# HLbL contributions to $a_{\mu}$ in LQCD with staggered fermions 

Christian Zimmermann

Centre de Physique Théorique Marseille
Assemblée Générale du GDR QCD
May 25, 2022

## Content

Introduction: The anomalous magnetic moment of the muon

Lattice QCD and Correlation Functions

HLbL-Tensor on the Lattice

Summary

## Content

Introduction: The anomalous magnetic moment of the muon

## Lattice QCD and Correlation Functions

HLbL-Tensor on the Lattice

Summary

## The anomalous magnetic muon moment $g_{\mu}$

- For Dirac fermions $g=2$ at the tree-level
- Deviation by quantum corrections of the fermion photon vertex:

- Corrections quantified by $a=(g-2) / 2$
- The magnetic moment of the muon can be determined precisely in the experiment as well as in theory
- Sensitive to new physics
- Recent experimental values:
$a_{\mu}=116592080(54)(33) \times 10^{-11}(B N L, 2006)$
[Phys.Rev.D 73 (2006) 072003]
$a_{\mu}=116592040(54) \times 10^{-11}($ Fermilab, 2021)
[Phys.Rev.Lett. 126 (2021) 14, 141801]
- More precise measurements are expected in the near future (error reduction by factor 4) $\Rightarrow$ error on the theory side needs to be reduced as well


## The anomalous magnetic muon moment $g_{\mu}$

- For Dirac fermions $g=2$ at the tree-level
- Deviation by quantum corrections of the fermion photon vertex:


[^0]
## The anomalous magnetic muon moment $g_{\mu}$

- For Dirac fermions $g=2$ at the tree-level
- Deviation by quantum corrections of the fermion photon vertex:

- Corrections quantified by $a=(g-2) / 2$
$\rightarrow$ The magnetic moment of the muon can be determined precisely in the experiment as well as in theory
- Sensitive to new physics
$\rightarrow$ Recent experimental values:
$a_{\mu}=116592080(54)(33) \times 10^{-11}(B N L, 2006)$
[Phys.Rev.D 73 (2006) 072003]
$a_{\mu}=116592040(54) \times 10^{-11}$ (Fermilab, 2021)
[Phys.Rev.Lett. 126 (2021) 14, 141801]
- More precise measurements are expected in the near future (error reduction by factor 4$) \Rightarrow$ error on the theory side needs to be reduced as well


## The anomalous magnetic muon moment $g_{\mu}$

- For Dirac fermions $g=2$ at the tree-level
- Deviation by quantum corrections of the fermion photon vertex:

- Corrections quantified by $a=(g-2) / 2$
- The magnetic moment of the muon can be determined precisely in the experiment as well as in theory
- Sensitive to new physics
- Recent experimental values: $a_{\mu}=116592080(54)(33) \times 10^{-11}(B N L, 2006)$ $[P h y s . R e v . D 73$ (2006) 072003]
$a_{\mu}=116592040(54) \times 10^{-11}($ Fermilab, 2021) [Phys.Rev.Lett. 126 (2021) 14, 141801]
- More precise measurements are expected in the near future (error reduction by factor 4) $\Rightarrow$ error on the theory side needs to be reduced as well


## The anomalous magnetic muon moment $g_{\mu}$

- For Dirac fermions $g=2$ at the tree-level
- Deviation by quantum corrections of the fermion photon vertex:

- Corrections quantified by $a=(g-2) / 2$
- The magnetic moment of the muon can be determined precisely in the experiment as well as in theory
- Sensitive to new physics
- Recent experimental values: $a_{\mu}=116592080(54)(33) \times 10^{-11}$ (BNL, 2006) [Phys.Rev.D 73 (2006) 072003]
$a_{1}=116592040(54) \times 10^{-11}$ (Fermilab, 2021) [Phys.Rev.Lett. 126 (2021) 14, 141801]
- More precise measurements are expected in the near future (error reduction by factor 4) $\Rightarrow$ error on the theory side needs to be reduced as well


## The anomalous magnetic muon moment $g_{\mu}$

- For Dirac fermions $g=2$ at the tree-level
- Deviation by quantum corrections of the fermion photon vertex:

- Corrections quantified by $a=(g-2) / 2$
- The magnetic moment of the muon can be determined precisely in the experiment as well as in theory
- Sensitive to new physics
- Recent experimental values:
$a_{\mu}=116592080(54)(33) \times 10^{-11}(B N L, 2006)$
[Phys.Rev.D 73 (2006) 072003]
$a_{\mu}=116592040(54) \times 10^{-11}$ (Fermilab, 2021)
[Phys.Rev.Lett. 126 (2021) 14, 141801]
- More precise measurements are expected in the near future (error reduction by factor 4$) \Rightarrow$ error on the theory side needs to be reduced as well


## The anomalous magnetic muon moment $g_{\mu}$

- For Dirac fermions $g=2$ at the tree-level
- Deviation by quantum corrections of the fermion photon vertex:

- Corrections quantified by $a=(g-2) / 2$
- The magnetic moment of the muon can be determined precisely in the experiment as well as in theory
- Sensitive to new physics
- Recent experimental values:
$a_{\mu}=116592080(54)(33) \times 10^{-11}(B N L, 2006)$
[Phys.Rev.D 73 (2006) 072003]
$a_{\mu}=116592040(54) \times 10^{-11}$ (Fermilab, 2021)
[Phys.Rev.Lett. 126 (2021) 14, 141801]
- More precise measurements are expected in the near future (error reduction by factor 4$) \Rightarrow$ error on the theory side needs to be reduced as well


## Theoretical determination of $a_{\mu}$

Standard Model contributions and current state results (see "white paper" [arXiv:2006.04822]):

## Theoretical determination of $a_{\mu}$

Standard Model contributions and current state results (see "white paper" [arXiv:2006.04822]):

| contrib | $a_{\mu} \times 10^{11}$ |
| :---: | :---: |
| QED | $116584718.931(104)$ |
| Electroweak | $153.6(1.0)$ |
| LO-HVP (phenom) | $6845(40)$ |
| LO-HVP (BMWC'20) | $7075(55)$ |
| HLbL (phenom \& latt) | $92(18)$ |
| total SM | $116591810(43)$ |

## Theoretical determination of $a_{\mu}$

Standard Model contributions and current state results (see "white paper" [arXiv:2006.04822]):

| contrib | $a_{\mu} \times 10^{11}$ |
| :---: | :---: |
| QED | $116584718.931(104)$ |
| Electroweak | $153.6(1.0)$ |
| LO-HVP (phenom) | $6845(40)$ |
| LO-HVP (BMW''20) | $7075(55)$ |
| HLbL (phenom \& latt) | $92(18)$ |
| total SM | $116591810(43)$ |

Have to consider two types of hadronic contributions:

- Hadronic vacuum polarization (HVP, leading order)
- Hadronic light-by-light scattering (HLbL)


## Theoretical determination of $a_{\mu}$

Standard Model contributions and current state results (see "white paper" [arXiv:2006.04822]):

| contrib | $a_{\mu} \times 10^{11}$ |
| :---: | :---: |
| QED | $116584718.931(104)$ |
| Electroweak | $153.6(1.0)$ |
| LO-HVP (phenom) | $6845(40)$ |
| LO-HVP (BMWc'20) | $7075(55)$ |
| HLbL (phenom \& latt) | $92(18)$ |
| total SM | $116591810(43)$ |

Tension between experiment and theory:


## Determination of hadronic contributions



LO-HVP
$\mathcal{O}\left(\alpha^{2}\right)$


HLbL
$\mathcal{O}\left(\alpha^{3}\right)$

## Determination of hadronic contributions

HVP: Involves hadronic vacuum polarization tensor:
$\Pi^{\mu \nu}(Q)=\sim^{\mu} \propto \int \mathrm{d} x^{4} e^{-i Q x}\left\langle j^{\mu}(x) j^{\nu}(0)\right\rangle$

$R$-ratio:


- Calculate 2pt function on the lattice:
- Need sub-ner-mille-nrecision
- Lattice artifacts (discretization, finite-volume, taste-braking,...) have to be under control


## Determination of hadronic contributions

HVP: Involves hadronic vacuum polarization tensor:
$\Pi^{\mu \nu}(Q)=\sim_{n}^{\mu} \propto \int \mathrm{d} x^{4} e^{-i Q x}\left\langle j^{\mu}(x) j^{\nu}(0)\right\rangle$

- Dispersive Method (Analyticity + optical theorem):

$R$-ratio:

$$
a_{\mu}=\frac{\alpha^{2}}{3 \pi^{2}} \int_{m_{\pi}^{2}}^{\infty} \mathrm{d} s \frac{K(s)}{s} R(s) \quad R(s)=\frac{3 s \sigma^{0}\left(e^{+} e^{-} \rightarrow \text { hadrons }\right)}{4 \pi \alpha^{2}}
$$

- Calculate 2pt function on the lattice:
- Need sub-per-mille-precision
- Lattice artifacts (discretization, finite-volume, taste-braking,...) have to be under control


## Determination of hadronic contributions

HVP: Involves hadronic vacuum polarization tensor:
$\Pi^{\mu \nu}(Q)=\sim_{\sim}^{\mu} \sim^{\nu} \propto \int \mathrm{d} x^{4} e^{-i Q x}\left\langle j^{\mu}(x) j^{\nu}(0)\right\rangle$

- Dispersive Method (Analyticity + optical theorem):

$R$-ratio:

$$
a_{\mu}=\frac{\alpha^{2}}{3 \pi^{2}} \int_{m_{\pi}^{2}}^{\infty} \mathrm{d} s \frac{K(s)}{s} R(s) \quad R(s)=\frac{3 s \sigma^{0}\left(e^{+} e^{-} \rightarrow \text { hadrons }\right)}{4 \pi \alpha^{2}}
$$

- Calculate 2pt function on the lattice:
- Need sub-per-mille-precision
- Lattice artifacts (discretization, finite-volume, taste-braking,...) have to be under control


## Determination of hadronic contributions


[BMWc'20]

## Determination of hadronic contributions

HLbL: Again two approaches:

- Dispersive Method:

- Determine required decay constants / form factors in experiment or on the lattice $(\rightarrow$ talk by Willem $)$
$\Rightarrow$ Evaluate 4pt function on the lattice (this work)

- Need only precision of $10 \%$
- BUT: 4pt functions are in general challenging on the lattice


## Determination of hadronic contributions

HLbL: Again two approaches:

- Dispersive Method:

- Determine required decay constants / form factors in experiment or on the lattice ( $\rightarrow$ talk by Willem)
$\Rightarrow$ Evaluate 4pt function on the lattice (this work)

$\rightarrow$ Need only precision of $10 \%$
- BUT: 4pt functions are in general challenging on the lattice


## Determination of hadronic contributions

HLbL: Again two approaches:

- Dispersive Method:

- Determine required decay constants / form factors in experiment or on the lattice $(\rightarrow$ talk by Willem)
- Evaluate 4pt function on the lattice (this work)

- Need only precision of $10 \%$
- BUT: 4pt functions are in general challenging on the lattice


## Determination of hadronic contributions

HLbL: Recent results:
Status of hadronic light-by-light contribution


## Content

# Introduction: The anomalous magnetic moment of the muon 

Lattice QCD and Correlation Functions

## HLbL-Tensor on the Lattice

Summary

## Lattice QCD

$$
\begin{aligned}
& \langle\mathcal{O}[q, \bar{q}, U]\rangle=\frac{1}{Z} \int\left[\prod_{x \in \Lambda} \mathrm{~d} \bar{q}(x) \mathrm{d} q(x) \mathrm{d} U(x)\right] \mathcal{O}[q, \bar{q}, U] e^{-S_{F}[\bar{q}, q, U]-S_{G}[U]} \\
& Z=\int\left[\prod_{x \in \Lambda} \mathrm{~d} \bar{q}(x) \mathrm{d} q(x) \mathrm{d} U(x)\right] e^{\left.-S_{F}[\bar{q}, q, U]-S_{G}[U]\right)}
\end{aligned}
$$

- Reduce spacetime to a lattice
$\Rightarrow$ Finite volume $\Rightarrow$ IR regularization
- Finite lattice spacing $\Rightarrow$ UV regularization
- Evaluate the fermionic part (Grassmann variables) using Wick's theorem $\Rightarrow$ Wick contractions (graphs)
- Euclidean spacetime: $e^{i S} \rightarrow e^{-S}$ suitable weight for Monte Carlo integration
- Evaluate gauge integral by Monte Carlo integration $\Rightarrow$ gauge ensembles of $N$ configuration, statistical error $\propto N^{-\frac{1}{2}}$ :



## Lattice QCD

$$
\begin{aligned}
& \langle\mathcal{O}[q, \bar{q}, U]\rangle=\frac{1}{Z} \int\left[\prod_{x \in \Lambda} \mathrm{~d} \bar{q}(x) \mathrm{d} q(x) \mathrm{d} U(x)\right] \mathcal{O}[q, \bar{q}, U] e^{-S_{F}[\bar{q}, q, U]-S_{G}[U]} \\
& Z=\int\left[\prod_{x \in \Lambda} \mathrm{~d} \bar{q}(x) \mathrm{d} q(x) \mathrm{d} U(x)\right] e^{\left.-S_{F}[\bar{q}, q, U]-S_{G}[U]\right)}
\end{aligned}
$$

- Reduce spacetime to a lattice
- Finite volume $\Rightarrow$ IR regularization
- Finite lattice spacing $\Rightarrow$ UV regularization
- Evaluate the fermionic part (Grassmann variables) using Wick's theorem $\Rightarrow$ Wick contractions (graphs)
- Euclidean spacetime: $e^{i S} \rightarrow e^{-S}$ suitable weight for Monte Carlo integration
- Evaluate gauge integral by Monte Carlo integration $\Rightarrow$ gauge ensembles of $N$ configuration, statistical error $\propto N^{-\frac{1}{2}}$ :



## Lattice QCD

$$
\begin{aligned}
& \langle\mathcal{O}[q, \bar{q}, U]\rangle=\frac{1}{Z} \int\left[\prod_{x \in \Lambda} \mathrm{~d} \bar{q}(x) \mathrm{d} q(x) \mathrm{d} U(x)\right] \mathcal{O}[q, \bar{q}, U] e^{-S_{F}[\bar{q}, q, U]-S_{G}[U]} \\
& Z=\int\left[\prod_{x \in \Lambda} \mathrm{~d} \bar{q}(x) \mathrm{d} q(x) \mathrm{d} U(x)\right] e^{\left.-S_{F}[\bar{q}, q, U]-S_{G}[U]\right)}
\end{aligned}
$$

- Reduce spacetime to a lattice
- Finite volume $\Rightarrow$ IR regularization
- Finite lattice spacing $\Rightarrow$ UV regularization
- Evaluate the fermionic part (Grassmann variables) using Wick's theorem $\Rightarrow$ Wick contractions (graphs)
- Euclidean spacetime: $e^{i S} \rightarrow e^{-S}$ suitable weight for Monte Carlo integration
- Evaluate gauge integral by Monte Carlo integration $\Rightarrow$ gauge ensembles of $N$ configuration, statistical error $\propto N^{-\frac{1}{2}}$ :



## Lattice QCD

$$
\begin{aligned}
& \langle\mathcal{O}[q, \bar{q}, U]\rangle=\frac{1}{Z} \int\left[\prod_{x \in \Lambda} \mathrm{~d} \bar{q}(x) \mathrm{d} q(x) \mathrm{d} U(x)\right] \mathcal{O}[q, \bar{q}, U] e^{-S_{F}[\bar{q}, q, U]-S_{G}[U]} \\
& Z=\int\left[\prod_{x \in \Lambda} \mathrm{~d} \bar{q}(x) \mathrm{d} q(x) \mathrm{d} U(x)\right] e^{\left.-S_{F}[\bar{q}, q, U]-S_{G}[U]\right)}
\end{aligned}
$$

- Reduce spacetime to a lattice
- Finite volume $\Rightarrow \mathrm{IR}$ regularization
- Finite lattice spacing $\Rightarrow$ UV regularization
- Evaluate the fermionic part (Grassmann variables) using Wick's theorem $\Rightarrow$ Wick contractions (graphs)
- Euclidean spacetime: $e^{i S} \rightarrow e^{-S}$ suitable weight for Monte Carlo integration
- Evaluate gauge integral by Monte Carlo integration $\Rightarrow$ gauge ensembles of $N$ configuration, statistical error $\propto N^{-\frac{1}{2}}$ :



## Lattice QCD

$$
\begin{aligned}
& \langle\mathcal{O}[q, \bar{q}, U]\rangle=\frac{1}{Z} \int\left[\prod_{x \in \Lambda} \mathrm{~d} \bar{q}(x) \mathrm{d} q(x) \mathrm{d} U(x)\right] \mathcal{O}[q, \bar{q}, U] e^{-S_{F}[\bar{q}, q, U]-S_{G}[U]} \\
& Z=\int\left[\prod_{x \in \Lambda} \mathrm{~d} \bar{q}(x) \mathrm{d} q(x) \mathrm{d} U(x)\right] e^{\left.-S_{F}[\bar{q}, q, U]-S_{G}[U]\right)}
\end{aligned}
$$

- Reduce spacetime to a lattice
- Finite volume $\Rightarrow$ IR regularization
- Finite lattice spacing $\Rightarrow$ UV regularization
- Evaluate the fermionic part (Grassmann variables) using Wick's theorem $\Rightarrow$ Wick contractions (graphs)
- Euclidean spacetime: $e^{i S} \rightarrow e^{-S}$ suitable weight for Monte Carlo integration
- Evaluate gauge integral by Monte Carlo integration $\Rightarrow$ gauge ensembles of $N$ configuration, statistical error $\propto N^{-\frac{1}{2}}$



## Lattice QCD

$$
\begin{aligned}
& \langle\mathcal{O}[q, \bar{q}, U]\rangle=\frac{1}{Z} \int\left[\prod_{x \in \Lambda} \mathrm{~d} \bar{q}(x) \mathrm{d} q(x) \mathrm{d} U(x)\right] \mathcal{O}[q, \bar{q}, U] e^{-S_{F}[\bar{q}, q, U]-S_{G}[U]} \\
& Z=\int\left[\prod_{x \in \Lambda} \mathrm{~d} \bar{q}(x) \mathrm{d} q(x) \mathrm{d} U(x)\right] e^{\left.-S_{F}[\bar{q}, q, U]-S_{G}[U]\right)}
\end{aligned}
$$

- Reduce spacetime to a lattice
- Finite volume $\Rightarrow \mathrm{IR}$ regularization
- Finite lattice spacing $\Rightarrow$ UV regularization
- Evaluate the fermionic part (Grassmann variables) using Wick's theorem $\Rightarrow$ Wick contractions (graphs)
- Euclidean spacetime: $e^{i S} \rightarrow e^{-S}$ suitable weight for Monte Carlo integration
- Evaluate gauge integral by Monte Carlo integration $\Rightarrow$ gauge ensembles of $N$ configuration, statistical error $\propto N^{-\frac{1}{2}}$ :

$$
\int\left[\prod_{x} \mathrm{~d} U(x)\right] \operatorname{det}\{\mathcal{D}[U]\} e^{-S[U]} \mathcal{O}[q, \bar{q}, U] \rightarrow \sum_{U \sim P(U)}^{\text {ensemble }} \mathcal{O}[q, \bar{q}, U]
$$

## Lattice QCD

Reduce spacetime $\mathbb{R}^{4}$ to finite lattice with spacing $a$, extensions $L^{3} \times T$ :
$\rightarrow$ put fermions on the grid

$S[q, \bar{q}, U]=\int \mathrm{d}^{4} \times \bar{q}(x) \mathcal{D} q(x)$

$$
\mathcal{D}=i \gamma_{\mu} \partial^{\mu}-m \mathbb{1}
$$

## Lattice QCD

Reduce spacetime $\mathbb{R}^{4}$ to finite lattice with spacing $a$, extensions $L^{3} \times T$ :

- put fermions on the grid points
- replace derivatives by symmetric differential quotient and integrals by sums
- add pure gauge part, the

$\begin{aligned} S[q, \bar{q}, U] & =a^{4} \sum_{x, y \in \Lambda_{4}} \bar{q}(x) \mathcal{D}(x \mid y) q(y) \\ \mathcal{D}(x \mid y) & =\gamma_{\mu} \frac{\delta_{x+\hat{\mu}, y}-\delta_{x-\hat{\mu}, y}}{2 a}-m \delta_{x, y}\end{aligned}$


## Lattice QCD

Reduce spacetime $\mathbb{R}^{4}$ to finite lattice with spacing $a$, extensions $L^{3} \times T$ :

- put fermions on the grid points
- replace derivatives by symmetric differential quotient and integrals by sums
- restore gauge invariance (gauge links $U_{\mu}(x) \sim e^{i a A_{\mu}(x)}$ )

$S[q, \bar{q}, U]=a^{4} \sum_{x, y \in \Lambda_{4}} \bar{q}(x) \mathcal{D}(x \mid y) q(y)$

$$
\mathcal{D}(x \mid y)=\gamma_{\mu} \frac{U_{\mu}(x) \delta_{x+\hat{\mu}, y}-U_{\mu}^{\dagger}(x-\hat{\mu}) \delta_{x-\hat{\mu}, y}}{2 a}-m \delta_{x, y}
$$

## Lattice QCD

Reduce spacetime $\mathbb{R}^{4}$ to finite lattice with spacing $a$, extensions $L^{3} \times T$ :

- put fermions on the grid points
- replace derivatives by symmetric differential quotient and integrals by sums
- restore gauge invariance (gauge links $U_{\mu}(x) \sim e^{i a A_{\mu}(x)}$ )
- add pure gauge part, the plaquette, $\beta=3 g^{-2}$

$S[q, \bar{q}, U]=a^{4} \sum_{x, y \in \Lambda_{4}} \bar{q}(x) \mathcal{D}(x \mid y) q(y)+\frac{\beta}{3} \sum_{x \in \Lambda} \sum_{\mu<\nu} \operatorname{Re} \operatorname{tr}\left\{\mathbb{1}-U_{\mu \nu}(x)\right\}$

$$
\mathcal{D}(x \mid y)=\gamma_{\mu} \frac{U_{\mu}(x) \delta_{x+\hat{\mu}, y}-U_{\mu}^{\dagger}(x-\hat{\mu}) \delta_{x-\hat{\mu}, y}}{2 a}-m \delta_{x, y}
$$

## Lattice QCD

Reduce spacetime $\mathbb{R}^{4}$ to finite lattice with spacing $a$, extensions $L^{3} \times T$ :

- put fermions on the grid points
- replace derivatives by symmetric differential quotient and integrals by sums
- restore gauge invariance (gauge links $U_{\mu}(x) \sim e^{i a A_{\mu}(x)}$ )
- add pure gauge part, the plaquette, $\beta=3 g^{-2}$

$S[q, \bar{q}, U]=a^{4} \sum_{x, y \in \Lambda_{4}} \bar{q}(x) \mathcal{D}(x \mid y) q(y)+\frac{\beta}{3} \sum_{x \in \Lambda} \sum_{\mu<\nu} \operatorname{Re} \operatorname{tr}\left\{\mathbb{1}-U_{\mu \nu}(x)\right\}$

$$
\mathcal{D}(x \mid y)=\gamma_{\mu} \frac{U_{\mu}(x) \delta_{x+\hat{\mu}, y}-U_{\mu}^{\dagger}(x-\hat{\mu}) \delta_{x-\hat{\mu}, y}}{2 a}-m \delta_{x, y}
$$

## Content

# Introduction: The anomalous magnetic moment of the muon 

## Lattice QCD and Correlation Functions

HLbL-Tensor on the Lattice

Summary

## HLbL contributions to $a_{\mu}$ with staggered fermions



## HLbL contributions to $a_{\mu}$ with staggered fermions

Master formula for hadronic light-by-light contribution to $a_{\mu}=\left(g_{\mu}-2\right) / 2$ [Mainz'21, RBC'17]:

$$
a_{\mu}^{\mathrm{HLbL}}=\frac{m_{\mu} e^{6}}{3} \int_{x, y, z} \mathcal{L}_{[\rho \sigma] \mu \nu \lambda}(x, y)\left(-z_{\rho}\right) \widetilde{\Pi}_{\mu \nu \sigma \lambda}(x, y, z)
$$

- $\widetilde{\Pi}_{\mu \nu \sigma \lambda}(x, y, z):=\left\langle j_{\mu}(x) j_{\nu}(y) j_{\sigma}(z) j_{\lambda}(0)\right\rangle:$ Hadronic LbL, with vector currents $j_{\mu}(x)$
$-\mathcal{L}_{[\rho \sigma] \mu \nu \lambda}(x, y):$ QED-kernel (not unique) [Mainz'20]



## HLbL contributions to $a_{\mu}$ with staggered fermions

Master formula for hadronic light-by-light contribution to $a_{\mu}=\left(g_{\mu}-2\right) / 2$ [Mainz'21, RBC'17]:

$$
a_{\mu}^{\mathrm{HLbL}}=\frac{m_{\mu} e^{6}}{3} \int_{x, y, z} \mathcal{L}_{[\rho \sigma] \mu \nu \lambda}(x, y)\left(-z_{\rho}\right) \widetilde{\Pi}_{\mu \nu \sigma \lambda}(x, y, z)
$$

- $\widetilde{\Pi}_{\mu \nu \sigma \lambda}(x, y, z):=\left\langle j_{\mu}(x) j_{\nu}(y) j_{\sigma}(z) j_{\lambda}(0)\right\rangle:$ Hadronic LbL, with vector currents $j_{\mu}(x)$
- $\mathcal{L}_{[\rho \sigma] \mu \nu \lambda}(x, y):$ QED-kernel (not unique) [Mainz'20]

Decomposition of the HLbL tensor $\widetilde{\Pi}$ in terms of Wick contractions:


## Leading Wick contractions



## Connected graphs



A


B


C

Method 1:

$$
\begin{aligned}
a_{\mu}^{\mathrm{HLbL}, \mathrm{c}}=- & \frac{2 m_{\mu} e^{6}}{3} \sum_{x, y, z} \mathcal{L}_{[\rho \sigma] \mu \nu \lambda}(x, y)\left(-z_{\rho}\right) \times \\
& \times \operatorname{Re}\left\{\widetilde{\Pi}_{\mu \nu \sigma \lambda}^{(\mathrm{A})}(x, y, z)+\widetilde{\Pi}_{\mu \nu \sigma \lambda}^{(\mathrm{B})}(x, y, z)+\widetilde{\Pi}_{\mu \nu \sigma \lambda}^{(\mathrm{C})}(x, y, z)\right\}
\end{aligned}
$$

## Connected graphs



A

$B$

$C$

## Method 2:

$$
\begin{aligned}
a_{\mu}^{\mathrm{HLbL}, \mathrm{c}}=- & \frac{2 m_{\mu} \mathrm{e}^{6}}{3} \sum_{x, y, z}\left[\mathcal{L}_{\rho \sigma \mu \nu \lambda}^{(\mathrm{I})}(x, y)\left(-z_{\rho}\right) \operatorname{Re}\left\{\widetilde{\Pi}_{\mu \nu \sigma \lambda}^{(\mathrm{A})}(x, y, z)\right\}+\right. \\
& \left.+\mathcal{L}_{\sigma \mu \nu \lambda}^{(\mathrm{II})}(x, y) \operatorname{Re}\left\{\widetilde{\Pi}_{\mu \nu \sigma \lambda}^{(\mathrm{A})}(x, y, z)\right\}\right] \\
\mathcal{L}_{\rho \sigma \mu \nu \lambda}^{(\mathrm{I})}(x, y)= & \mathcal{L}_{[\rho \sigma] \mu \nu \lambda}(x, y)-\mathcal{L}_{[\rho \sigma] \nu \lambda \mu}^{(s)}(x-y, x)-\mathcal{L}_{[\rho \sigma] \mu \lambda \nu}^{(s)}(y-x, y) \\
\mathcal{L}_{\sigma \mu \nu \lambda}^{(\mathrm{II})}(x, y)= & \left(-x_{\rho}\right) \mathcal{L}_{[\rho \sigma] \nu \lambda \mu}^{(s)}(x-y, x)+\left(-y_{\rho}\right) \mathcal{L}_{[\rho \sigma] \mu \lambda \nu}^{(s)}(y-x, y) \\
\mathcal{L}_{\rho \sigma \mu \nu \lambda}^{(s)}(x, y):= & \frac{1}{2}\left[\mathcal{L}_{\rho \sigma \mu \nu \lambda}(x, y)+\mathcal{L}_{\rho \sigma \nu \mu \lambda}(y, x)\right]
\end{aligned}
$$

## Two technical approaches

Conserved vector currents for staggered fermions $\chi(x), \bar{\chi}(x)$ :

$$
\begin{aligned}
j_{\mu}(x) & =-\frac{1}{2} \sum^{0,1} \bar{\chi}(x+\bar{a} \hat{\mu}) \widetilde{U}_{\mu}^{(a)}(x) \chi(x+a \hat{\mu}) \\
\bar{a}=1-a \quad U_{\mu}^{(0)}(x) & =U_{\mu}^{\dagger}(x)^{a} \quad U_{\mu}^{(1)}(x)=U_{\mu}(x) \quad \widetilde{U}_{\mu}^{(a)}(x)=\eta_{\mu}(x) U_{\mu}^{(a)}(x)
\end{aligned}
$$

Point/Sequential sources ( $\Rightarrow$ Method 1 or 2 ):


A


B


C

## Two technical approaches

Conserved vector currents for staggered fermions $\chi(x), \bar{\chi}(x)$ :

$$
\begin{aligned}
j_{\mu}(x) & =-\frac{1}{2} \sum^{0,1} \bar{\chi}(x+\bar{a} \hat{\mu}) \widetilde{U}_{\mu}^{(a)}(x) \chi(x+a \hat{\mu}) \\
\bar{a}=1-a \quad U_{\mu}^{(0)}(x) & =U_{\mu}^{\dagger}(x)^{a} \quad U_{\mu}^{(1)}(x)=U_{\mu}(x) \quad \widetilde{U}_{\mu}^{(a)}(x)=\eta_{\mu}(x) U_{\mu}^{(a)}(x)
\end{aligned}
$$

Point/Sequential sources $(\Rightarrow$ Method 1 or 2 ):


A


B


C

Inversions:

| $M_{d \hat{\lambda}}:$ | $5 N_{c}$ |
| :--- | :--- |
| $M_{y+b \hat{\nu}}:$ | $5 N_{c} N_{y}$ |
| $X_{y+b \hat{\nu}, \sigma \rho}^{(A)}:$ | $5 \cdot 6 N_{c} N_{y}$ |
| $X_{d \hat{\lambda}, \sigma \rho}^{(B)}:$ | $5 \cdot 6 N_{c}$ |

## Two technical approaches

Conserved vector currents for staggered fermions $\chi(x), \bar{\chi}(x)$ :
$j_{\mu}(x)=-\frac{1}{2} \sum^{0,1} \bar{\chi}(x+\bar{a} \hat{\mu}) \widetilde{U}_{\mu}^{(a)}(x) \chi(x+a \hat{\mu})$
$\bar{a}=1-a \quad U_{\mu}^{(0)}(x)=U_{\mu}^{\dagger}(x)^{a} \quad U_{\mu}^{(1)}(x)=U_{\mu}(x) \quad \widetilde{U}_{\mu}^{(a)}(x)=\eta_{\mu}(x) U_{\mu}^{(a)}(x)$

Point/Sequential sources ( $\Rightarrow$ Method 1 or 2 ):


A


B


C

+ Straight forward implementation
- Requires inversions for each considered position $y$.
$\Rightarrow$ Computational costs governed by propagator inversions

Inversions:

| $M_{d \hat{\lambda}}:$ | $5 N_{c}$ |
| :--- | :--- |
| $M_{y+b \hat{\nu}}:$ | $5 N_{c} N_{y}$ |
| $X_{y+b \hat{\nu}, \sigma \rho}^{(A)}:$ | $5 \cdot 6 N_{c} N_{y}$ |
| $X_{d \hat{\lambda}, \sigma \rho}^{(B)}:$ | $5 \cdot 6 N_{c}$ |

## Two technical approaches

Conserved vector currents for staggered fermions $\chi(x), \bar{\chi}(x)$ :

$$
\begin{gathered}
j_{\mu}(x)=-\frac{1}{2} \sum_{a}^{0,1} \bar{\chi}(x+\bar{a} \hat{\mu}) \widetilde{U}_{\mu}^{(a)}(x) \chi(x+a \hat{\mu}) \\
\bar{a}=1-a \quad U_{\mu}^{(0)}(x)=U_{\mu}^{\dagger}(x)^{a} \quad U_{\mu}^{(1)}(x)=U_{\mu}(x) \quad \widetilde{U}_{\mu}^{(a)}(x)=\eta_{\mu}(x) U_{\mu}^{(a)}(x)
\end{gathered}
$$

Stochastic sources ( $\Rightarrow$ Method 2 only):


A

## Two technical approaches

Conserved vector currents for staggered fermions $\chi(x), \bar{\chi}(x)$ :

$$
\begin{gathered}
j_{\mu}(x)=-\frac{1}{2} \sum_{a}^{0,1} \bar{\chi}(x+\bar{a} \hat{\mu}) \widetilde{U}_{\mu}^{(a)}(x) \chi(x+a \hat{\mu}) \\
\bar{a}=1-a \quad U_{\mu}^{(0)}(x)=U_{\mu}^{\dagger}(x)^{a} \quad U_{\mu}^{(1)}(x)=U_{\mu}(x) \quad \widetilde{U}_{\mu}^{(a)}(x)=\eta_{\mu}(x) U_{\mu}^{(a)}(x)
\end{gathered}
$$

Stochastic sources ( $\Rightarrow$ Method 2 only):


A

Inversions:


## Two technical approaches

Conserved vector currents for staggered fermions $\chi(x), \bar{\chi}(x)$ :

$$
\begin{gathered}
j_{\mu}(x)=-\frac{1}{2} \sum_{a}^{0,1} \bar{\chi}(x+\bar{a} \hat{\mu}) \widetilde{U}_{\mu}^{(a)}(x) \chi(x+a \hat{\mu}) \\
\bar{a}=1-a \quad U_{\mu}^{(0)}(x)=U_{\mu}^{\dagger}(x)^{a} \quad U_{\mu}^{(1)}(x)=U_{\mu}(x) \quad \widetilde{U}_{\mu}^{(a)}(x)=\eta_{\mu}(x) U_{\mu}^{(a)}(x)
\end{gathered}
$$

Stochastic sources ( $\Rightarrow$ Method 2 only):


A

Inversions:

$$
\begin{array}{ll}
M_{d \hat{\lambda}}: & 5 N_{c} \\
\psi^{(\ell)}: & N_{\text {stoch }} \\
\phi_{\sigma}^{(\ell)}: & 4 N_{\text {stoch }} \\
\tilde{\phi}_{\sigma \rho}^{(\ell)}: & 6 N_{\text {stoch }}
\end{array}
$$

+ Only one diagram to consider
+ Number of inversions independent of number of considered sites $y$
- Introduce stochastic noise
$\Rightarrow$ Computational costs governed by contractions / kernel calculations for each ( $x, y$ )-pair.


## Simulation strategy



- Simulations for several points on line of constant physics (example above: QED-loop $U_{\mu} \equiv 1$ for $L m_{\mu}=4$ ) towards the continuum
- Use different box sizes to estimate finite-volume effects


## Simulation strategy



P Simulations for several points on line of constant physics (example above: QED-loop $U_{\mu} \equiv 1$ for $L m_{\mu}=4$ ) towards the continuum

- Use different box sizes to estimate finite-volume effects


## Content

# Introduction: The anomalous magnetic moment of the muon 

Lattice QCD and Correlation Functions

HLbL-Tensor on the Lattice

Summary

## Summary

- Anomalous magnetic moment of the muon hot topic of ongoing research (might indicate physics beyond SM)
- Two hadronic contributions, where lattice QCD simulations contribute important information
- HI hI relatively small $\left(\mathcal{O}\left(a^{3}\right)\right.$ ), but large enough to have significant impact
this work: Direct calculation of the hadronic light-by-light tensor, i.e. four-point functions on the lattice
- Calculation requires a lot of comnutational effort


## Summary

- Anomalous magnetic moment of the muon hot topic of ongoing research (might indicate physics beyond SM)
- Two hadronic contributions, where lattice QCD simulations contribute important information
- HLbL relatively small $\left(\mathcal{O}\left(\alpha^{3}\right)\right)$, but large enough to have significant impact
- this work: Direct calculation of the hadronic light-by-light tensor, i.e. four-point functions on the lattice
- Calculation requires a lot of computational effort


## Summary

- Anomalous magnetic moment of the muon hot topic of ongoing research (might indicate physics beyond SM)
- Two hadronic contributions, where lattice QCD simulations contribute important information
- HLbL relatively small $\left(\mathcal{O}\left(\alpha^{3}\right)\right)$, but large enough to have significant impact
$>$ this work: Direct calculation of the hadronic light-by-light tensor, i.e. four-point functions on the lattice
- Calculation requires a lot of comnutational effort


## Summary

- Anomalous magnetic moment of the muon hot topic of ongoing research (might indicate physics beyond SM)
- Two hadronic contributions, where lattice QCD simulations contribute important information
- HLbL relatively small $\left(\mathcal{O}\left(\alpha^{3}\right)\right)$, but large enough to have significant impact
- this work: Direct calculation of the hadronic light-by-light tensor, i.e. four-point functions on the lattice
- Calculation requires a lot of computational effort


## Summary

- Anomalous magnetic moment of the muon hot topic of ongoing research (might indicate physics beyond SM)
- Two hadronic contributions, where lattice QCD simulations contribute important information
- HLbL relatively small $\left(\mathcal{O}\left(\alpha^{3}\right)\right)$, but large enough to have significant impact
- this work: Direct calculation of the hadronic light-by-light tensor, i.e. four-point functions on the lattice
- Calculation requires a lot of computational effort


## Summary

- Anomalous magnetic moment of the muon hot topic of ongoing research (might indicate physics beyond SM)
- Two hadronic contributions, where lattice QCD simulations contribute important information
- HLbL relatively small $\left(\mathcal{O}\left(\alpha^{3}\right)\right)$, but large enough to have significant impact
- this work: Direct calculation of the hadronic light-by-light tensor, i.e. four-point functions on the lattice
- Calculation requires a lot of computational effort


## Current Status:

Code finished, but needs further optimization

## Summary

- Anomalous magnetic moment of the muon hot topic of ongoing research (might indicate physics beyond SM)
- Two hadronic contributions, where lattice QCD simulations contribute important information
- HLbL relatively small $\left(\mathcal{O}\left(\alpha^{3}\right)\right)$, but large enough to have significant impact
- this work: Direct calculation of the hadronic light-by-light tensor, i.e. four-point functions on the lattice
- Calculation requires a lot of computational effort


## Current Status:

Code finished, but needs further optimization

## Thanks for your attention!

Backup slides

## Staggered fermions

- When discretizing the theory, additional particles ("Doublers") are implicitly introduced; Free propagator for massles fermions in momentum space:

$$
\begin{aligned}
M(p) & =\frac{m \mathbb{1}+i a^{-1} \sum_{\mu} \gamma_{\mu} \sin \left(p_{\mu} a\right)}{m^{2}+a^{-2} \sum_{\mu} \sin ^{2}\left(p_{\mu} a\right)} \\
& \Rightarrow 16 \text { poles for } p_{\mu} \in[-2 \pi / a, 2 \pi / a) \text { in } 4 \text { dimensions }
\end{aligned}
$$

- These unphysical artifacts can be removed on the cost of chiral symmetry.
- Nielsen-Ninomiya theorem: In 4 dimensions, there is no discretized theory that is chiral and at the same time free of doublers.
- Doublers can be partially removed while keeping chiral symmetry


## Staggered fermions

- When discretizing the theory, additional particles ("Doublers") are implicitly introduced; Free propagator for massles fermions in momentum space:

$$
\begin{aligned}
M(p) & =\frac{m \mathbb{1}+i a^{-1} \sum_{\mu} \gamma_{\mu} \sin \left(p_{\mu} a\right)}{m^{2}+a^{-2} \sum_{\mu} \sin ^{2}\left(p_{\mu} a\right)} \\
& \Rightarrow 16 \text { poles for } p_{\mu} \in[-2 \pi / a, 2 \pi / a) \text { in } 4 \text { dimensions }
\end{aligned}
$$

- These unphysical artifacts can be removed on the cost of chiral symmetry.
- Nielsen-Ninomiya theorem: In 4 dimensions, there is no discretized theory that is chiral and at the same time free of doublers.


## Staggered fermions

- When discretizing the theory, additional particles ("Doublers") are implicitly introduced; Free propagator for massles fermions in momentum space:

$$
\begin{aligned}
M(p) & =\frac{m \mathbb{1}+i a^{-1} \sum_{\mu} \gamma_{\mu} \sin \left(p_{\mu} a\right)}{m^{2}+a^{-2} \sum_{\mu} \sin ^{2}\left(p_{\mu} a\right)} \\
& \Rightarrow 16 \text { poles for } p_{\mu} \in[-2 \pi / a, 2 \pi / a) \text { in } 4 \text { dimensions }
\end{aligned}
$$

- These unphysical artifacts can be removed on the cost of chiral symmetry.
- Nielsen-Ninomiya theorem: In 4 dimensions, there is no discretized theory that is chiral and at the same time free of doublers.
- Doublers can be partially removed while keeping chiral symmetry


## Staggered fermions

- When discretizing the theory, additional particles ("Doublers") are implicitly introduced; Free propagator for massles fermions in momentum space:

$$
\begin{aligned}
M(p) & =\frac{m \mathbb{1}+i a^{-1} \sum_{\mu} \gamma_{\mu} \sin \left(p_{\mu} a\right)}{m^{2}+a^{-2} \sum_{\mu} \sin ^{2}\left(p_{\mu} a\right)} \\
& \Rightarrow 16 \text { poles for } p_{\mu} \in[-2 \pi / a, 2 \pi / a) \text { in } 4 \text { dimensions }
\end{aligned}
$$

- These unphysical artifacts can be removed on the cost of chiral symmetry.
- Nielsen-Ninomiya theorem: In 4 dimensions, there is no discretized theory that is chiral and at the same time free of doublers.
- Doublers can be partially removed while keeping chiral symmetry


## Staggered fermions

$$
\begin{aligned}
S[q, \bar{q}, U] & =a^{4} \sum_{x, y \in \Lambda_{4}} \bar{q}(x) \mathcal{D}(x \mid y) q(y) \\
\mathcal{D}(x \mid y) & =\gamma_{\mu} \nabla_{x y, \mu}^{(U)}-m \delta_{x y}
\end{aligned}
$$

- Staggered transformation: $q^{\prime}(n)=\Gamma^{(n)} q(n), \bar{q}^{\prime}(n)=\bar{q}(n) \Gamma^{(n) \dagger}$,
$\eta_{\mu}(x)$ are phase factors $\Rightarrow$ diagonal in spinor space
- Keep only one spinor component $\Rightarrow$ Reduce number of DOFs by factor of 4
- 4 Doubles remain $\Rightarrow 4$ fermion tastes:



## Staggered fermions

$$
\begin{aligned}
S[q, \bar{q}, U] & =a^{4} \sum_{x, y \in \Lambda_{4}} \bar{q}^{\prime}(x) \mathcal{D}(x \mid y) q^{\prime}(y) \\
\mathcal{D}(x \mid y) & =\eta_{\mu}(x) \nabla_{x y, \mu}^{(U)}-m \delta_{x y}
\end{aligned}
$$

- Staggered transformation: $q^{\prime}(n)=\Gamma^{(n)} q(n), \bar{q}^{\prime}(n)=\bar{q}(n) \Gamma^{(n) \dagger}$,
$\Gamma^{(n)}:=\gamma_{4}^{n_{4}} \gamma_{3}^{n_{3}} \gamma_{2}^{n_{2}} \gamma_{1}^{n_{1}}$
$\eta_{\mu}(x)$ are phase factors $\Rightarrow$ diagonal in spinor space
- Keep only one spinor component $\Rightarrow$ Reduce number of DOFs by factor of 4
- 4 Doubles remain $\Rightarrow 4$ fermion tastes:


## Staggered fermions

$$
\begin{aligned}
S[q, \bar{q}, U] & =a^{4} \sum_{x, y \in \Lambda_{4}} \bar{\chi}(x) \mathcal{D}(x \mid y) \chi(y) \\
\mathcal{D}(x \mid y) & =\eta_{\mu}(x) \nabla_{x y, \mu}^{(U)}-m \delta_{x y}
\end{aligned}
$$

- Staggered transformation: $q^{\prime}(n)=\Gamma^{(n)} q(n), \bar{q}^{\prime}(n)=\bar{q}(n) \Gamma^{(n) \dagger}$,
$\Gamma^{(n)}:=\gamma_{4}^{n_{4}} \gamma_{3}^{n_{3}} \gamma_{2}^{n_{2}} \gamma_{1}^{n_{1}}$
$\eta_{\mu}(x)$ are phase factors $\Rightarrow$ diagonal in spinor space
- Keep only one spinor component $\Rightarrow$ Reduce number of DOFs by factor of 4
- 4 Doubles remain $\Rightarrow 4$ fermion tastes:



## Staggered fermions

$$
\begin{aligned}
& S[q, \bar{q}, U]=16 a^{4} \sum_{x, y \in \Lambda_{4}}^{\text {even }} \sum_{t t^{\prime}} \bar{\psi}^{\left(t^{\prime}\right)}(x) \mathcal{D}_{t t^{\prime}}(x \mid y) \psi^{(t)}(y) \\
& \mathcal{D}_{t t^{\prime}}(x \mid y)=\gamma_{\mu} \nabla_{x y, \mu}^{(U)} \delta_{t t^{\prime}}+m \delta_{x y} \delta_{t t^{\prime}}-a \gamma_{5}\left(\gamma_{\mu} \gamma_{5}\right)_{t^{\prime} t} \triangle_{x y, \mu}^{(U)}
\end{aligned}
$$

- Staggered transformation: $q^{\prime}(n)=\Gamma^{(n)} q(n), \bar{q}^{\prime}(n)=\bar{q}(n) \Gamma^{(n) \dagger}$,
$\Gamma^{(n)}:=\gamma_{4}^{n_{4}} \gamma_{3}^{n_{3}} \gamma_{2}^{n_{2}} \gamma_{1}^{n_{1}}$
$\eta_{\mu}(x)$ are phase factors $\Rightarrow$ diagonal in spinor space
- Keep only one spinor component $\Rightarrow$ Reduce number of DOFs by factor of 4
- 4 Doubles remain $\Rightarrow 4$ fermion tastes:

$$
\begin{aligned}
\psi_{\alpha}^{(t)}(n) & =\frac{1}{8} \sum_{s \in H_{4}} \Gamma_{\alpha t}^{(s)} \chi(2 n+s) \\
\bar{\psi}_{\alpha}^{(t)}(n) & =\frac{1}{8} \sum_{s \in H_{4}} \bar{\chi}(2 n+s) \Gamma_{\alpha t}^{(s) *}
\end{aligned}
$$


[^0]:    > Corrections quantified by $a=(g-2) / 2$

    - The magnetic moment of the muon can be determined precisely in the experiment as well as in theory
    - Sensitive to new physics
    - Recent experimental values:
    $a_{\mu}=116592080(54)(33) \times 10^{-11}$ (BNL, 2006) [Phys.Rev.D 73 (2006) 072003] $a_{\mu}=116592040(54) \times 10^{-11}$ (Fermilab, 2021) [Phys.Rev.Lett. 126 (2021) 14, 141801]
    - More precise measurements are expected in the near future (error reduction by factor 4) $\Rightarrow$ error on the theory side needs to be reduced as well

