The thesis era 00000	Prompt and non-Prompt J/ ψ 00000	ALICE results	The "In case I forgot" slides

Separating prompt and non-prompt ${\rm J}/\psi$: The emancipation of quarkonias in ALICE run 3 and other stuff

Corentin Cot

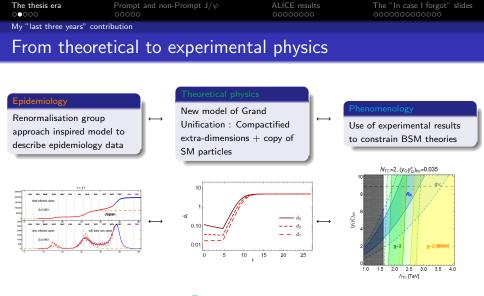
GDR QCD - 25th of May 2022

The thesis era ●○○○○	Prompt and non-Prompt J/ ψ 00000	ALICE results	The "In case I forgot" slides
Outline			

<□ > < @ > < ≧ > < ≧ > ≧ > り < ? 2/32

The thesis era

- My "last three years" contribution
- To unify or not to unify ? (Asymptotic Grand Unification)
- Alert ! Physicist in wrong field ... (Epidemic Renormalisation Group)

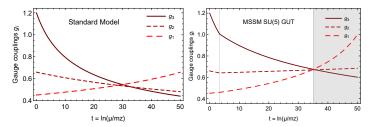

2 Prompt and non-Prompt ${\sf J}/\psi$

- The J/ ψ soup
- How I met your mother (hadron) ?

3 ALICE results

- ALICE ? Who the "hell" is ALICE ?
- Finally ! The results !

4 The "In case I forgot" slides


Applications of the renormalisation group equations : From Grand Unification to epidemiology.

Beta function and running couplings

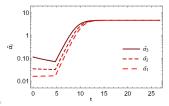
 The theory of renormalisation implies that it exists a scale-invariant function β such that for any coupling g (or any lagrangian parameter):

$$\frac{\partial g}{\partial \mathsf{Ln}\mu} = \beta(g)$$

 $G_{SM} = SU(3)_c \times SU(2)_W \times U(1)_Y \subset SU(5)$

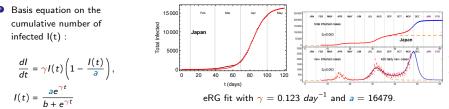
- Standard unification = Intersection point. Exact unification possible by adding a SuperSymmetric sector.
- Problems : Proton decay phenomenology and SUSY not found at LHC.

The thesis era ○○○●○	Prompt and non-Prompt J/ ψ 00000	ALICE results	The "In case I forgot" slides
To unify or not to uni	fy ? (Asymptotic Grand Unification)		
aGUT <i>SU</i>	(5) model		


- Compactified extra-dimension on a S¹/(Z₂ × Z₂') orbifold + Copy of SM particles embedded in SU(5) multiplets.
- Scalar and Fermion content in 1, 5, 5, 10 and 10 representations :

$$\begin{split} \phi_5 &= \begin{pmatrix} H \\ \phi_h \end{pmatrix}, \quad \psi_{5_{L/R}} = \begin{pmatrix} b \\ L^c \end{pmatrix}_{L/R} , \quad \psi_{\overline{5}_{L/R}} = \begin{pmatrix} B^c \\ I \end{pmatrix}_{L/R} , \quad \psi_1 = N , \\ \psi_{10_{L/R}} &= \frac{1}{\sqrt{2}} \begin{pmatrix} T^c & q \\ T^c \end{pmatrix}_{L/R} , \quad \psi_{\overline{10}_{L/R}} = \frac{1}{\sqrt{2}} \begin{pmatrix} t & Q^c \\ T \end{pmatrix}_{L/R} , \end{split}$$

- SM fields and new fields called Indalo ("creation" in Zulu) fields (noted \$).
- Conserved baryon and lepton number → No proton decay !
- Renormalisation group equation for the one-loop factor gauge coupling constants :


$$2\pi \frac{d\alpha_i}{dt} = b_i^{SM} \alpha_i^2 + (m_Z R e^t - 1) b_5 \alpha_i^2$$

 All gauge couplings run to the same non-zero UV fixed point asymptotically (If n_g ≤ 3) → Asymptotic Grand Unification Theory.

The framework basis

 Two parameters needed to reproduce a wave : γ the "infection rate per time unit" and a the total number of cases.

$$\frac{dl_i}{dt} = \gamma_i l_i(t) \left[\left(1 - \frac{l_i(t)}{a_i}\right)^2 - \delta_0 \right]^{p_0} \prod_{\rho=1}^{w} \left[\left(1 - \zeta_\rho \frac{l_i(t)}{a_i}\right)^2 - \delta_\rho \right]^{p_\rho} + \sum_j k_{ij} \left(l_j(t) - l_i(t)\right)$$

- Simplest eRG equation : one-wave behavior.
- Interactive eRG : k_{ij} number of travellers from region i to region j.
- Endemic phase : $\delta < 0$, complex fixed points \rightarrow constant number of cases.
- Multiwave eRG : Multiples waves with different parameters (ζ_ρ).

The thesis era	Prompt and non-Prompt J/ψ	ALICE results	The "In case I forgot" slides
	00000		
0			

Outline

- My "last three years" contribution
- To unify or not to unify ? (Asymptotic Grand Unification)
- Alert ! Physicist in wrong field ... (Epidemic Renormalisation Group)

Prompt and non-Prompt ${\sf J}/\psi$

- The J/ψ soup
- How I met your mother (hadron) ?

3 ALICE results

- ALICE ? Who the "hell" is ALICE ?
- Finally ! The results !

4 The "In case I forgot" slides

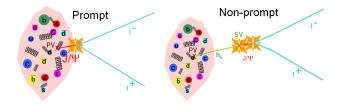
The thesis era 00000	Prompt and non-Prompt J/ψ	ALICE results 00000000	The "In case I forgot" slides
The J/ ψ soup			
J/ψ parti	cles and QGP		

What is the ${\rm J}/\psi$? :

- c c meson (charmonia)
- Discovered independently at SLAC (Richter) and BNL (Ting) in 1974.

Why the J/ψ is so important ?

- Lightest spin 1 charmonium : 3.0969 GeV
 → High statistics in hadron collisions.
- Relatively long lifetime : 7.2×10^{-21} s
- Produced early → Allows to probe hot QCD medium from collisions → Ideal to study Quark-Gluon Plasma (QGP).


What is the Quark-Gluon Plasma ? :

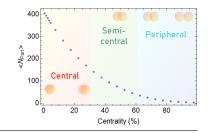
- Deconfined state where gluons and quarks behave freely (local color charges).
- Behaves like a perfect fluid.

Why the QGP is so important ?

- Hints on the early state of the Universe.
- Allows to study phenomena like jet quenching, color-screening, recombination

The thesis era	Prompt and non-Prompt ${\mathsf J}/\psi$	ALICE results	The "In case I forgot" slides
00000	0000	00000000	000000000000
How I met your moth	er (hadron) ?		
Different	1/v production		

How J/ψ are created ? :


- Directly in the collided medium or decaying from higher mass charmonia states ($\psi(2s)$, $\chi_c...$) : **Prompt** J/ ψ .
- Product from the decay of b hadrons \rightarrow secondary vertex : Non-prompt J/ ψ .

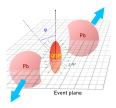
Why is it important to separate them ?

- Non-prompt J/ ψ momentum is close to the one from the b hadron \rightarrow Information about B mesons.
- Different behavior of c and b quarks.
- Could allow to constrain theoretical models.

The thesis era 00000	Prompt and non-Prompt J/ ψ	ALICE results	The "In case I forgot" slides
How I met your moth	er (hadron) ?		
Some vari	ables of interest		

 Number of participants/Centrality : < N_{part} > refers to the number of participants nucleons. The Glauber model relates it to the centrality of the collision (in %). Glauber, RJ, 1959.

Nuclear modification factor


$$R_{AA} = \frac{\frac{d^2 \sigma_{PbPb}}{dydp_t}}{\langle N_{coll} \rangle \frac{d^2 \sigma_{PP}}{dydp_t}}$$

where $< N_{coll} >$ is the average number of nucleon-nucleon collision in PbPb.

Elliptic flow :

$$v_2 = \left\langle \cos \left[2 \left(\phi - \Psi_{EP} \right) \right] \right\rangle$$

where <> refers to average over the particles, summed over all events, ϕ is the azimuthal angle and Ψ_{EP} is the event plane angle.

(ロト (個) (目) (目) (目) (10/30)

00000 How I met your mothe	Prompt and non-Prompt J/ψ 0000	0000000	00000000000000
	parate them ?		

How it is usually done ? :

Identification based on the detection of second vertexing.

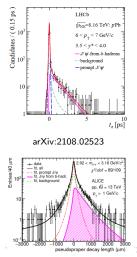
Pseudo proper time :

• The pseudo proper time t_z is defined using :

$$f_z = \frac{(z_{SV} - z_{PV}) M_{J/\psi}}{p_z}$$

where z_{SV} and z_{PV} are respectively the z-coordinates of the primary and secondary vertices and p_z is the momentum along z, where z is the beam axis.

 Prompt : Dirac function / Non-prompt : Exponential function. Both are convoluted with a triple-Gaussian function.


Pseudo proper decay length :

• The pseudo proper decay length x is better designed for central rapidity :

$$\boldsymbol{x} = \frac{\vec{L}.\vec{p_T}M_{J/\psi}}{|\vec{p_T}|}$$

where \vec{L} is the vector from the PV to the SV and $\vec{p_T}$ the transverse momentum.

Phys. Lett. B774 (2017) 159

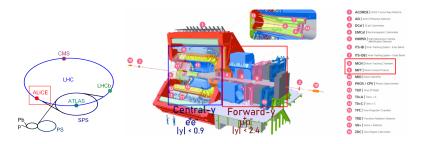
The thesis era 00000	Prompt and non-Prompt ${\sf J}/\psi$ 00000	ALICE results	The "In case I forgot" slides

Outline

The thesis era

- My "last three years" contribution
- To unify or not to unify ? (Asymptotic Grand Unification)
- Alert ! Physicist in wrong field ... (Epidemic Renormalisation Group)

Prompt and non-Prompt J/ψ


- The J/ ψ soup
- How I met your mother (hadron) ?

3 ALICE results

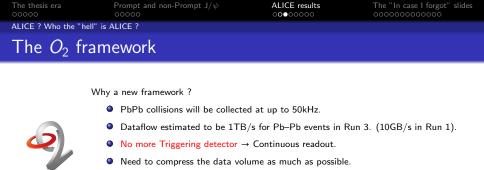
- ALICE ? Who the "hell" is ALICE ?
- Finally ! The results !

The thesis era 00000	Prompt and non-Prompt J/ ψ 00000	ALICE results	The "In case I forgot" slides
ALICE ? Who the "he	ell" is ALICE ?		
The ALIC	F detector		

What is ALICE ?

- ALICE is one of the four main experiments on the LHC.
- Composed by multiple sub-detectors (13 for run 3).

What is its purpose ?


- Mainly designed to study heavy ion collisions and QGP through quarkonia mainly.
- Allow to study them down to centrality 0% and to low p_T.

What the run 3 upgrade will bring ?

• New detectors : MFT allowing to perform second vertexing for forward rapidity events.


かくで 13/32

• Improved readout electronics and new framework $(O_4^2)_{-}$ adapted to more luminosity.

Parallelization needed to fasten the analysis.

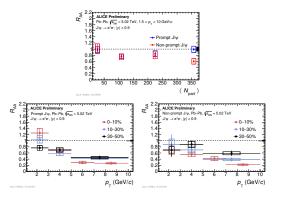
How O_2 is designed ?

What is its status ?

- Most of the framework is ready and heavily tested.
- Some functionalities still not ready (e.g : Embedding).

Prompt and non-Prompt J/ ψ 00000

ALICE results


The "In case I forgot" slides

Finally ! The results !

Latest ALICE Run 2 results for PbPb collisions : R_{AA}

- *R_{AA}* shows suppression of prompt and non-prompt *J*/ψ in central collisions.
- Recombination creates low p_T prompt J/ψ in central collisions.
- No information about contributions at forward rapidity and low p_T yet.

Jon-Are Sætre - QM 2022

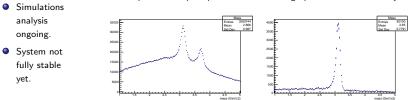
< □ ▶ < @ ▶ < \ > ↓ < \ > ↓ \ = り < \ > 2 り < C 15/32

 The thesis era
 Prompt and non-Prompt J/ψ ALICE results
 The "In case I forgot" slides

 0000
 0000
 0000
 0000
 0000000000

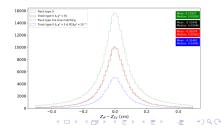
 Finally ! The results !
 1
 1
 1

Latest ALICE Run 2 results for PbPb collisions : v_2


JHEP 10 (2020) 141 / arXiv:2005.14518

- Small elliptic flow expected for non-prompt J/ψ → No flow for Υ(1S).
- No information about contributions at low *p*_T yet for prompt/non-prompt.

 Latest TAMU model seem to be in agreement with data.


The thesis era 00000	Prompt and non-Prompt J/ ψ 00000	ALICE results	The "In case I forgot" slides
Finally ! The results !			
Run 3 res	ults		

Prompt and non-prompt simulations through μ channel at forward-y

- Secondary vertexing but matching tracks are not perfect yet.
- Data to come soon. Beam physics will start this week.

Rita Sadek - O2 DQ meeting

The thesis era 00000	Prompt and non-Prompt J/ ψ 00000	ALICE results	The "In case I forgot" slides
Finally ! The results !			
Conclusion			

We have seen that :

- A new model of Grand Unification involving a different pardigm to understand Unification.
- Physics can give important interdisciplinary insights, especially fields you wouldn't expect to work with.
- Prompt/Non prompt J/ψ separation gives crucial information on nuclear and collective effects.
- Run 3 will bring much more statistics and allow to access to new kinematics regions for the study of J/ψ.

<□ ▶ < @ ▶ < E ▶ < E ▶ E の Q ℃ 18/32

 Particle physics theoreticians-PhD struggles to speak about experimental physics easily (Still in phase transition).

The thesis era 00000	Prompt and non-Prompt J/ ψ 00000	ALICE results ○○○○○○●	The "In case I forgot" slides
Finally ! The results !			
Thanks			

Thank you for your attention !

The thesis era 00000	Prompt and non-Prompt J/ ψ 00000	ALICE results	The "In case I forgot" slides ●000000000000
Outline			

- My "last three years" contribution
- To unify or not to unify ? (Asymptotic Grand Unification)
- Alert ! Physicist in wrong field ... (Epidemic Renormalisation Group)

) Prompt and non-Prompt ${\sf J}/\psi$

• The J/ ψ soup

How I met your mother (hadron) ?

3 ALICE results

- ALICE ? Who the "hell" is ALICE ?
- Finally ! The results !

The thesis e	Prompt	and	non-Prompt

ALICE results

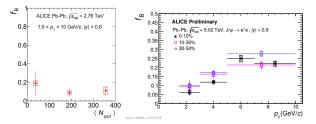
The "In case I forgot" slides ○●○○○○○○○○○○

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ のへで 21/32

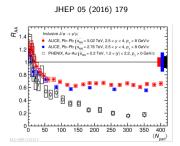
Embedding Service task

- Embedding is used to add up together simulated signals and real data background
- Embedding expected to be held at the digits level.
- Whole workflow expected to reconstruct real data background vertex, then simulate signals at this vertex, then embed everything together.

The thesis era	Prompt and non-Prompt J/ψ 00000	ALICE results	The "In case I forgot" slides
00000		00000000	00●0000000000

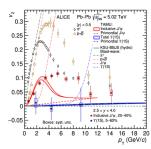

Additional variables

Non-prompt ratio :


$$f_b = \frac{\frac{d^2 \sigma_{np}}{dydp_t}}{\frac{d^2 \sigma_{np}}{dydp_t} + \frac{d^2 \sigma_p}{dydp_t}}$$

where f_b is the ratio of non-prompt J/ψ yield over inclusive.

JHEP 05 (2016) 179


The thesis era 00000	Prompt and non-Prompt J/ ψ 00000	ALICE results	The "In case I forgot" slides	
Recombination				

< □ ▶ < @ ▶ < \ = ▶ < \ = ⑦ < ♡ < ♡ < 23/32

- Recombination appears at high energy collisions.
- mostly due to central/semi-central collisions.

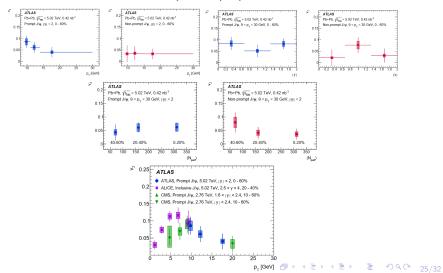
The thesis era	Prompt and non-Prompt J/ ψ 00000	ALICE results	The "In case I forgot" slides
b flow			

◆□ ▶ < 畳 ▶ < 星 ▶ < 星 ▶ 星 の Q ↔ 24/32</p>

JHEP 05 (2016) 179

ALI-DER-498850

• $\Upsilon(1S)$ is not flowing.


• Non-prompt J/ψ seem not to flow as well.

Prompt and non-Prompt ${\rm J}/\psi$ 00000

ALICE results

The "In case I forgot" slides

ATLAS Elliptic flow results

Eur. Phys. J. C 78 (2018) 784

The thesis era 00000	Prompt and non-Prompt J/ ψ 00000	ALICE results	The "In case I forgot" slides

3100

ž

MeV/c²

Candidates /

250

200

150

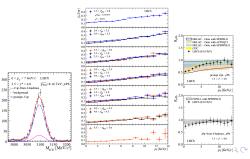
100

100

LHCb Run 2 results

9 9 $\begin{array}{l} \text{LHOs} \\ \textbf{G} = 13 \; \text{TeV}, L_{\text{int}} = 3.05 \; \text{pb}^{-1} \\ 1 < y < 3.5 \\ 2 < p_{\gamma} < 3 \; \text{OeV} \text{e} \end{array}$ ъ 6 -+- LHCb Promot J w -+- LHCb J/ w-from-b FONLL, ± 10

JHEP 10 (2016) 172



√s [TeV]

26/32

Phys. Lett. B774 (2017) 159

10

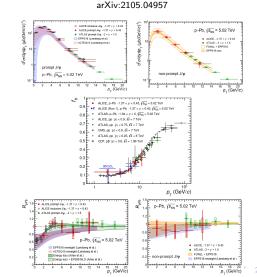
LHCb results for pPb collisions :

Prompt and non-Prompt ${\rm J}/\psi$ 00000

ALICE results

The "In case I forgot" slides

Run 2 analysis status already done

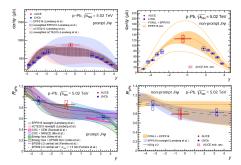

Prompt/Non-prompt Analysis					
Experiment	Collision	Channel	y range	p_T range (GeV/c)	Separation
LHCb	рр	$\mu^+\mu^-$	[2.0,4.5]	[0,14]	tz
	pPb		[-5.0,-2.5] & [1.5,4.0]	[0,14]	
CMS	рр	$\mu^+\mu^-$	[-2.4,2.4]	[6.5,30]	tz
	PbPb		[-2.4,2.4]	[6.5,30]	
ATLAS	рр	$\mu^+\mu^-$	[-2.4,2.4]	[1,70]	tz
	PbPb		[-2.0,2.0]	[9,30]	
ALICE (Run 2)	рр	e ⁺ e ⁻	[-0.9,0.9]	[1,15]	x
	pPb		[-0.9,0.9]	[0,14]	
	PbPb		[-0.8,0.8]	[1.5,10]	
ALICE (Run 3)	рр	$\mu^+\mu^-$	[-4.5, 4.0]	[0,20]	tz
	pPb		[-4.5, 4.0]	[0,20]	
	PbPb		[-4.5, 4.0]	[0,20]	

Prompt and non-Prompt ${\rm J}/\psi$ 00000

ALICE results

The "In case I forgot" slides

ALICE Run 2 results in pPb for p_t distribution

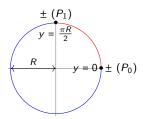

- Non-prompt ratio : All experiments seem to be in accordance. Lack of data for low and high p_r.
- Nuclear modification factor : In agreement with 0 for non-prompt.

Prompt and non-Prompt ${\rm J}/\psi$ 00000

ALICE results

The "In case I forgot" slides

ALICE Run 2 results in pPb for y distribution


arXiv:2105.04957

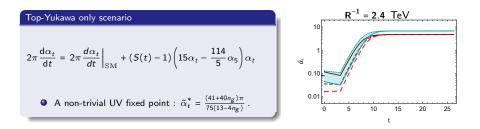
- Central rapidity not enough bins.
- Could reduce forward rapidity value

▲□▶ ▲圖▶ ▲ 필▶ ▲ 필▶ ■ ⑦ Q @ 29/32

The thesis era	Prompt and non-Prompt J/ ψ 00000	ALICE results 00000000	The "In case I forgot" slides
_			

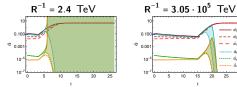
Extra-dimension

Orbifold $S^1/(Z_2 \times Z_2')$


- Compactification radius R
- 2 parity symmetries P_0 and P_1 at points y = 0 and $y = \frac{\pi R}{2}$.
- Boundary conditions (P₀, P₁) = (±, ±).

KK modes (Kaluza 1921 and Klein 1926)

- 5D fields $\xrightarrow{Fourier}$ Sum of 4D fields with masses $\frac{n}{R}$.
- Selection rules for vertices conserving the KK number.
- Only zero-modes (+,+) are stable at EW scale → SM fields.


The thesis era	Prompt and non-Prompt J/ψ 00000	ALICE results	The "In case I forgot" slides
00000		00000000	0000000000●0

Yukawa sector

All heavy Yukawa scenario

- No non-trivial UV fixed point for all Yukawa.
- Asymptotically free behavior for $R^{-1} \gtrsim R_c^{-1} = 3 \cdot 10^5$ TeV.

<□ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の へ C 31/32

15 20 25

The thesis era 00000	Prompt and non-Prompt J/ψ 00000	ALICE results	The "In case I forgot" slides 000000000000

Master eRG equation

$$\frac{dI_i}{dt} = \gamma_i I_i(t) \left[\left(1 - \frac{I_i(t)}{a_i}\right)^2 + \delta_0 \right]^{p_0} \prod_{n=1}^{N} \left[\left(1 - \zeta_n \frac{I_i(t)}{a_i}\right)^2 - \delta_n \right]^{p_n} + \sum_j k_{ij} \left(I_j(t) - I_i(t)\right) + \delta_0 \left[\left(1 - \zeta_n \frac{I_i(t)}{a_i}\right)^2 - \delta_n \right]^{p_n} \right]^{p_n} + \sum_j k_{ij} \left(I_j(t) - I_i(t)\right) + \delta_0 \left[\left(1 - \zeta_n \frac{I_i(t)}{a_i}\right)^2 - \delta_n \right]^{p_n} \right]^{p_n} + \sum_j k_{ij} \left(I_j(t) - I_i(t)\right) + \delta_0 \left[\left(1 - \zeta_n \frac{I_i(t)}{a_i}\right)^2 - \delta_n \right]^{p_n} \right]^{p_n} + \sum_j k_{ij} \left(I_j(t) - I_i(t)\right) + \delta_0 \left[\left(1 - \zeta_n \frac{I_i(t)}{a_i}\right)^2 - \delta_n \right]^{p_n} + \sum_j k_{ij} \left(I_j(t) - I_i(t)\right) + \delta_0 \left(I_j(t) - I_i(t)\right) + \delta_0$$

- Simplest eRG equation (a and γ can be time-dependent).
- Complex eRG : Complex fixed points → constant new cases (endemic phase).
- Multiwave eRG : Multiples waves with additionnal fixed points (a_i/ζ_n) .
- Mutation eRG : Multiple independent equations for each mutation.
- Interactive eRG : k_{ij} number of travellers from region i to region j.
- Vaccination eRG : Effect of vaccination on a and γ.

$$\frac{\mathrm{d}a_i(t)}{\mathrm{d}t} = -\frac{\mathrm{d}R_i^{\vee}(t)}{\mathrm{d}t}\left(a_i(t) - I_i(t)\right), \quad \frac{\mathrm{d}\gamma_i(t)}{\mathrm{d}t} = -\frac{\mathrm{d}R_i^{\vee}(t)}{\mathrm{d}t}\gamma_i(t_0)$$

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 りへで 32/32