Pseudoscalar Transition Form Factors and the Hadronic Light-by-Light Contribution to a_{μ}

Antoine Gérardin Jana Guenther Lukas Varnhorst <u>Willem Verplanke</u> [On Behalf of the BMW Collaboration]

May 25, 2022

Introduction

- Christian introduced the importance of the muon $g 2(a_{\mu})$.
 - Theory error on a_{μ} is currently dominated by two hadronic loop corrections:
 - 1. Hadronic Vacuum Polarization (HVP) [$\mathscr{O}(\alpha^2)$]
 - 2. Hadronic Light-by-Light (HLbL) scattering $[\mathcal{O}(\alpha^3)]$.

•	The different	contributions	(Aoyama	et a	al.,	2020):
---	---------------	---------------	---------	------	------	------	----

Contributions	Value $\times 10^{11}$		
Experiment	116 592 089(63)		
QED	116 584 718.931(0.104)		
Electroweak	153.6(1.0)		
HVP	6845(40)		
HLbL	92(19)		
Total SM value	116 591 810(43)		
Difference: $\Delta a_\mu \equiv a_\mu^{ m exp} - a_\mu^{ m SM}$	279(76)		

- \rightarrow HLbL is a small contribution *but* with a relatively large error.
- $\rightarrow\,$ Theory error needs to be reduced by a factor of two to meet future experimental error.

AG GDR 2022

Pseudoscalar TFF and the HLbL contribution to a_{μ}

• The Hadronic Light-by-Light scattering has different sub-contributions (Aoyama et al., 2020):

	Contributions	Value $\times 10^{11}$	
	π^0,η,η' -poles	93.8(4.0)	
	π, K -loops/boxes	-16.4(0.2)	
	$\pi\pi$ scattering	-8(1)	
	scalars $+$ tensors	-1(3)	
	axial vectors	6(6)	
	u, d, s-loops / short distance	15(10)	
	<i>c</i> -loop	3(1)	
	Total	92(19)	
$\downarrow k =$	p' - p $=$ (p') $($	Exchanges of other resonances + (f_0, a_1, f_2, \ldots) +	

 \rightarrow $\mu^{-}(p)$ • The Hadronic Light-by-Light scattering has different sub-contributions (Aoyama et al., 2020):

Contributions	Value $\times 10^{11}$
π^0,η,η' -poles	93.8(4.0)
π, K -loops/boxes	-16.4(0.2)
$\pi\pi$ scattering	-8(1)
scalars $+$ tensors	-1(3)
axial vectors	6(6)
u, d, s-loops / short distance	15(10)
<i>c</i> -loop	3(1)
Total	92(19)

- ightarrow Pseudoscalar (π^0,η,η') poles form the largest contribution to HLbL diagram.
- $\rightarrow \pi^0$ -pole estimated using lattice (Gérardin et al., 2019) + dispersive framework (data-driven) (Hoferichter et al., 2018).
- $\rightarrow~\eta,\eta^\prime\text{-pole}$ has no lattice/dispersive result (yet).

• The Hadronic Light-by-Light scattering has different sub-contributions (Aoyama et al., 2020):

Contributions	Value $\times 10^{11}$
π^0, η, η' -poles	93.8(4.0)
π, K -loops/boxes	-16.4(0.2)
$\pi\pi$ scattering	-8(1)
scalars $+$ tensors	-1(3)
axial vectors	6(6)
u, d, s-loops / short distance	15(10)
<i>c</i> -loop	3(1)
Total	92(19)

Project Goal: Calculate the sum of $\pi^0,\eta,\eta'\text{-pole}$ contributions from lattice QCD methods with <10% precision.

Contributions from the pseudoscalar (ps) poles to a_{μ} have been shown to be (Knecht and Nyffeler, 2002)

$$\begin{aligned} a_{\mu}^{ps-pole} &= \left(\frac{\alpha_e}{\pi}\right)^3 \int_0^\infty dQ_1 \int_0^\infty dQ_2 \int_{-1}^1 d\tau \left[w_1(Q_1, Q_2, \tau) \mathscr{F}_{ps\gamma^*\gamma^*}(-Q_1^2, -Q_3^2) \mathscr{F}_{ps\gamma^*\gamma^*}(-Q_2^2, 0) \right. \\ &+ w_2(Q_1, Q_2, \tau) \mathscr{F}_{ps\gamma^*\gamma^*}(-Q_1^2, -Q_2^2) \mathscr{F}_{ps\gamma^*\gamma^*}(-Q_3^2, 0) \right], \end{aligned}$$

where $Q_3^2 = Q_1^2 + Q_2^2 + 2\tau Q_1 Q_2$ and $\tau = \cos \theta$ with θ the angle between Q_1 and Q_2 .

$$\begin{aligned} a_{\mu}^{ps-pole} &= \left(\frac{\alpha_e}{\pi}\right)^3 \int_0^\infty dQ_1 \int_0^\infty dQ_2 \int_{-1}^1 d\tau \left[w_1(Q_1, Q_2, \tau) \mathscr{F}_{ps\gamma^*\gamma^*}(-Q_1^2, -Q_3^2) \mathscr{F}_{ps\gamma^*\gamma^*}(-Q_2^2, 0) \right. \\ &+ w_2(Q_1, Q_2, \tau) \mathscr{F}_{ps\gamma^*\gamma^*}(-Q_1^2, -Q_2^2) \mathscr{F}_{ps\gamma^*\gamma^*}(-Q_3^2, 0) \right]. \end{aligned}$$

Here, we recognize two different objects:

- 1. $\mathscr{F}_{ps\gamma^*\gamma^*}(q_1^2, q_2^2)$ are the Transition Form Factors (TFFs),
- 2. $w_i(q_1, q_2, \tau)$ are weight functions (known analytically).

The TFF encodes the interaction between a pseudoscalar and two photons. E.g. for the pion

$$\mathscr{F}_{\pi^{0}\gamma^{*}\gamma^{*}}(q_{1}^{2},q_{2}^{2}) = \underbrace{\overset{\pi^{0}(\vec{p})}{\longrightarrow}}_{\gamma^{*}(q_{1})}$$

$$\begin{aligned} a_{\mu}^{ps-pole} &= \left(\frac{\alpha_e}{\pi}\right)^3 \int_0^\infty dQ_1 \int_0^\infty dQ_2 \int_{-1}^1 d\tau \left[w_1(Q_1, Q_2, \tau) \mathscr{F}_{ps\gamma^*\gamma^*}(-Q_1^2, -Q_3^2) \mathscr{F}_{ps\gamma^*\gamma^*}(-Q_2^2, 0) \right. \\ &+ w_2(Q_1, Q_2, \tau) \mathscr{F}_{ps\gamma^*\gamma^*}(-Q_1^2, -Q_2^2) \mathscr{F}_{ps\gamma^*\gamma^*}(-Q_3^2, 0) \right]. \end{aligned}$$

Here, we recognize two different objects:

- 1. $\mathscr{F}_{ps\gamma^*\gamma^*}(q_1^2, q_2^2)$ are the Transition Form Factors (TFFs),
- 2. $w_i(q_1, q_2, \tau)$ are weight functions (known analytically).

Weight functions are peaked at low spacelike Q^2 so lattice QCD is the perfect method.

Transition Form Factor from the Lattice

The TFF for a pseudoscalar meson is extracted from matrix elements $M_{\mu\nu}$

$$\begin{split} M_{\mu\nu}(p,q_1) &= i \int d^4 x \, e^{iq_1 \cdot x} \left\langle \Omega \right| T\{J_{\mu}(x)J_{\nu}(0)\} \left| PS(\vec{p}) \right\rangle \\ &= \varepsilon_{\mu\nu\alpha\beta} q_1^{\alpha} q_2^{\beta} \mathscr{F}_{PS\gamma^*\gamma^*}(q_1^2,q_2^2), \end{split}$$

where J_{μ} is the EM current. (Euclidean) Matrix elements are related to 3-point correlation function $C_{\mu\nu}^{(3)}$ on lattice through (Ji and Jung, 2001)

$$M^{E}_{\mu\nu} = \frac{2E_{PS}}{Z_{PS}} \int_{-\infty}^{\infty} d\tau e^{\omega_{1}\tau} \tilde{A}_{\mu\nu}(\tau),$$

where au is the time-separation between the two EM currents and

1. $\tilde{A}_{\mu\nu}(\tau)$ can be related to a three-point correlation function $C^{(3)}_{\mu\nu}$, calculable on the lattice

$$\tilde{\mathcal{A}}_{\mu\nu}(\tau) \sim \mathcal{C}^{(3)}_{\mu\nu}(\tau, t_{PS}) = a^6 \sum_{\vec{x}, \vec{z}} \langle J_{\mu}(\vec{z}, t_i) J_{\nu}(\vec{0}, t_f) \mathcal{P}^{\dagger}(\vec{x}, t_0) \rangle e^{i\vec{p}\cdot\vec{x}} e^{-i\vec{q}_1 \cdot \vec{z}}$$

- 2. E_{PS}, Z_{PS} energy and overlap of the pseudoscalar that are extracted from two-point correlations functions.
- 3. $q_1 = (\omega_1, \vec{q}_1)$ and $q_2 = (E_{PS} \omega_1, \vec{p} \vec{q}_1)$

AG GDR 2022

Pseudoscalar TFF and the HLbL contribution to au

$$C^{(3)}_{\mu\nu}(\tau, t_{PS}) = a^6 \sum_{\vec{x}, \vec{z}} \langle J_{\mu}(\vec{z}, t_i) J_{\nu}(\vec{0}, t_f) P^{\dagger}(\vec{x}, t_0) \rangle e^{i\vec{p}\cdot\vec{x}} e^{-i\vec{q}_1\cdot\vec{z}}$$

Correlation function receives contributions from (potentially) four different Wick contractions

1. • For the π^0

$$P_{\pi^0}(x) = \frac{1}{\sqrt{2}} \left(\overline{u} \gamma_5 u(x) - \overline{d} \gamma_5 d(x) \right).$$

- We work in the isospin limit. Consequently disconnected pseudoscalar loop is formally zero.
- Two diagrams contribute.
- Disconnected contribution is small $\mathcal{O}(1-2\%)$. (Gérardin et al., 2019).
- 2. For the η, η'

$$\begin{split} P_{\eta_8}(x) &= \frac{1}{\sqrt{6}} \left(\overline{u} \gamma_5 u(x) + \overline{d} \gamma_5 d(x) - 2\overline{s} \gamma_5 s(x) \right), \\ P_{\eta_0}(x) &= \frac{1}{\sqrt{3}} \left(\overline{u} \gamma_5 u(x) + \overline{d} \gamma_5 d(x) + \overline{s} \gamma_5 s(x) \right). \end{split}$$

- All four diagrams contribute.
- η^8 and η^0 mix to create physical η, η' . AG GDR 2022 Pseudoscalar TFF and the HLbL contribution to $_{a\mu}$

L/a = 96, a = 0.0640 fm

- Good agreement between $\vec{p} = \vec{0} \& \vec{p} = \frac{2\pi}{L}(0,0,+1)$.
- Error on $\mathscr{F}_{\pi^0\gamma^*\gamma^*}$ grows with decreasing Q^2 .

AG GDR 2022

Pseudoscalar TFF and the HLbL contribution to a_{μ}

$$\begin{aligned} a_{\mu}^{ps-pole} &= \left(\frac{\alpha_e}{\pi}\right)^3 \int_0^\infty dQ_1 \int_0^\infty dQ_2 \int_{-1}^1 d\tau \left[w_1(Q_1, Q_2, \tau) \mathscr{F}_{\rho s \gamma^* \gamma^*}(-Q_1^2, -Q_3^2) \mathscr{F}_{\rho s \gamma^* \gamma^*}(-Q_2^2, 0) \right. \\ &+ w_2(Q_1, Q_2, \tau) \mathscr{F}_{\rho s \gamma^* \gamma^*}(-Q_1^2, -Q_2^2) \mathscr{F}_{\rho s \gamma^* \gamma^*}(-Q_3^2, 0) \right]. \end{aligned}$$

L/a = 96, a = 0.0640 fm

L/a = 96, a = 0.0640 fm

- Good agreement between $\vec{p} = \vec{0} \& \vec{p} = \frac{2\pi}{I}(0,0,+1)$.
- Smaller extent in Q^2 than $\mathscr{F}(-Q^2, -Q^2)$ (previous slide).

AG GDR 2022

Pseudoscalar TFF and the HLbL contribution to au

AG GDR 2022

Pseudoscalar TFF and the HLbL contribution to a_{μ}

Fitting the TFF

The TFF can be fitted in a model-independent way using the z-expansion,

$$\begin{split} P(Q_1^2, Q_2^2) \mathscr{F}_{\pi^0 \gamma^* \gamma^*}(-Q_1^2, -Q_2^2) &= \sum_{n,m=0}^N c_{nm} \left(z_1^n - (-1)^{N+n+1} \frac{n}{N+1} z_1^{N+1} \right) \times \\ &\left(z_2^m - (-1)^{N+m+1} \frac{m}{N+1} z_2^{N+1} \right), \end{split}$$

where z_k are conformal variables

$$z_k = \frac{\sqrt{t_c + Q_k^2} - \sqrt{t_c - t_0}}{\sqrt{t_c + Q_k^2} + \sqrt{t_c - t_0}}, \quad k = 1, 2$$

- $t_c = 4m_{\pi}^2$ $P(Q_1^2, Q_2^2) = 1 + \frac{Q_1^2 + Q_2^2}{M_{\nu}^2}$ • *c_{nm}* symmetric coefficients
- t₀ free parameter

Advantages:

- \rightarrow Fit is model-independent, only systematic is choice of N.
- \rightarrow Obtain TFF in whole (Q_1^2, Q_2^2) -plane.

AG GDR 2022

Pseudoscalar TFF and the HLbL contribution to au

Continuum Extrapolation $a_{\mu}^{\pi^{0}-\mathrm{pole}}$

- We have 13 ensembles on 6 different lattice spacings.
- Preliminary result agrees well with previous estimates: lattice (Gérardin et al., 2019) and dispersive (Hoferichter et al., 2018)

 $\label{eq:state} \rightarrow \mbox{ Next step: estimate systematics \& disconnected contribution (small).} \\ \mbox{AG GDR 2022} \qquad \qquad \mbox{ Pseudoscalar TFF and the HLbL contribution to a_{μ}}$

Difficulties for the η, η' TFFs

• For the η,η'

$$\begin{split} P_{\eta_8}(x) &= \frac{1}{\sqrt{6}} \left(\overline{u} \gamma_5 u(x) + \overline{d} \gamma_5 d(x) - 2\overline{s} \gamma_5 s(x) \right), \\ P_{\eta_0}(x) &= \frac{1}{\sqrt{3}} \left(\overline{u} \gamma_5 u(x) + \overline{d} \gamma_5 d(x) + \overline{s} \gamma_5 s(x) \right). \end{split}$$

- All four diagrams contribute.
- **I** Mixing between η^8 and η^0 to create physical η, η'
- Reminder:

$$\mathscr{F}_{\rho s \gamma^* \gamma^*} \sim M^E_{\mu \nu} = rac{2 E_{PS}}{Z_{PS}} \int_{-\infty}^{\infty} d\tau \, e^{\omega_1 \tau} \tilde{A}_{\mu \nu}(\tau),$$

where τ is the time-separation between the two EM currents.

 $\rightarrow\,$ We first look at an example of the integrand.

$\eta^{(')}$ Transition Form Factor Integrand

Largest contributions from fully connected *PVV* and disconnected *P - VV* diagram (with opposite signs).

- Good agreement between $\vec{p} = \vec{0} \& \vec{p} = \frac{2\pi}{L}(0,0,+1)$.
- Errors larger than for π^0 because of difficulties mentioned before.

AG GDR 2022

Pseudoscalar TFF and the HLbL contribution to a_{μ}

• Good agreement between $\vec{p} = \vec{0} \& \vec{p} = \frac{2\pi}{L}(0,0,+1)$.

- π^0 : Preliminary results in agreement with previously published calculation on lattice (Gérardin et al., 2019) and dispersive/data-driven (Hoferichter et al., 2018) To do:
 - Estimate contribution from disconnected diagram.
 - Estimate systematics.

Note:

- Here we already work at physical pion mass, so no chiral extrapolation.
- First calculation η, η' TFF on the lattice.
 - Preliminary data looks good in different kinematical regimes.
 - Analyze more ensembles.
- π^0, η, η' : Goal of < 10% error on a_μ should be attainable judging from preliminary fits.

References

- Aoyama, T. et al. (2020). The anomalous magnetic moment of the muon in the standard model. *Physics Reports*, 887:1–166.
- Gérardin, A., Meyer, H. B., and Nyffeler, A. (2019). Lattice calculation of the pion transition form factor with $N_f = 2 + 1$ Wilson quarks. *Phys. Rev. D*, 100(3):034520.
- Hoferichter, M., Hoid, B.-L., Kubis, B., Leupold, S., and Schneider, S. P. (2018). Dispersion relation for hadronic light-by-light scattering: pion pole. *Journal of High Energy Physics*, 2018(10).
- Ji, X. and Jung, C. (2001). Studying hadronic structure of the photon in lattice qcd. *Physical Review Letters*, 86(2):208–211.
- Knecht, M. and Nyffeler, A. (2002). Hadronic light-by-light corrections to the muon g-2: The pion-pole contribution. *Physical Review D*, 65(7).

Sampling of $(Q_1^2, \overline{Q_2^2})$ plane

