A glimpse on the partonic structure of light nuclei through Deeply Virtual Compton Scattering

Sara Fucini

May 24, 2022 erc

Outline

- How are protons and neutrons built from quarks and gluons?

- Studying nuclear structure at small distances
- How do protons and neutrons interact to form the nucleus?
- Study the hadrons in nuclear matter and compare them with hadrons in free space
- Need to get a handle on these medium modifications for a QCD based understanding of nuclei.
- Intersection of two communities
- High-energy scattering
- Low-energy nuclear structure
- The EMC effect as Pandora's box
- Deeply Virtual Compton Scattering as Holy Grail
- Impulse approximation: our Occam's razor
- Light nuclei as a melting pot for QCD and nuclear physics studies
- Our models as Virgil towards the EIC

The EMC effect

The nuclear medium modifies the structure of bound nucleons

The European Muon Collaboration found
$R(x)=\frac{F_{2}^{A}(x)}{F_{2}^{d}(x)} \neq 1, x=\frac{Q^{2}}{2 M \nu} \in\left[0 ; \frac{M_{A}}{M}\right]$

The EMC effect

The nuclear medium modifies the structure of bound nucleons

The European Muon Collaboration found

$$
R(x)=\frac{F_{2}^{A}(x)}{F_{2}^{d}(x)} \neq 1, x=\frac{Q^{2}}{2 M \nu} \in\left[0 ; \frac{M_{A}}{M}\right]
$$

- $x \leq 0.05$: "Shadowing region"
- $0.3 \leq x \leq 0.85$: "EMC region"
- $0.85 \leq x \leq 1$: "Fermi motion region"

Collinear information led to many models but not yet to a complete explanation
(e.g., see Cloët et al. JPG (2018), for a recent report)

Deeply Virtual Compton Scattering off nuclei

- Exclusive processes $\rightarrow 3$-dimensional structure functions

Deeply Virtual Compton Scattering off nuclei

- Exclusive processes $\rightarrow 3$-dimensional structure functions
- Exclusive electro-production of a real photon \rightarrow clean access to Generalized Parton Distributions (factorization property, i.e. $-\Delta^{2} \ll Q^{2}$)

GPDs depend on:

$$
\left(a^{ \pm}=\frac{a_{0} \pm a_{3}}{\sqrt{2}} ; \bar{P}=\frac{P+P^{\prime}}{2} \text { and } \bar{k}=\frac{k+k^{\prime}}{2}\right)
$$

- $\Delta^{2}=t=\left(P^{\prime}-P\right)^{2}$
- $Q^{2}=-\left(\kappa-\kappa^{\prime}\right)^{2}$
$\triangleright \xi=-\frac{\Delta^{+}}{2 \bar{P}^{+}} \approx \frac{x_{B}}{2-x_{B}}$, with $x_{B}=\frac{Q^{2}}{2 M \nu}$
- $x=\frac{\bar{k}^{+}}{P^{+}}$

Deeply Virtual Compton Scattering off nuclei

- Exclusive processes $\rightarrow 3$-dimensional structure function
- Exclusive electro-production of a photon \rightarrow clean access to Generalized Parton distributions (factorization property, i.e. $-\Delta^{2} \ll Q^{2}$)
- Two DVCS channels in nuclei:
- Coherent channel \rightarrow GPDs of the whole nucleus
- Incoherent channel \longrightarrow GPDs of the bound nucleon

GPDs in a nutshell

ALERT: for the rigorous GPD formalism see, e.g., Ji, PRL (1997), Diehl, Phys. Rept. (2003), Belitsky et al., Phys. Rept. (2005)

- GPDs are defined in terms of non-diagonal matrix elements of non-local operators

$$
\begin{aligned}
& \frac{1}{2} \int \frac{d z^{-}}{2 \pi} e^{i x \bar{P}^{+} z^{-}}\left\langle P^{\prime} S^{\prime}\right| \bar{\psi}\left(-\frac{z^{-}}{2}\right) \gamma^{+} \psi\left(\frac{z^{-}}{2}\right)|P S\rangle \\
& \quad=\frac{1}{2 \bar{P}^{+}}\left[\mathbf{H}_{\mathbf{q}}(\mathbf{x}, \xi, \mathbf{t}) \bar{u}\left(P^{\prime}, S^{\prime}\right) \gamma^{+} u(P, S)+\mathbf{E}_{\mathbf{q}}(\mathbf{x}, \xi, \mathbf{t}) \bar{u}\left(P^{\prime}, S^{\prime}\right) \frac{i \sigma^{+\alpha} \Delta_{\alpha}}{2 M} u(P, S)\right]
\end{aligned}
$$

- GPDs without quarks helicity flip

GPDs in a nutshell

ALERT: for the rigorous GPD formalism see, e.g., Ji, PRL (1997), Diehl, Phys. Rept. (2003), Belitsky et al., Phys. Rept. (2005)

- GPDs are defined in terms of non-diagonal matrix elements of non-local operators

$$
\begin{aligned}
& \frac{1}{2} \int \frac{d z^{-}}{2 \pi} e^{i x \bar{P}^{+} z^{-}}\left\langle P^{\prime} S^{\prime}\right| \bar{\psi}\left(-\frac{z^{-}}{2}\right) \gamma^{+} \psi\left(\frac{z^{-}}{2}\right)|P S\rangle \\
& \quad=\frac{1}{2 \bar{P}^{+}}\left[\mathbf{H}_{\mathbf{q}}(\mathbf{x}, \xi, \mathbf{t}) \bar{u}\left(P^{\prime}, S^{\prime}\right) \gamma^{+} u(P, S)+\mathbf{E}_{\mathbf{q}}(\mathbf{x}, \xi, \mathbf{t}) \bar{u}\left(P^{\prime}, S^{\prime}\right) \frac{i \sigma^{+\alpha} \Delta_{\alpha}}{2 M} u(P, S)\right]
\end{aligned}
$$

- GPDs without quarks helicity flip + GPDs with quarks helicity flip

GPDs in a nutshell

ALERT: for the rigorous GPD formalism see, e.g., Ji, PRL (1997), Diehl, Phys. Rept. (2003), Belitsky et al., Phys. Rept. (2005)

- GPDs are defined in terms of non-diagonal matrix elements of non-local operators

$$
\begin{aligned}
& \frac{1}{2} \int \frac{d z^{-}}{2 \pi} e^{i x \bar{P}^{+} z^{-}}\left\langle P^{\prime} S^{\prime}\right| \bar{\psi}\left(-\frac{z^{-}}{2}\right) \gamma^{+} \psi\left(\frac{z^{-}}{2}\right)|P S\rangle \\
& \quad=\frac{1}{2 \bar{P}^{+}}\left[\mathbf{H}_{\mathbf{q}}(\mathbf{x}, \xi, \mathbf{t}) \bar{u}\left(P^{\prime}, S^{\prime}\right) \gamma^{+} u(P, S)+\mathbf{E}_{\mathbf{q}}(\mathbf{x}, \xi, \mathbf{t}) \bar{u}\left(P^{\prime}, S^{\prime}\right) \frac{i \sigma^{+\alpha} \Delta_{\alpha}}{2 M} u(P, S)\right]
\end{aligned}
$$

- GPDs without quarks helicity flip + GPDs with quarks helicity flip
- a system of spin S has $2(2 S+1)^{2}$ quark GPDs and $2(2 S+1)^{2}$ gluon GPDs

$$
\rightarrow 4(2 S+1) \times 4(2 S+1) \text { GPDs }
$$

Special role played by light nuclei

GPDs in a nutshell

- Polinomiality property, e.g. the first moment yields the form factor

$$
\int d x H_{q}(x, \xi, t)=F_{1}^{q}(t)
$$

GPDs in a nutshell

- Polinomiality property, e.g. the first moment yields the form factor

$$
\int d x H_{q}(x, \xi, t)=F_{1}^{q}(t)
$$

- In the forward limit, one recovers the parton distribution function

$$
H_{q}(x, \xi=0, t=0)=q(x), x>0
$$

Helpful to constrain phenomenological models

GPDs in a nutshell

- Polinomiality property, e.g. the first moment yields the form factor

$$
\int d x H_{q}(x, \xi, t)=F_{1}^{q}(t)
$$

- In the forward limit, one recovers the parton distribution function

$$
H_{q}(x, \xi=0, t=0)=q(x), x>0
$$

Helpful to constrain phenomenological models

- GPDs have a probabilistic interpretation in the impact parameter space

$$
\rho_{q}\left(x, \vec{b}_{\perp}\right)=\int \frac{d^{2} \vec{\Delta}_{\perp}}{(2 \pi)^{2}} e^{-i \vec{b}_{\perp} \cdot \vec{\Delta}_{\perp}} H_{q}\left(x, 0, \Delta_{\perp}^{2}\right)
$$

Correlations btw d.o.f of the constituents

GPDs in a nutshell

- Polinomiality property, e.g. the first moment yields the form factor

$$
\int d x H_{q}(x, \xi, t)=F_{1}^{q}(t)
$$

- In the forward limit, one recovers the parton distribution function

$$
H_{q}(x, \xi=0, t=0)=q(x), x>0
$$

Helpful to constrain phenomenological models

- GPDs have a probabilistic interpretation in the impact parameter space

$$
\rho_{q}\left(x, \vec{b}_{\perp}\right)=\int \frac{d^{2} \vec{\Delta}_{\perp}}{(2 \pi)^{2}} e^{-i \overrightarrow{b_{\perp}} \cdot \vec{\Delta}_{\perp}} H_{q}\left(x, 0, \Delta_{\perp}^{2}\right)
$$

Correlations btw d.o.f of the constituents

- GPDs are universal objects, linked to the Compton Form Factors

$$
\mathcal{H}_{q}(\xi, t)=\int_{0}^{1} d x\left(\frac{1}{x+\xi}+\frac{1}{x-\xi}\right)\left(H_{q}(x, \xi, t)-H_{q}(x,-\xi, t)\right)
$$

GPDs can be only extracted

Making Impulse approximation models

Impulse approximation to the handbag approximation

- Only nucleonic degrees of freedom
- The bound proton is kinematically off-shell

$$
p_{0}=M_{A}-\sqrt{M_{A-1}^{* 2}+\vec{p}^{2}} \simeq M-E-T_{r e c} \longrightarrow \mathbf{p}^{2} \neq \mathbf{M}^{2}
$$

where the removal energy is $E=\left|E_{A}\right|-\left|E_{A-1}\right|-E^{*}$

- Possible final state interaction (FSI) effects are neglected
- Convolution formulas (for the cross section, for the GPD...) between nuclear (spectral functions obtained with realistic potential and 3-body forces,
i.e. Argonne 18 (Av18) + Urbana IX) and nucleonic ingredients

Coherent DVCS off ${ }^{4} \mathrm{He}$

Our formalism for the nuclear GPD (S. F., S.Scopetta, M. Viviani, PRC 98 (2018) 015203)

In IA, a convolution formula for the chiral even GPD H_{q} of the helium-4 can be obtained in terms of:

- GPDs of the inner nucleons

$$
H_{q}^{4} H e\left(x, \xi, \Delta^{2}\right)=\sum_{N} \int_{|x|}^{1} \frac{d z}{z} h_{N}^{4} H e\left(z, \xi, \Delta^{2}\right) \quad \mathbf{H}_{\mathbf{q}}^{\mathbf{N}}\left(\frac{x}{\zeta}, \frac{\xi}{\zeta}, \Delta^{2}\right)
$$

- light-cone momentum distribution

$$
\begin{aligned}
& h_{N}^{4} H e \\
& \left(z, \Delta^{2}, \xi\right)=\frac{M_{A}}{M} \int d E \int_{p_{m i n}}^{\infty} d p \int_{0}^{2 \pi} d \phi p \tilde{M} P_{N}^{4} H e \\
& \tilde{M}=\frac{M}{M_{A}}\left(M_{A}+\frac{\Delta^{+}}{\sqrt{2}}\right), \mathbf{H}_{\mathbf{q}}^{\mathbf{N}}=\sqrt{1-\xi^{2}}\left[H_{q}^{N}-\frac{\xi^{2}}{1-\xi^{2}} E_{q}^{N}\right]
\end{aligned}
$$

One needs the non-diagonal spectral function and the nucleonic GPDs (we used the Goloskokov-Kroll models (EPJ C (2008)-EPJ C (2009))

Modelling the spectral function

$$
P_{N}^{4} H e(\vec{p}, \vec{p}+\vec{\Delta}, E)=\rho(E) \sum_{\alpha \sigma}\langle P+\Delta \mid-p E \alpha, p+\Delta \sigma\rangle\left\langle p \sigma_{N},-p E \alpha \mid P\right\rangle
$$

$$
P^{4} H e(\vec{p}, \vec{p}+\Delta, E)=\simeq a_{0}(|\vec{p}|) a_{0}(|\vec{p}+\vec{\Delta}|) \delta(E)+\sqrt{n_{1}(|\vec{p}|) n_{1}(|\vec{p}+\vec{\Delta}|)} \delta(E-\bar{E})
$$

- the total momentum distribution is $n(p) \propto \int d \vec{r}_{1} d \vec{r}_{1}^{\prime} e^{i \vec{p} \cdot\left(\vec{r}_{1}-\vec{r}_{1}^{\prime}\right)} \rho_{1}\left(\vec{r}_{1}, \vec{r}_{1}^{\prime}\right)$
- the ground momentum distribution is $n_{0}(|\vec{p}|)=\left|a_{0}(|\vec{p}|)\right|^{2}$ with

$$
a_{0}(|\vec{p}|) \approx\left\langle\Phi_{3_{H e / 3}{ }_{H}} \mid \Phi_{4_{H e}}\right\rangle
$$

- the excited momentum distribution is

$$
\mathbf{n}_{\mathbf{1}}(|\vec{p}|)=n(|\vec{p}|)-n_{0}(|\vec{p}|)
$$

- $n(p), n_{0}(p)$ have been evaluated within the Av18 NN interaction (Wiringa et al., PRC (1995)) + UIX 3-body forces (Pudliner et al., PRL (1995))
- \bar{E} is the average excitation energy of the recoiling system (the model for the excited part of the diagonal s.f. M. Viviani et al., PRC (2003) is a realistic update of the model by Ciofi et al., PRC (1996), i.e. $P_{1}^{\text {our model }}=N(p) P_{e x c}^{\text {Ciofi's model }}$)

Beam spin asymmetry as a function of azimuthal angle

$$
A_{L U}(\phi)=\frac{\alpha_{0}(\phi) \Im m\left(\mathcal{H}_{A}\right)}{\alpha_{1}(\phi)+\alpha_{2}(\phi) \Re e\left(\mathcal{H}_{A}\right)+\alpha_{3}(\phi)\left(\Re e\left(\mathcal{H}_{A}\right)^{2}+\Im m\left(\mathcal{H}_{A}\right)^{2}\right)}
$$

- $\alpha_{i}(\phi)$ are kinematical coefficients from A. V. Belitsky et al., PRD (2009)
- $H^{4} H e(x, \xi, t)=\sum_{q=u, d, s} \epsilon_{q}^{2} H_{q}^{4} H e(x, \xi, t)$ comes from our model
- $\Im m \mathcal{H}_{A}(\xi, t)=H^{4}{ }^{H e}(x=\xi, \xi, t)-H^{4} H e(x=-\xi, \xi, t)$
- $\Re e \mathcal{H}_{A}(\xi, t)=\operatorname{Pr} \int_{-1}^{1} d x \frac{H^{4} H e(x, \xi, t)}{x-\xi+i \epsilon}$

Results of our model (PRC(2018)) - VS JLab data (Hattawv et al., PRL (2017))

$A_{L U}^{C o h} \equiv A_{L U}\left(\phi=90^{\circ}\right)$ is shown in the experimental Q^{2}, x_{B} and $-t$ bins

Incoherent DVCS off ${ }^{4} \mathrm{He}$

Incoherent DVCS off ${ }^{4} \mathrm{He}: ~ S . F ., ~ S . ~ S c o p e t t a, ~ M . ~ V i v i a n i, ~ P R C(2021)-~$ PRD(2021)

$$
d \sigma^{ \pm} \approx \int d \vec{p} d E P^{4} H e(\vec{p}, E)\left|\mathcal{A}^{ \pm}(\vec{p}, E, K)\right|^{2}
$$

$$
A_{L U}^{I n c o h}(K)=\frac{\mathcal{I}^{4} H e(K)}{T_{B H}^{2^{4} H e}(K)}=\frac{\int_{\text {exp }} d E d \vec{p} P^{4} H e(\vec{p}, E) g(\vec{p}, E, K) \mathcal{I}(\vec{p}, E, K)}{\int_{\text {exp }} d E d \vec{p} P^{4} H e(\vec{p}, E) g(\vec{p}, E, K) T_{B H}^{2}(\vec{p}, E, K)}
$$

- nuclear effects affect the motion of the proton in the nuclear medium (no modifications to the functional form of the GPDs and FFs)
- in $\mathcal{I}(\vec{p}, E, K) \propto \Im m \mathcal{H}\left(\xi^{\prime}, \Delta^{2}, Q^{2}\right)$, we used the nucleon GPD model evaluated for $\xi^{\prime}=\frac{\mathbf{Q}^{2}}{\left(\mathbf{p}+\mathbf{p}^{\prime}\right)\left(\mathbf{q}_{1}+\mathbf{q}_{\mathbf{2}}\right)}$

Nuclear effects in $A_{L U}^{I n c o h: ~ S . F ., ~ S . ~ S c o p e t t a, ~ M . ~ V i v i a n i ~ P R C(2021) ~}$

What kind of nuclear effects we are describing? Let us consider the super ratio

$$
A_{L U}^{\text {Incoh }} / A_{L U}^{p}=\frac{\mathcal{I}^{4} H e}{\mathcal{I}^{p}} \frac{T_{B H}^{2 p}}{T_{B H}^{24} H e}=\frac{R_{\mathcal{I}}}{R_{B H}} \propto \frac{(\text { nucl.eff. })_{\mathcal{I}}}{(\text { nucl.eff. })_{B H}}
$$

These effects are due to the dependence on the 4-momenta components of the bound proton entering the amplitudes.
This behaviour hasn't to do with a modification of the parton structure!
It is confirmed by:

- the ratio $A_{L U}^{I n c o h} / A_{L U}^{p}$ for "pointlike" protons
- the "EMC-like" trend

$$
R_{E M C-\text { like }}=\frac{1}{\mathcal{N}} \frac{\int_{\exp } d E d \vec{p} P^{4} H e(\vec{p}, E) \Im m \mathcal{H}\left(\xi^{\prime}, \Delta^{2}\right)}{\Im m \mathcal{H}\left(\xi, \Delta^{2}\right)}
$$

From models to event generation

TOPEG: a Monte Carlo event generator for DVCS off light nuclei

TOPEG is a Root based generator (S. Jadach (2005)) + our model for the coherent/incoherent DVCS off light nuclei

Use of the TFoam class to create and memorize a grid and then to generate events

Putting these models in TOPEG

So far, we have results only for the coherent DVCS off ${ }^{4} \mathrm{He}$ (version 1.0 released)

- JLab
- Check for the events generated at the kinematics with 6 GeV electron beam
- Good also for CLAS 12 GeV
- EIC
- We generated events for the three electron - helium-4 beam energy configurations

$$
\begin{aligned}
& \text { - }(5 \times 41) \mathrm{GeV} \\
& \text { (}(10 \times 110) \mathrm{GeV} \\
& \text { - }(18 \times 110) \mathrm{GeV}
\end{aligned}
$$

- These latter results are included in the EIC Yellow Report (e-Print: 2103.05419)

Promising results:

- the NUCLEAR DVCS can be observed at the EIC
- TOPEG is a flexible tool to do the GPDs phenomenology

(18 x 110) GeV: kinematical distributions

We generated events weighted by the cross section $\frac{d^{4} \sigma}{d Q^{2} d t d \phi d x_{B}}$

- 1 million events
- in the x-section, we set $\Re e$ (CFF) $=0$ (limitation in the computation time)
- Luminosity: $250 \mathrm{nb}^{-1}$ (NOT ENOUGH!!)
- $Q^{2}>2 \mathrm{GeV}^{2}, y<0.8, t_{\text {min }}<|t|<t_{\text {min }}+0.5 \mathrm{GeV}^{2}$

For small $|t|$, we expect an enhancement of the cross section for the dominance of the BH process $\left(\simeq \mathrm{FF}^{2}\right.$).

$$
\left|t_{\min }\right|=\frac{4 M_{4}^{2} \xi^{2}}{1-\xi^{2}} \quad \text { with } \quad \xi=\frac{x_{B}}{2-x_{B}} \quad \text { and } \quad x_{B}=\frac{Q^{2}}{y\left(s-M_{4_{H e}}\right)}
$$

14 / 16

Summing up (i)

- Coherent DVCS

- Improvement of the ${ }^{4} \mathbf{H e}$ spectral function (fully realistic calculation) (in slow progress)
- Toward the semi-realistic description of the EMC effect in the helium-4 (in progress)
- Impact of the target mass corrections on the observables (planned)
- Inclusion of Shadowing effects

- Incoherent DVCS

- New formalism for ${ }^{4} \mathrm{He}$ and the deuteron (in progress)
- Introduction of some final state interaction effects (TBD)

Summing up (ii)

Ongoing developments of TOPEG:

- Preliminary results for the projections for the ${ }^{4} \mathrm{He}$ profiles toward the first nuclear tomography
- Study the impact of non nucleonic d.o.f.
- Tech improvements to include \Re e(CFF) in the simulations (in progress)
- MultiThreading to shorten the calculation time (done)
- Complete the simulation accounting for the EIC smearing

■ Add more models, other (light) nuclei, e.g. ${ }^{3} \mathrm{He}$

- Incoherent off ${ }^{4} \mathrm{He}$ and off ${ }^{2} \mathrm{H}$ almost ready (in progress)
- Write the documentation and then the version $\mathbf{1 . 1}$ is ready

Backup slides

DVCS off deuterium

Incoherent channel

- Nuclear part: momentum distribution (it is exact: instant form or light front)
- Key study also for heavier nuclei

Coherent channel

- 9 quark GPDs
- Formalism already developed and established (see Cano, Pire EPJA (2004))
- there is a connection between the light-cone wave function of the deuteron (helicity amplitudes \longrightarrow GPDs) in terms of light-cone coordinates and the ordinary (instant-form) relativistic wave function that fulfills a Schrödinger type equation (we can update the potential)
- we can compute

$$
\chi\left(\vec{k} ; \mu_{1}, \mu_{2}\right)=\sum_{L ; m_{L} ; m_{S}}\left\langle\left.\frac{1}{2} \frac{1}{2} 1 \right\rvert\, \mu_{1}, \mu_{2}, m_{S}\right\rangle\left\langle L 11 \mid m_{L} m_{S} \lambda\right\rangle Y_{L, M_{L}}(\hat{k}) u_{L}(k)
$$

with AV18 and perform a Melosh rotation to relate the spin in the light-front with the spin in the instant-form frame of the dynamics

Coherent DVCS off ${ }^{4} \mathrm{He}$

Model for the only one chiral-even GPD of ${ }^{4} \mathrm{He}$ in S. Fucini, S.Scopetta, M. Viviani, PRC 98 (2018)

$$
\begin{gathered}
\frac{d^{4} \sigma^{\lambda= \pm}}{d x_{A} d t d Q^{2} d \phi}=\frac{\alpha^{3} x_{A} y^{2}}{8 \pi Q^{4} \sqrt{1+\epsilon^{2}}} \frac{|\mathcal{A}|^{2}}{e^{6}} ; A_{L U}=\frac{d^{4} \sigma^{+}-d^{4} \sigma^{-}}{d^{4} \sigma^{+}+d^{4} \sigma^{-}} \\
T_{n I I}^{2} \propto F_{A}^{2}(t): T_{n \bigvee \cap c}^{2} \propto \Im m \mathcal{H}^{2}+\Re e \mathcal{H}^{2}: I_{3 H-D V C S}^{\lambda} \propto F_{A}(t) \Im m \mathcal{H}
\end{gathered}
$$

Data from Hattawy et al., PRL (2017); our model including (red dots) or not (blue triangles) the real part of \mathcal{H}.
As an illustration, we plot $d^{4} \sigma_{4 e} \times\left(F_{p}^{1} / F_{C}^{A}\right)^{2}$ and $d^{4} \sigma_{\text {proton }} * 4$

DVCS off bound proton

$$
d \sigma^{ \pm} \approx \int d \vec{p} d E P^{4} H e(\vec{p}, E)\left|\mathcal{A}^{ \pm}(\vec{p}, E, K)\right|^{2}
$$

3-momenta components of the final proton can be obtained brute-force solving

$$
\left\{\begin{array}{l}
\sqrt{|\vec{p}|^{2}+\left|\overrightarrow{p^{\prime}}\right|^{2}+\left|q_{1}^{z}\right|^{2}-2|\vec{p}||\vec{p}| \cos \theta_{p p^{\prime}}-2\left|\overrightarrow{p^{\prime}}\right| q_{1}^{z} \cos \theta_{N}+2|\vec{p}| q_{1}^{z} \cos \vartheta}-p_{0}+E_{2}-\nu=0 \\
-\Delta^{2}+M^{2}+p_{0}^{2}-|\vec{p}|^{2}-\left.2 p_{0} \sqrt{M^{2}+\mid \vec{p}^{\prime}}\right|^{2}+2\left|\vec{p}^{\prime}\right||\vec{p}| \cos \theta \widehat{p_{p^{\prime}}}=0
\end{array}\right.
$$

Numerical sol. (slow the program and there is some instability) \longrightarrow analytical sol. ϕ is not boost invariant: still studying the impact (5-10\%) of this behavior on the x-sections

(18 x 110) GeV: analysis

Is it possible to study the region around the first diffraction minimum in the ${ }^{4} \mathrm{He}$ FF ($\mathrm{t}_{\text {dif. min }}=-0.48 \mathrm{GeV}^{2}$)?

(18 x 110) GeV: analysis

Is it possible to study the region around the first diffraction minimum in the ${ }^{4} \mathrm{He}$ FF $\left(\mathrm{t}_{\text {dif. } \text { min }}=-0.48 \mathrm{GeV}^{2}\right)$? YES, we can!

- $99 \%+$ electrons and photons are in the acceptance of the detector matrix
- This is true for all energy configurations

Electrons and photons appear in easily accessible kinematics according to the detector matrix requirements (exceptions for small angles photons)

- Acceptance at low -t will be cut passing through the detectors
- $t_{\text {min }}$ is set by the detector features
- $t_{\max }$ is fixed by the luminosity (billion of events to generate)

From left to right, the kinematical distributions of the final particles: electron, photon and ${ }^{4} \mathrm{He}$

