# Recoil proton polarization in DVCS Assemblee General GDR QCD

Olga Bessidskaia Bylund, Maxime Defurne, Pierre Guichon

CEA Saclay, IRFU, DPhN

24th of May 2022

### Proton structure and GPDs



Generalized Parton Distributions (GPDs): nucleon structure in terms of longitudinal momentum & transverse position.

 Measured in exclusive processes like Deeply Virtual Compton Scattering (DVCS).

**Factorization**: splitting into perturbative hard part + non-perturbative soft part (GPDs).

GPDs are accessible through **Compton Form Factors** (CFFs): integrals over *x* - longitudinal momentum fraction of struck quark.



### DVCS parameters

- $E_k$ : beam energy.
- Q<sup>2</sup>: virtuality of the photon, Q<sup>2</sup> = -q<sup>2</sup> = -(k k')<sup>2</sup>.
   x<sub>B</sub> = Q<sup>2</sup>/(2p:q).
- t: 4-momentum transfer to the proton,  $t = (p' p)^2$
- $\phi_h$ : angle between the leptonic and hadronic planes.

These parameters determine the kinematics of the scattered particles.

# Measuring CFFs

### Measurements outline

- $\mathcal{H}$ : unpolarized target
- $\tilde{\mathcal{H}}$ : longitudinally polarized target
- E: transversely polarized target challenge!
  - Gaseous transversely polarized target by <u>HERMES</u> (low luminosity).



Olga Bessidskaia Bylund (CEA Saclay)

### Back to basics

Connection to the total orbital angular momentum of the quarks through Ji's sum rule:  $J^q = \frac{1}{2} \int dx x \left[ H^q(x,\xi,t=0) + E^q(x,\xi,t=0) \right]$ 

Can we introduce a new observable to measure  ${\mathcal E}$  to higher precision?



E describes the process when the proton changes helicity.

Can we extract more information on CFF  ${\cal E}$  by measuring the **polarization** of the **recoil proton**?

- Code by Pierre Guichon at leading order, leading twist, using the exact mathematical expressions.
- The polarization  $\vec{P} = (P_x, P_y, P_z)$  is computed for the DVCS+Bethe-Heitler process, including their interference.
- $P_y$  (normal to the hadronic plane) is particularly sensitive to CFF  $\mathcal{E}$ .



Figure 1: Rotated CM frame (x'y'z')

## Polarization $\phi_h$ -dependence



- $P_{y}$  is sensitive to  $\mathcal{E}$  for the Goloshokov-Kroll (GK) model.
- $P_x$  and  $P_z$  are not sensitive to  $\mathcal{E}$ .
- For  $\phi_h = \pi$  there is a large difference in  $P_y$  when switching off  $\mathcal{E}$ .

## Polarization contributions



- The total magnitude of  $P_y$  comes largely from the interference with Bethe-Heitler.
- The sensitivity of  $P_{\gamma}$  to  $\mathcal{E}$  comes from DVCS.

## Proton polarimeter



- Rescatter the proton with  $\theta_{pol}$ ,  $\phi_{pol}$  inside a carbon analyzer.
- A set of trackers before and after the analyzer detect the incoming and outgoing protons.

A polarization perpendicular to the proton momentum will result in an asymmetry in  $\phi_{\it pol}$  :

$$N(\theta_{pol}, \phi_{pol}) = N_0 [1 + A_p(\theta_{pol})(P_y \sin \phi_{pol} - P_x \cos \phi_{pol})]$$

- The  $P_{\chi}$  dependence cancels out at  $\phi_h = \pi$  for an unpolarized beam.
- $P_y$  can be extracted by fitting the distribution.

# Polarimeter performance

### Analyzing power

- $A_p(\theta_{pol}, p')$ : sensitivity of the scattering to the polarization.
- McNaughton's low-energy parametrization.

#### 0.6 0.5 0.4 0.4 0.2 0.2 0.2 0.1 0 200 400 600 600 E<sub>corb</sub>(MeV)

### Efficiency

*ϵ*(θ<sub>pol</sub>, p', e<sub>c</sub>): probability to have a useful scattering in the analyzer.
 <u>Bonin</u> et al.



Figure of merit to characterise a polarimeter:  $F^2 = \int_{\theta_{min}}^{\theta_{max}} A_p(\theta)^2 \epsilon(\theta) d\theta$ 

### Challenges

- DVCS has a low cross section compared to (semi-)inclusive processes.
- We need to rescatter the recoil proton, expecting a polarimeter efficiency of order 0.1.
- To achieve high statistics we need a high luminosity.

Candidate facility: Hall C at Jefferson Lab, using an unpolarized electron beam and an unpolarized liquid hydrogen target.

#### Example settings

- Target length: 15 cm.
- Beam current: 20  $\mu A$  during 3 weeks of data taking.
- This gives an integrated luminosity  $L = 7.2 \cdot 10^7 \text{ pb}^{-1}$ .

## Electron and photon detection





### Electron detection: HMS

- Focusing spectrometer.
- Scattering angle range 10.5-80°.
- Angular acceptance:  $\pm~1.8^\circ$  in-plane,  $\pm 4.9^\circ$  out-of-plane.
- Momentum acceptance  $\pm 10\%$ .

### Photon detection: calorimeter

- Angular acceptance:  $\pm 5.3^{\circ}$  horizontally,  $\pm 6.7^{\circ}$  vertically.
- 30x36 PbWO<sub>4</sub> crystals. Position resolution: 2-3 mm.
- Sweeping magnet reduces low energy electron background.

- The protons will be created from DVCS events.
- The event kinematics (momenta, angles) are determined by the DVCS parameters  $(E_k, Q^2, x_B, \phi_h)$ .
- The polarization depends on the CFFs model dependence.

| Model   | $P_y$ |
|---------|-------|
| GK      | 0.50  |
| GK no E | 0.36  |
| VGG     | 0.24  |
| KM15    | 0.15  |

- GK model: considerable sensitivity of  $P_y$  to  $\mathcal{E}$ . Used for optimization.
- We aim to discriminate between: GK, GK no E, VGG and KM15.

#### Procedure

- Generate a grid in  $Q^2$ ,  $x_B$  and t, setting  $\phi_h = \pi$ ,  $E_k = 10.6 \text{ GeV}$ .
- Compute the particle kinematics, the CFFs, the differential cross section and polarization.
- Construct a figure of merit  $\mathcal{F}'$  proportional to  $\Delta P_y = P_y(\mathcal{E}) P_y(0)$ .
- $\mathcal{F}'$  is inspired by accuracy of polarimeter  $\delta_P \propto \frac{1}{F\sqrt{N_{inc}}}$ , with  $\delta P \rightarrow \Delta P_y$ ,  $N_{inc} \rightarrow$  differential cross section:

$$\mathcal{F}' = F \cdot \sqrt{\mathrm{d}\sigma} \cdot \Delta P_y \,.$$

 Refine after Geant4 simulation, taking into account detector acceptance - larger lepton momenta preferred.

• Require:  $|\theta_{k'}| > 10.5^{\circ}$ ,  $\theta_{q'}, \theta_{p'} > 10^{\circ}$ ,  $\Delta \theta_{i,j} > 10^{\circ}$  (isolation).

## Optimization result

#### Maximizing $\mathcal{F}'$ gives:

 $E_k = 10.6 \; {\rm GeV}, \; Q^2 = 1.8 \; {\rm GeV}^2, \; x_B = 0.17, \; t = -0.45 \; {\rm GeV}^2, \; \phi_h = \pi$ 

| electron  k'      | $\theta_{k'}$  | photon  q'       | $\theta_{q'}$   | proton  p'       | E <sub>carb</sub> | $\theta_{p'}$ |
|-------------------|----------------|------------------|-----------------|------------------|-------------------|---------------|
| $4.96~{ m GeV}/c$ | $10.6^{\circ}$ | $5.40{ m GeV}/c$ | $-15.1^{\circ}$ | $0.71{ m GeV}/c$ | $0.19{ m GeV}/c$  | 44°           |



## Fitting the polarization



### Toy simulation of the polarimeter

- We assume a 1 str polarimeter to detect the recoil proton.
- This gives 3.6M events. Assign  $\theta_{pol}$ ,  $\phi_{pol}$ .
- Knowing  $A_p$ ,  $P_y$  can then be extracted (back) from  $\phi_{pol}$ .

#### Fit results

 $P_y(GK) = 0.475 \pm 0.011$  (cf weighted average: 0.463)  $P_y(\mathcal{E} = 0) = 0.316 \pm 0.011$  (cf weighted average: 0.304).

## Conclusions

### Summary

- We have explored a new way of measuring  $\mathcal{E}$  by looking at the **polarization** of the **recoil proton** in DVCS.
- $P_y$  is highly sensitive to  $\mathcal{E}$  and to different models.
- Very high statistics for 1 str polarimeter, 3 weeks data-taking,  $20\mu A$ .
- **Good discrimination** between the baseline and null hypothesis and between GK, VGG and KM15 in the statistical analysis.
- A starting point for a proposal has been identified.

Plan to upload on arXiv shortly

#### Perspectives

- Develop a polarimeter design.
- Determine polarimeter dimensions.
- Consider the **background** and how to reduce it.

Olga Bessidskaia Bylund (CEA Saclay)

Recoil proton polarization in DVCS

## Backup

## GPDs and proton structure



### GPDs

• GPDs and TMDs can both be obtained from Wigner distributions.

Olga Bessidskaia Bylund (CEA Saclay)

Recoil proton polarization in DVCS

24th of May 2022 19 / 28

From helicity-dependent cross-section difference:  $\left[\mathcal{C}_{n}^{I}\right]^{exp} \simeq \left[\mathcal{C}_{n}^{I}\right] = F_{1}\mathcal{H} + \xi(F_{1}+F_{2})\widetilde{\mathcal{H}} - \frac{t}{4M^{2}}F_{2}\mathcal{E}$ 

- Dominated by  $\mathcal{H},\,\tilde{\mathcal{H}}$  for a proton.
- In neutron:
  - F<sub>1</sub> is small.
  - Cancellation between u, d polarized distibutions in  $\tilde{\mathcal{H}}$ .

## Polarization $\phi_h$ -dependence with a polarized beam



•  $P_{\gamma}$  is sensitive to switching  $\mathcal{E}$  on or off for the GK model.

- $P_x$  and  $P_z$  are not sensitive to  $\mathcal{E}$ .
- For  $\phi_h = \pi$  there is a large difference in  $P_y$  when switching off  $\mathcal{E}$ .

## Luminosity

$$\mathcal{L} = \Phi \cdot \rho \cdot L$$

### Beam

- 20  $\mu A$  electron beam
- $1A = 6.24 \cdot 10^{18}$  electrons/s
- $\bullet \ \rightarrow \Phi = 12 \cdot 10^{13}/s$

### Target

- 0.15 m LH2 target.
- Density:
  - Density: 71 kg/ $m^3$
  - Molar mass: 2.016 g / mol =  $3.35 \cdot 10^{27}~\text{kg/particle}$
  - $\bullet \ \rightarrow \rho = 2.1 \cdot 10^{28}/m^3$

$$\begin{split} \mathcal{L} &= 4.0 \cdot 10^{41} / \text{s} / m^2. \\ t &= 9.1 \cdot 10^5 \text{s} = 3 \text{ weeks of data-taking} \\ L &= \mathcal{L} \cdot t = 7.2 \cdot 10^{47} / m^2 = 7.2 \cdot 10^7 \text{pb}^{-1} \text{ (conversion factor } 10^{-(28+12)} \text{)} \end{split}$$

| Model            | $\mathcal{H}$                   | ${\mathcal E}$                | $\mathcal{	ilde{H}}$                 | $P_y$                  |
|------------------|---------------------------------|-------------------------------|--------------------------------------|------------------------|
| GK               | -1.1 + 5.41i                    | -2.4 - 0.4i                   | 0.7 + 1.8i                           | 0.50                   |
| GK no ${\cal E}$ | -1.1 + 5.41i                    | 0                             | 0.7 + 1.8i                           | 0.36                   |
| VGG              | -2.5 + 5.0i                     | -1.1 + 1.6i                   | 0.5 + 1.5i                           | 0.24                   |
| KM15             | -2.9 + 3.2i                     | 1.6                           | 0.5 + 1.5i                           | 0.15                   |
|                  |                                 |                               |                                      |                        |
| Model            | $\mathcal{H}$                   | ${\mathcal E}$                | $\mathcal{	ilde{H}}$                 |                        |
| ANN -            | $1.8^{\pm 1.3} + 3.4^{\pm 1.3}$ | $-7i - 4^{\pm 7} + 0^{\pm 7}$ | <sup>9</sup> i 0.4 <sup>±1.4</sup> + | $\cdot 1.2i^{\pm 1.8}$ |

 $\overline{P_y}$ 0.45

- Larger  $|t| \rightarrow \text{larger } \Delta P_{y}$ , smaller  $d\sigma$ .
- Larger  $Q^2 \rightarrow \text{smaller } \Delta P_y$ , smaller  $\mathrm{d}\sigma$ .
- Larger  $x_B \to \text{smaller } d\sigma$ .
- Large  $|\mathbf{k}'|$  (small  $Q^2/x_B$ )  $\rightarrow$  larger acceptance.

Also require  $|t|/Q^2 \leq 0.25$ .

## Distributions



# Distributions (2)



 $|t|/Q^2$  and scattered proton momentum

## Accidental background



• The background of accidental electrons is largest at small angles from the beam.

Olga Bessidskaia Bylund (CEA Saclay)

| $Q^2, x_B, t$  | $\mathcal{F}'$ | N <sup>obs</sup><br>N <sup>evts</sup> | $\Delta P_y^{obs}$ | Fitted $\delta_P$ |
|----------------|----------------|---------------------------------------|--------------------|-------------------|
| 1.6,0.12,-0.40 | 0.057          | 0.5M                                  | 0.13               | 0.031             |
| 1.7,0.14,-0.42 | 0.049          | 1.6M                                  | 0.15               | 0.017             |
| 1.7,0.15,-0.42 | 0.046          | 2.6M                                  | 0.16               | 0.013             |
| 1.8,0.17,-0.45 | 0.039          | 3.6M                                  | 0.16               | 0.011             |
| 1.9,0.19,-0.47 | 0.032          | 4.1M                                  | 0.14               | 0.010             |

Selection:  $\theta_{p'} \pm 20^\circ$ ,  $\phi_{p'} \pm 30^\circ$  + requirement of non-zero reconstructed scattered lepton  $p_x$ .

Increasing  $x_B$ , decreasing  $Q^2/x_B$  or increasing  $\theta_{calo}^{min}$  and recomputing  $\mathcal{F}'$  post-simulation until it reaches the peak gives the same optimal configuration.