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Precision computation

Motivations
LHC Run 3 soon: more data
→ less statistical error
Experimental precision
getting better and better
Theory must adapt and be
even more accurate:
“Precision era”

QCD corrections can be the most important in some processes: we need
to take them into account. To do so we can use resummation techniques!
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Motivational example: top pair production

Figure: Fixed order comparison for top pair [3]
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Motivational example: scale dependance

Figure: Cross section scale dependance, PhD thesis Irene Niessen
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Factorization of scales

Soft

Hard ...

...

...

...

Factorization theorem: Soft
scale vs. Hard scale
Unlike QED the emissions
are correlated → color
structure
dσ ∝ H.S in Mellin space
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Hadronic to partonic

The link between hadronic and partonic is the convolution by PDFs:

σh1h2→... =
∫

fp1/h1 ⊗ fp1/h1 ⊗ d σ̂p1p2→...

Mellin space (∼ Laplace transform):

M [f ](N) = f N =
∫ 1

0
dzf (z)zN−1

σN
h1h2→... =

∫
f N
p1/h1

.f N
p1/h1

.d σ̂N
p1p2→...

N.B.: Invariant-mass threshold definition: ŝ = P2
in → P2

out = Q2 6=
absolute threshold:

√
ŝ →

∑
mout
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Large logs

d σ̂N
p1p2→... = dΦn

F
∑
|M N

p1p2→...|
2

For the qq̄ → Z process at NLO:

d σ̂N
qq̄→Z = dσ0

(
1 + αs

2π

[
4CF ln2(N)− 4CF ln(N) ln(m2

Z/µ
2
F ) + C̃ (1)

qq̄→Z

])
(1)

N Mellin conjugate to z = Q2

ŝ , |N| → +∞←→ z → 1

Generic logarithms coming from real emissions of (collinear-)soft gluons
appear to all orders: can be resummed .
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Expansion of logarithms

Resumming and exponentiation of logarithms produces a new power
series in αsL at large L = ln(N): Leading-Logarithms (LL), NLL, NkLL

αm
s Lk LO NLO ... NmLO

LL m = k = 0 k = 2 ... m + 1 ≤ k ≤ 2m

NLL ∅ m = k = 1 ... m ≤ k ≤ 2m − 1

... ... ... ... ...

NpLL ∅ ∅ ... m + 1− p ≤ k ≤ 2m − p
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General formalism

In a general way, we can write the factorized formula:

d σ̂N, res.
ij→... ∝ Tr

(
He
∫

Γ†
Se
∫

Γ
)

∆i ∆j

(2)

H: “hard” matrix, high energy process part
S: “soft” matrix, low energy emissions and color structure
Γ: soft anomalous dimension color matrix controlling the evolution
over RG of S
∆i : (colinear-)soft radiations from initial state massless partons

∆i = eg1(αs ln(N̄)) ln(N̄)+g2(αs ln(N̄))+...
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Color basis

qa

q̄b l−

l+

Z

qa

q̄b tc

t̄d

g

3⊗ 3 = 8⊕ 1, singlet-octet decomposition. Color tensor basis depends
on the incomming and outgoing particles, not unique.
We can choose the following color tensor bases for the example processes:{

cDY = 1√
Nc
δab

} {
c1 = 1

Nc
δabδcd , c8 =

√
2

CF Nc
T i

baT i
cd

}
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Hard function

Actual hard scale process at fixed loop order, we can expand in αs

H =
∑
k=0

H(k)
(αs
4π

)k

The (finite) virtual contribution for NLO is encoded in:

H1 ∝
∑

2<(M ∗
0 .M1)

understood as colored renormalized matrix elements, expandable on the
color tensor basis relevant for the process.
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Soft functions

S can also be expanded in αs , if the color bases is orthonormal (like the
examples) the first term is:

S0 ∝
(

cI .cJ

)
= Id

Higher orders of S are needed for precise treatment of the soft limit and
consists in considering all possible soft emissions from external legs.
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Γ computation

Γ is the color matrix which drives the evolution of the soft matrix
through RG:

dS
d ln(µ) = −Γ†S− SΓ

To compute it we need to consider loop contributions in the eikonal
approximation and sum over all possible leg combination:

Γ(1)
IJ = −

∑
k,l

Ckl
IJ lim
ε→0

ε ω
(1)
kl
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Matching

We can also expand d σ̂N, res. to NLO in αs and compare it to the usual
NLO cross section (obtained with MG5_aMC@NLO).

Fixed order
dσ|NLO

Valid away
from

threshold

Resummed
dσres.

Valid at
threshold

Resummed expanded at f.o.
dσres.
|NLO

Double counting

Matching: dσ|NLO + dσres. − dσres.
|NLO

valid everywhere
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Comparison of cross sections behaviour: qq̄ → tt̄
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Expected behaviours

We expect the ratio 1
dσ0/dQ2

(dσres.

dQ2 −
dσres.

dQ2

∣∣∣
NLO

)
−→

Q2�Sh
0

Away from threshold the logarithmic terms are not important and
the behaviour is captured by the first orders of the expansion.

We expect also 1
dσ0/dQ2

(dσNLO

dQ2 −
dσres.

dQ2

∣∣∣
NLO

)
−→

Q2→Sh
0

In the threshold regime, the resummed expanded reproduces the
behaviour of original cross section.

To obtain a sensible cross section in all ranges we may consider the
combination: σ|NLO + σres. − σres.

|NLO
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To be done

Top pair production
Apply on gg → tt̄
Color basis of 8⊗ 8 = 8S ⊕ 8A ⊕ 1⊕ ... is 3
dimensional but similar treatment

4 top
Apply on gg/qq̄ → tt̄t t̄
Statistics greatly improved with Run 3 and HL-LHC
Color structure and kinematics more complex
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Thank you for your attention!
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Eikonal approximation

Mh

g

−→p a

−→
k

−→p a −
−→
k

Me =Mh
i(/pa − /k + m)

(pa − k)2 −m2 + iε (−igsTaγµ)u(pa)ε∗µ(k)

Me →
k�p

Mhu(pa)gsTa −pµa
pa.k + iεε

∗
µ(k)

Effective Feynman rules for soft (k � p) gluon radiation and generators
depending of particle nature and if it’s incomming/outgoing.
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Γ computation

Γ(1)
IJ = −

∑
k,l

Ckl
IJ lim
ε→0

ε ω
(1)
kl

Where ω(1)
kl contains the kinematics at 1-loop in eikonal approximation:

ω
(1)
kl = g2

s

∫ ddq
(2π)d

−i
q2 + iε

( ∆k∆lpk .pl
(δkpk .q + iε)(δlpl .q + iε) + ...

)
And the color factor: Ckl

IJ = 〈cI |tktl |cJ〉√
〈cI |cI〉 〈cJ |cJ〉
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∆ building

MBorn

g

Me =
Eikonal

MBornu(pa)gsTa −pµa
pa.k + iεε

∗
µ(k)

dσe ∝
2pa.pb

EaEbk2
0 (1− cos2(θ))dσBorn

Phase space factorization:

dΦ2 = dd−1k
(2π)d−12k0

2π
ŝ δ( 2k√

ŝ
− 1 + z)
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Regularization and resummation
When we add the virtual contribution in the same eikonal approximation
to regulate z → 1 divergences and integrate over phase space we get for
each massless leg:

I = 2Ci

∫ 1

0
dz zN−1 − 1

1− z

∫ 1

−1

d cos(θ)
1− cos2(θ)

αs
π

In the collinear limit cos(θ) ≈ 1− θ2

2 and we can approximate
dθ2

θ2 ≈
dk2

k2 where k represents the momentum taken away by the gluon.

I = Ci

∫ 1

0
dz zN−1 − 1

1− z

∫ (1−z)2Q2

µ2
F

dk2

k2
αs(k2)
π

We can extrapolate this for multiple emissions, decoupled for this LL
integral:

∆LL
i =

+∞∑
n=0

In

n! = eI
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H computation

H(1) contains all the hard process dependent part of the cross section.
Since it’s hard, it doesn’t depend on log(N) which encapsulate the soft
limit.
It can be extracted from the full NLO computation or via dipole
formalism together with virtual contutribution.
Schematically:

H(1) = V
∣∣∣
reg.

+
(

P + K + I
)∣∣∣

N−indep.
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P Operator

At 1st order for a process a + b →
∑n

l=1 pl , we have:

Paa′

n+a/b({pl}, xpa, pb, x) = αs
2πPaa′ (x)

∑
I 6=a,a′

TI .Ta′

T2
a′

ln
( µ2

F
xsaI

)
It has to be convoluted with the partonic differential colored cross section
at tree level: d σ̂0

a′b and summed over all possible a′ (wa have both
contributions of Paa′

and Pbb′
of course.

After Mellin transform we get:

Paa′

n+a/b(N) = αs
2π δ

aa′
(
γa − 2Ca ln(N)

) ∑
I 6=a,a′

TI .Ta′

Ca′
ln
(µ2

F
saI

)
+ o(1) (3)

With sij = 2pi .pj
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K Operator

K aa′
({qn}, {pm}, pa, pb, x) = αs

2π

{
K aa′

(x)− K aa′
F .S.(x)−

∑
i 6=a,b

Ti .Ta′K aa′
i (x , sia,mi )

− 1
T2

a′

∑
i 6=a,b

Ti .Ta′

[
P reg

aa′ (x) ln
( (1− x)sia

(1− x)sia + m2
i

)
+

δaa′
δ(1− x)γa

(
ln
( sia − 2mi

√
m2

i + sia + 2m2
i

sia

)
+ 2mi√

sia + m2
i + mi

)]
− Tb.Ta′

T2
a′

[
P reg

aa′ (x) ln(1− x) + δaa′
T2

a′

(
2 ln(1− x)

1− x

)∣∣∣
+
− π2

3 δ(1− x)
]}
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K Operator

After Mellin transform:

K aa′
(N) = αs

2π

{
δaa′

Ca

(
ln2(N)− π2

6

)
−
∑
i 6=a,b

Ti .Ta′K aa′
i (N, sia,mi )

− 1
T2

a′

∑
i 6=a,b

Ti .Ta′

[
δaa′

γa

(
ln
( sia − 2mi

√
m2

i + sia + 2m2
i

sia

)
+ 2mi√

sia + m2
i + mi

)]
− Tb.Ta′δaa′

(
ln2(N)− π2

6

)
+ o(1)

}
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K aa′
i (N)

If i refers to a massive (anti-)quark or gluino:

K aa′

qi
(N) = δaa′

[
ln2(N) + 2 ln(N)

(
1 + ln(m2

i /sia)
)
− 1− π2

6

+ 2Li2(1 + sia/m2
i ) + ln

( m2
i

m2
i + sia

)(1
2 + m2

i
sia

+ 2 ln(m2
i /sia)

)]
If it’s massless:

K aa′

i (N) = δaa′ γi
Ci

[
ln(N)− 1

]
If there are some massive quarks in the model, the gluonic K aa′

g (N)
picks up an other term depending on the quark masses
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I Operator

Im+a+b =− αs
2π

(4π)ε
Γ(1− ε)

∑
I

1
T2

I

∑
J 6=I

TI .TJ

[
KI + γI

(
1 + ln

(µ2

sIJ

))
− π2

3 T2
I + ΓI(ε, µ,mi ) + T2

I

(µ2

sIJ

)ε
VI(ε, sIJ , κ)

]
δ(1− x)

VI contains a singular part in ε symetric in the input particles I and J and
a non-singular part non totally symetric and depending on the
massiveness of the particles c.f. [1] Sec. 6.2.
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S (1)

S(1) =
αs

2π
(4π)ε

Γ(1− ε)

(
µ2

F
Q2

)ε∑
i,j

Ti .Tj
[

2Ωij
−1

(
ln2(N) +

π2

6

)
+ 2Ωij

0 ln(N) + Ωij
1 + o(1)

]
i = j mi = 0 i = j mi 6= 0 mi = 0 = mj mi = 0 mj 6= 0 mi mj 6= 0

Ωij
−1 0 0 −1 −1/2 0

Ωij
0 0 1 ln

pi .pj

2Ei Ej
=

c.m.
0 ln

pi .pj

Ei mj
−Lβ

if mi = mj

Ωij
1 0

1
βi

ln(
1 + βi
1− βi

)
π2

6
cf. N.B. 0
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N.B.

From F.K.S paper [2] we have the expressions of the eikonal integrals:

E ij = −ξ
−2ε

2ε
22ε

(2π)1−2ε

( s
µ2

)−ε ∫
dΩ(d−1)

k E 2
k

pi .pj
(pi .k)(pj .k)

= (4π)ε
Γ(1− ε)

( µ2

Q2

)ε[E ij
−2
ε2

+
E ij
−1
ε

+ E ij
0

]

Ωij
1 = −E ij

0 − E ij
−1 ln( sξ2

Q2 )−
E ij
−2
2 ln2( sξ2

Q2 )

Ωij
0 = −E ij

−1 − E ij
−2 ln( sξ2

Q2 )

Ωij
−1 = −E ij

−2

27/28
Yehudi SIMON Soft gluon threshold resummation



Framework and motivation
Elements of resummation formalism

Trends and behaviours
Backup

N.B.

For mi = mj = 0, we have:

Ωij
1 = Li2

( pi .pj

2Ei Ej

)
+

1
2

ln2
( pi .pj

2Ei Ej

)
− ln

( pi .pj

2Ei Ej

)
ln(1−

pi .pj

2Ei Ej
) =

c.m.

π2

6
For mj = 0 6= mi :

Ωij
1 =

π2

12
+

1
4

ln2(
1 + βi
1− βi

)−
1
2

ln2(
pi .pj

Ei Ej (1− βi )
) + Li2(1−

Ei Ej (1 + βi )
pi .pj

)−

Li2(1−
pi .pj

Ei Ej (1− βi )
)

For mi 6= 0, mj 6= 0, a 6= b:

Ωij
1 =

(1 + vij )(pi .pj )2

2m2
i

(
J(A)(αabEi , αabEiβi )− J(A)(Ej ,Ejβj )

)
=

mi =mj
0
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