Bjorken-x gluons. 

● Initial-Final state effects:

– Fully coherent energy loss:by partons via gluon emission.

● Final state effects 

Nuclear environment effects 

11 / 22



Theraa TORK

Cold nuclear matter effects

● Initial state effects

– Parton shadowing: due to modification of PDFs in nuclei.

– Color Glass Condensate (CGC), i.e medium with high density of small Bjorken-x gluons. 

● Initial-Final state effects:

– Fully coherent energy loss:by partons via gluon emission.

● Final state effects 

– Interaction with comoving particles.

J/
ψ

ψ(2
S))

J
/
ψ

Nuclear environment effects 
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Particle production vs multiplicity

Number of charged-particle in each rapidity 
normalised to the average number of charged 

particles 

yields of charmonia normalised 
to the their average yields  
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Multiplicity dependence of J/  ψ production

● J/  yields increase with dNψ, ψ(2S) → ch / d  η in 
both rapidity regions.

● Faster (Slower) than linear increase  
observed at backward (forward) rapidity.

● The different behavior likely due to 
different Bjorken-x regions probed.

dN
ch
/dη

(2S) , J/S) , J/) , J/ψ ψ 
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J/ψ  vs multiplicity in p-Pb collisions 
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EPOS describes the behavior of  J/  vs multiplicity in both rapidity regions.ψ, ψ(2S) → 
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Multiplicity dependence of ψ(2S) productionS) production) production

● The (2S) yield increases with increasing  dNψ, ψ(2S) → ch /d  in pη –Pb collisions.

● Percolation+ comovers+EPS09 calculation predicts the trend of the measurements

● Large uncertainty at forward rapidity due to  EPS09 nPDF uncertainty. 
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Multiplicity dependence of ψ(2S) productionS) production)-over-J/ψ over-over-J/ψ J/ψ ψ production

● Similar behavior of J/ψ, ψ(2S) →  and (2S) vs  dNψ, ψ(2S) → ch / d  in p-Pbη .

● Similar trend of the (2S)-to-ψ, ψ(2S) → J/ψ, ψ(2S) →  ratio vs multiplicity in both rapidity regions.

●  The comovers calculation describes the data within statistical and systematic uncertainties.
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 Comparison to pp collisions at 13 TeV
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Multiplicity dependence of ψ(2S) productionS) production) production 
(2S) , J/S) , J/) iψ s the radial excited state of J/ψ 

dN
ch
/dη

(2S) , J/S) , J/)
ψ 

● (2S) yields increase linearly with dNψ, ψ(2S) → ch/d .η 

● PYTHIA 8.2 predicts the trend of  the 
measurements at the probed multiplicities.  
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dN
ch
/dη

(2S) , J/S) , J/) , J/ψ ψ 

● Similar behavior for J/ψ, ψ(2S) →  and (2S) vs multiplicity.ψ, ψ(2S) → 

●   Measurements are compatible with available models 
within uncertainties:

● Comovers: predicts a stronger suppression of 
(2S) at high multiplicity.ψ, ψ(2S) → 

● PYTHIA 8.2 : suggests a flat (2S)-to- ψ, ψ(2S) → J/ψ, ψ(2S) →   ratio. 

 arXiv:220
4.10

253
Multiplicity dependence of ψ(2S) productionS) production) production 

(2S) , J/S) , J/) iψ s the radial excited state of J/ψ 
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Conclusion

●  J/ψ, ψ(2S) →  yield at forward and backward rapidity as a function of charged-particle multiplicity is described by EPOS 
calculation, that includes both initial and final state effects.

●  ψ, ψ(2S) → (2S) measurements at large rapidities are not conclusive due to limited statistics. 

● More stringent tests of the models are needed to disentangle initial and final-state effects.

LHC RUN 3  will bring constraints to MPI modeling thanks to higher statistics expected for data.
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Thank you !
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Nuclear PDF
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