Lattice QCD calculation of meson and baryon form factors

Wednesday, March 25, 2022 Assemblée Générale of the GDR QCD

Gen Wang Centre de Physique Théorique

Aix*Marseille UNIVERSITÉ Socialement engagée

anr[©] agence nationale de la recherche

Pion form factor

- Proton spin decomposition
- LQCD codes on GPUs

Three-point functions

 $\pi(0)$

The desired matrix element can be approached by the insertion of local vector current

$$V_{\mu} = \frac{2}{3}\bar{u}\gamma_{\mu}u - \frac{1}{3}\bar{d}\gamma_{\mu}d$$

Pion three-point functions in momentum space

Lattices

Lattice	$L^3 \times T$	a (fm)	$La \ (fm)$	$m_{\pi}(\text{MeV})$	$m_{\pi}L$	$n_{\rm cfg}$
24IDc	$24^3 \times 64$	0.195	4.66	141	3.33	231
32IDc	$32^3 \times 64$	0.195	6.24	141	4.45	53
32ID	$32^3 \times 64$	0.143	4.58	172	3.99	199
32IDh	$32^3 \times 64$	0.143	4.58	250	5.80	100
48I	$48^3 \times 96$	0.114	5.48	139	3.86	81
24I	$24^3 \times 64$	0.111	2.65	340	4.56	202
32I	$32^3 \times 64$	0.083	2.65	302	4.05	309

Overlap fermions with several valence quark masses on seven Domain Wall fermion lattices

Gen Wang, et. al., xQCD Collaboration, Phys.Rev.D 104 (2021) 074502

Mass dependence of pion radius

Very strong pion mass dependence of pion mean square charge radius are observed from the data

Pion form factor

• Pion form factor

Proton spin decomposition

LQCD codes on GPUs

Motivation

Proton spin structure

quark spin qu

quark OAM gluon

 $\frac{\Delta\Sigma}{2} + L_q + J_g = \frac{1}{2}$

lon Total

X.-D. Ji, Phys.Rev.Lett. 78 (1997) 610-613

Quark spin (u,d,s,...) is the integration of the quark polarized parton distribution

$$\Delta q = \int_0^1 dx \Delta q(x)$$

Quark orbital angular momenta and gluon contributions are largely unknown

The polarized neutron decay $\Delta u - \Delta d = 1.2723(23)$

PDG, CPC40, 100001 (2016)

Polarized inclusive DIS

 $\Delta u \sim 0.8, \, \Delta d \sim -0.4, \, \Delta s \sim -0.03, \, \square$ Only 30%

Orbital angular momenta

Energy-momentum tensor (EMT) between two nucleon state to T1, T2, \overline{C} and D form factors

$$\langle p', s' | \mathcal{T}^{\{\mu\nu\}q,g} | p, s \rangle = \frac{1}{2} \bar{u}(p', s') \Big[T_1(q^2) (\gamma^{\mu} \bar{p}^{\nu} + \gamma^{\nu} \bar{p}^{\mu}) \\ + \frac{1}{2m} T_2(q^2) \left(iq_{\alpha} (\bar{p}^{\mu} \sigma^{\nu\alpha} + \bar{p}^{\nu} \sigma^{\mu\alpha}) \right) + D(q^2) \frac{q^{\mu} q^{\nu} - \eta^{\mu\nu} q^2}{M} + \bar{C}(q^2) M \eta^{\mu\nu} \Big]^{q,g} u(p,s),$$

T1(0) and [T1+T2](0) to momentum and angular momentum fractions

$$\mathcal{T}^{\{4i\}q,g} \implies \langle x \rangle^{q,g} = T_1(0)^{q,g} \quad \langle J \rangle^{q,g} = \frac{1}{2} \left[T_1(0) + T_2(0) \right]^{q,g}$$

X.-D. Ji, Phys.Rev.Lett. 78 (1997) 610-613

Lattice Setups

- Lattice
 - 32ID-- 4.6 fm box, a=0.143 fm, Pion 172 MeV, Domain Wall (nf=2+1)
 - Overlap Fermions with six different valence quark masses

G. Wang, Y.-B. Yang, J. Liang, T. Draper, K.-F. Liu, arXiv:2111.09329

Momentum fractions

quark CI momentum fraction

glue DI momentum fraction

$$\operatorname{Tr}\left[\Gamma_e G_{\alpha\beta}^{\mathcal{T}_{4j}}(\tau, t_f, \vec{p}, \vec{p})\right] \to \epsilon_{i,j,k} p_k(T_1)(0)$$

Averaged over results from different nucleon initial momenta

Angular momentum fractions

z-expansion fit to extrapolate to zero momentum transfer

G. Lee, J. R. Arrington, and R. J. Hill, Phys. Rev. D 92, 013013 (2015)

Momentum and angular momentum fractions

Renormalization done with non-perturbatively includes mixings and matched to $\overline{MS}(2 \text{ GeV})[1]$

Simple linear extrapolations in pion mass square of each constituents under current statistics

[1] Y.-B. Yang, J. Liang, et al., χQCD Collaboration, Phys. Rev. Lett. 121, 212001 (2018)

0.02

0.04

0.06

 m_{π}^2 (GeV²)

0.12

0.14 0.16

Momentum and Angular momentum fractions

Comparison with previous calculations and phenomenological global fit results

	u	d	[u-d]	S	glue
$\langle x \rangle$	0.298(27)	0.150(08)	0.148(31)	0.043(07)	0.509(31)
$\langle x \rangle_{[3]}$	0.307(35)	0.160(48)	0.151(40)	0.051(26)	0.482(84)
$\langle x \rangle_{[2],\text{CT14}}$	0.348(05)	0.190(05)	0.158(06)	0.035(09)	0.416(09)

Summary table of the CI and DI parts for quark and gluon constituents

	u	d	S	glue
$\langle x \rangle$	0.298(27)	0.150(09)	0.043(07)	0.509(36)
2J	0.394(51)	0.092(12)	0.052(12)	0.461(49)
$\langle x \rangle_{[4],\mathrm{ETMC}}$	0.359(30)	0.188(19)	0.052(12)	0.427(92)
$2J_{[4],\mathrm{ETMC}}$	0.422(44)	0.100(36)	0.032(24)	0.374(92)

- [1] J. Liang, et al. Phys. Rev. D 98, 074505 (2018)
- [2] S. Dulat, et al., Phys. Rev. D, 93(3):033006, (2016)
- [3] Y.-B. Yang, J. Liang, et al., χQCD Collaboration, Phys. Rev. Lett. 121, 212001 (2018)
- [4] C. Alexandrou, et al. Phys.Rev.D 101 (2020) 9, 094513

Pion form factorProton spin decomposition

LQCD codes on GPUs

LQCD codes on GPUs

Conclusions

- Meson and baryon form factors calculations are well-established to reach high statistics on the Lattice
- Works are on-going to reduce both statistical and systematic errors
- Updates of algorithms are always needed to match latest architectures

Thank You