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The anomalous magnetic muon moment gµ
▶ For Dirac fermions g = 2 at the tree-level
▶ Deviation by quantum corrections of the fermion photon vertex:

⇒
▶ Corrections quantified by a = (g − 2)/2
▶ The magnetic moment of the muon can be determined precisely in the

experiment as well as in theory
▶ Sensitive to new physics
▶ Recent experimental values:

aµ = 116592080(54)(33) × 10−11 (BNL, 2006)
[Phys.Rev.D 73 (2006) 072003]
aµ = 116592040(54) × 10−11 (Fermilab, 2021)
[Phys.Rev.Lett. 126 (2021) 14, 141801]

▶ More precise measurements are expected in the near future (error
reduction by factor 4) ⇒ error on the theory side needs to be reduced as
well
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Theoretical determination of aµ

Standard Model contributions and current state results (see "white paper"
[arXiv:2006.04822]):

contrib aµ × 1011

QED 116584718.931(104)
Electroweak 153.6(1.0)

LO-HVP (phenom) 6845(40)
LO-HVP (BMWc’20) 7075(55)

HLbL (phenom & latt) 92(18)
total SM 116591810(43)
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Electroweak 153.6(1.0)

LO-HVP (phenom) 6845(40)
LO-HVP (BMWc’20) 7075(55)

HLbL (phenom & latt) 92(18)
total SM 116591810(43)

Have to consider two types of
hadronic contributions:
▶ Hadronic vacuum polarization

(HVP, leading order)
▶ Hadronic light-by-light scattering

(HLbL)
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Theoretical determination of aµ

Standard Model contributions and current state results (see "white paper"
[arXiv:2006.04822]):

contrib aµ × 1011

QED 116584718.931(104)
Electroweak 153.6(1.0)

LO-HVP (phenom) 6845(40)
LO-HVP (BMWc’20) 7075(55)

HLbL (phenom & latt) 92(18)
total SM 116591810(43)

Tension between experiment and theory:

[Fermilab’21] [BMWc’20]
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Determination of hadronic contributions

LO-HVP HLbL

O(α2) O(α3)

4 / 12



Determination of hadronic contributions
HVP: Involves hadronic vacuum polarization tensor:

Πµν(Q) =
µ ν ∝

∫
dx4e−iQx ⟨jµ(x)jν(0)⟩

▶ Dispersive Method (Analyticity + optical theorem):

=

2

+ · · ·

R-ratio:

aµ = α2

3π2

∫ ∞

m2
π

ds K(s)
s R(s) R(s) = 3s σ0(e+e− → hadrons)

4πα2

▶ Calculate 2pt function on the lattice:
▶ Need sub-per-mille-precision
▶ Lattice artifacts (discretization, finite-volume, taste-braking,...) have

to be under control
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Determination of hadronic contributions

[BMWc’20]
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Determination of hadronic contributions
HLbL: Again two approaches:
▶ Dispersive Method:

= + + · · ·

▶ Determine required decay constants / form factors in experiment or
on the lattice (→ talk by Willem)

▶ Evaluate 4pt function on the lattice (this work)

Π̃µνλσ(x , y , z) =
µ

x
λ

0

ν y

σ z

∝
〈
jµ(x)jν(y)jλ(0)jσ(z)

〉

▶ Need only precision of 10%
▶ BUT: 4pt functions are in general challenging on the lattice
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Determination of hadronic contributions
HLbL: Recent results:

[Plot by C. Lehner]
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Lattice QCD

⟨O[q, q̄,U]⟩ =
1
Z

∫ [∏
x∈Λ

dq̄(x)dq(x)dU(x)

]
O[q, q̄,U]e−SF [q̄,q,U]−SG [U]

Z =
∫ [∏

x∈Λ

dq̄(x)dq(x)dU(x)

]
e−SF [q̄,q,U]−SG [U])

▶ Reduce spacetime to a lattice
▶ Finite volume ⇒ IR regularization
▶ Finite lattice spacing ⇒ UV regularization
▶ Evaluate the fermionic part (Grassmann variables) using Wick’s theorem

⇒ Wick contractions (graphs)
▶ Euclidean spacetime: eiS → e−S suitable weight for Monte Carlo integration
▶ Evaluate gauge integral by Monte Carlo integration ⇒ gauge ensembles of N

configuration, statistical error ∝ N− 1
2 :∫ [∏

x

dU(x)

]
det{D[U]}e−S[U] O[q, q̄,U] →

ensemble∑
U∼P(U)

O[q, q̄,U],
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Lattice QCD
Reduce spacetime R4 to finite lattice with spacing a, extensions L3 × T :
▶ put fermions on the grid

points
▶ replace derivatives by

symmetric differential quotient
and integrals by sums

▶ restore gauge invariance
(gauge links Uµ(x) ∼ e iaAµ(x))

▶ add pure gauge part, the
plaquette, β = 3g−2

ν

µ

..

S[q, q̄,U] =
∫

d4xq̄(x)Dq(x)

D = iγµ∂
µ − m1

6 / 12



Lattice QCD
Reduce spacetime R4 to finite lattice with spacing a, extensions L3 × T :
▶ put fermions on the grid

points
▶ replace derivatives by

symmetric differential quotient
and integrals by sums

▶ restore gauge invariance
(gauge links Uµ(x) ∼ e iaAµ(x))

▶ add pure gauge part, the
plaquette, β = 3g−2

ν

µ

..

S[q, q̄,U] = a4
∑

x,y∈Λ4

q̄(x)D(x |y)q(y)

D(x |y) = γµ
δx+µ̂,y − δx−µ̂,y

2a
− mδx,y

6 / 12



Lattice QCD
Reduce spacetime R4 to finite lattice with spacing a, extensions L3 × T :
▶ put fermions on the grid

points
▶ replace derivatives by

symmetric differential quotient
and integrals by sums

▶ restore gauge invariance
(gauge links Uµ(x) ∼ e iaAµ(x))

▶ add pure gauge part, the
plaquette, β = 3g−2

ν

µ

..

S[q, q̄,U] = a4
∑

x,y∈Λ4

q̄(x)D(x |y)q(y)

D(x |y) = γµ
Uµ(x)δx+µ̂,y − U†

µ(x − µ̂)δx−µ̂,y

2a
− mδx,y

6 / 12



Lattice QCD
Reduce spacetime R4 to finite lattice with spacing a, extensions L3 × T :
▶ put fermions on the grid

points
▶ replace derivatives by

symmetric differential quotient
and integrals by sums

▶ restore gauge invariance
(gauge links Uµ(x) ∼ e iaAµ(x))

▶ add pure gauge part, the
plaquette, β = 3g−2

ν

µ

..

S[q, q̄,U] = a4
∑

x,y∈Λ4

q̄(x)D(x |y)q(y) +
β

3

∑
x∈Λ

∑
µ<ν

Re tr{1 − Uµν(x)}

D(x |y) = γµ
Uµ(x)δx+µ̂,y − U†

µ(x − µ̂)δx−µ̂,y

2a
− mδx,y

6 / 12



Lattice QCD
Reduce spacetime R4 to finite lattice with spacing a, extensions L3 × T :
▶ put fermions on the grid

points
▶ replace derivatives by

symmetric differential quotient
and integrals by sums

▶ restore gauge invariance
(gauge links Uµ(x) ∼ e iaAµ(x))

▶ add pure gauge part, the
plaquette, β = 3g−2

ν

µ

..

S[q, q̄,U] = a4
∑

x,y∈Λ4

q̄(x)D(x |y)q(y) +
β

3

∑
x∈Λ

∑
µ<ν

Re tr{1 − Uµν(x)}

D(x |y) = γµ
Uµ(x)δx+µ̂,y − U†

µ(x − µ̂)δx−µ̂,y

2a
− mδx,y

6 / 12



Content

Introduction: The anomalous magnetic moment of the muon

Lattice QCD and Correlation Functions

HLbL-Tensor on the Lattice

Summary



HLbL contributions to aµ with staggered fermions

Master formula for hadronic light-by-light contribution to aµ = (gµ − 2)/2
[Mainz’21, RBC’17]:

aHLbL
µ = mµe6

3

∫
x,y,z

L[ρσ]µνλ(x , y) (−zρ) Π̃µνσλ(x , y , z)

▶ Π̃µνσλ(x , y , z) := ⟨jµ(x)jν(y)jσ(z)jλ(0)⟩: Hadronic LbL, with vector
currents jµ(x)

▶ L[ρσ]µνλ(x , y): QED-kernel (not unique) [Mainz’20]

x 0
y

z

7 / 12



HLbL contributions to aµ with staggered fermions
Master formula for hadronic light-by-light contribution to aµ = (gµ − 2)/2
[Mainz’21, RBC’17]:

aHLbL
µ = mµe6

3

∫
x,y,z

L[ρσ]µνλ(x , y) (−zρ) Π̃µνσλ(x , y , z)

▶ Π̃µνσλ(x , y , z) := ⟨jµ(x)jν(y)jσ(z)jλ(0)⟩: Hadronic LbL, with vector
currents jµ(x)

▶ L[ρσ]µνλ(x , y): QED-kernel (not unique) [Mainz’20]

x 0
y

z

7 / 12



HLbL contributions to aµ with staggered fermions
Master formula for hadronic light-by-light contribution to aµ = (gµ − 2)/2
[Mainz’21, RBC’17]:

aHLbL
µ = mµe6

3

∫
x,y,z

L[ρσ]µνλ(x , y) (−zρ) Π̃µνσλ(x , y , z)

▶ Π̃µνσλ(x , y , z) := ⟨jµ(x)jν(y)jσ(z)jλ(0)⟩: Hadronic LbL, with vector
currents jµ(x)

▶ L[ρσ]µνλ(x , y): QED-kernel (not unique) [Mainz’20]

Decomposition of the HLbL tensor Π̃ in terms of Wick contractions:

Π̃ = + + + + · · ·

7 / 12



Leading Wick contractions
z, σ, ρ

x , µ 0, λ

y , ν

A

z, σ, ρ

x , µ 0, λ

y , ν

B

z, σ, ρ

x , µ 0, λ

y , ν

C

z, σ, ρ

x , µ 0, λ

y , ν

D

z, σ, ρ

x , µ 0, λ

y , ν

E

z, σ, ρ

x , µ 0, λ

y , ν

F
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Connected graphs
z, σ, ρ

x , µ 0, λ

y , ν

A

z, σ, ρ

x , µ 0, λ

y , ν

B

z, σ, ρ

x , µ 0, λ

y , ν

C
Method 1:

aHLbL,c
µ = −

2mµe6

3

∑
x,y,z

L[ρσ]µνλ(x , y)(−zρ)×

× Re
{

Π̃(A)
µνσλ

(x , y , z) + Π̃(B)
µνσλ

(x , y , z) + Π̃(C)
µνσλ

(x , y , z)
}
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z, σ, ρ

x , µ 0, λ

y , ν

A

z, σ, ρ

x , µ 0, λ

y , ν

B

z, σ, ρ

x , µ 0, λ

y , ν

C
Method 2:

aHLbL,c
µ = −

2mµe6

3

∑
x,y,z

[
L(I)

ρσµνλ
(x , y)(−zρ) Re

{
Π̃(A)

µνσλ
(x , y , z)

}
+

+ L(II)
σµνλ

(x , y) Re
{

Π̃(A)
µνσλ

(x , y , z)
}]

L(I)
ρσµνλ

(x , y) = L[ρσ]µνλ(x , y) − L(s)
[ρσ]νλµ

(x − y , x) − L(s)
[ρσ]µλν

(y − x , y)

L(II)
σµνλ

(x , y) = (−xρ)L(s)
[ρσ]νλµ

(x − y , x) + (−yρ)L(s)
[ρσ]µλν

(y − x , y)

L(s)
ρσµνλ

(x , y) :=
1
2

[
Lρσµνλ(x , y) + Lρσνµλ(y , x)

]
9 / 12



Two technical approaches
Conserved vector currents for staggered fermions χ(x), χ̄(x):

jµ(x) = −1
2

0,1∑
a

χ̄(x + āµ̂) Ũ(a)
µ (x) χ(x + aµ̂)

ā = 1 − a U(0)
µ (x) = U†

µ(x) U(1)
µ (x) = Uµ(x) Ũ(a)

µ (x) = ηµ(x) U(a)
µ (x)

Point/Sequential sources (⇒ Method 1 or 2):

X (A)†
y+bν̂,σρ

M†
y+bν̂

Md̄λ̂

M†
dλ̂

A

X (B)
d̄λ̂,σρ

M†
y+b̄ν̂

Md̄λ̂

M†
dλ̂

B

My+b̄ν̂

M†
y+bν̂

Md̄λ̂

M†
dλ̂

C

+ Straight forward implementation
– Requires inversions for each considered

position y .
⇒ Computational costs governed by propa-
gator inversions

Inversions:
Mdλ̂: 5Nc
My+bν̂ : 5NcNy

X (A)
y+bν̂,σρ: 5 · 6NcNy

X (B)
dλ̂,σρ

: 5 · 6Nc
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ā = 1 − a U(0)
µ (x) = U†

µ(x) U(1)
µ (x) = Uµ(x) Ũ(a)

µ (x) = ηµ(x) U(a)
µ (x)

Stochastic sources (⇒ Method 2 only):

×
ϕ

(ℓ)†
σ /ϕ̃(ℓ)†

σρ

ψ(ℓ)

Md̄λ̂

M†
dλ̂

A

Inversions:
Mdλ̂: 5Nc

ψ(ℓ): Nstoch

ϕ
(ℓ)
σ : 4Nstoch

ϕ̃
(ℓ)
σρ: 6Nstoch

+ Only one diagram to consider
+ Number of inversions independent of number of considered sites y
– Introduce stochastic noise

⇒ Computational costs governed by contractions / kernel calculations for each
(x , y)-pair.
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ā = 1 − a U(0)
µ (x) = U†

µ(x) U(1)
µ (x) = Uµ(x) Ũ(a)
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Simulation strategy
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continuum extrapolation, QED loop

analytic continuum value
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▶ Simulations for several points on line of constant physics (example above:
QED-loop Uµ ≡ 1 for Lmµ = 4) towards the continuum

▶ Use different box sizes to estimate finite-volume effects
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Simulation strategy
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11 / 12



Content

Introduction: The anomalous magnetic moment of the muon

Lattice QCD and Correlation Functions

HLbL-Tensor on the Lattice

Summary



Summary

▶ Anomalous magnetic moment of the muon hot topic of ongoing research
(might indicate physics beyond SM)

▶ Two hadronic contributions, where lattice QCD simulations contribute
important information

▶ HLbL relatively small (O(α3)), but large enough to have significant impact
▶ this work: Direct calculation of the hadronic light-by-light tensor, i.e.

four-point functions on the lattice
▶ Calculation requires a lot of computational effort

Current Status:
Code finished, but needs further optimization

Thanks for your attention!
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Backup slides



Staggered fermions
▶ When discretizing the theory, additional particles ("Doublers") are

implicitly introduced; Free propagator for massles fermions in momentum
space:

M(p) =
m1 + ia−1 ∑

µ
γµ sin(pµa)

m2 + a−2
∑

µ
sin2(pµa)

⇒ 16 poles for pµ ∈ [−2π/a, 2π/a) in 4 dimensions

▶ These unphysical artifacts can be removed on the cost of chiral symmetry.
▶ Nielsen-Ninomiya theorem: In 4 dimensions, there is no discretized theory

that is chiral and at the same time free of doublers.
▶ Doublers can be partially removed while keeping chiral symmetry
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Staggered fermions
S[q, q̄,U] = a4

∑
x,y∈Λ4

q̄(x)D(x |y)q(y)

D(x |y) = γµ∇(U)
xy,µ − mδxy

▶ Staggered transformation: q′(n) = Γ(n)q(n), q̄′(n) = q̄(n)Γ(n)†,
Γ(n) := γn4

4 γn3
3 γn2

2 γn1
1

ηµ(x) are phase factors ⇒ diagonal in spinor space
▶ Keep only one spinor component ⇒ Reduce number of DOFs by factor of 4
▶ 4 Doubles remain ⇒ 4 fermion tastes:

ψ
(t)
α (n) =

1
8

∑
s∈H4

Γ(s)
αt χ(2n + s)

ψ
(t)
α (n) =

1
8

∑
s∈H4

χ(2n + s) Γ(s)∗
αt
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Staggered fermions
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