A glimpse on the partonic structure of light nuclei through Deeply Virtual Compton Scattering

Sara Fucini

May 24, 2022

European Research Council Established by the European Commission

Outline

How are protons and neutrons built from quarks and gluons?

· Studying nuclear structure at small distances

How do protons and neutrons interact to form the nucleus?

- Study the hadrons in nuclear matter and compare them with hadrons in free space
- Need to get a handle on these medium modifications for a QCD based understanding of nuclei.

Intersection of two communities

- High-energy scattering
- Low-energy nuclear structure

Outline

- ► The EMC effect as Pandora's box
- Deeply Virtual Compton Scattering as Holy Grail
- Impulse approximation: our Occam's razor
- Light nuclei as a melting pot for QCD and nuclear physics studies
- Our models as Virgil towards the EIC

The nuclear medium modifies the structure of bound nucleons

The European Muon Collaboration found $R(x) = \frac{F_2^A(x)}{F_2^d(x)} \neq 1 \ , x = \frac{Q^2}{2M\nu} \in \left[0; \frac{M_A}{M}\right]$

The EMC effect

The nuclear medium modifies the structure of bound nucleons

Q2: 50 Gev

Collinear information led to many models but not yet to a complete explanation (e.g., see Cloët et al. JPG (2018), for a recent report) • Exclusive processes → 3-dimensional structure functions

Deeply Virtual Compton Scattering off nuclei

- Exclusive processes → 3-dimensional structure functions
- Exclusive electro-production of a real photon \rightarrow clean access to Generalized Parton Distributions (factorization property, i.e. $-\Delta^2 \ll Q^2$)

$$\begin{array}{ll} \text{GPDs depend on:} & \left(a^{\pm} = \frac{a_0 \pm a_3}{\sqrt{2}}; \bar{P} = \frac{P + P'}{2} \text{ and } \bar{k} = \frac{k + k'}{2}\right) \\ \bullet & \Delta^2 = t = (P' - P)^2 \\ \bullet & Q^2 = -(\kappa - \kappa')^2 \end{array} \\ \bullet & x = \frac{\bar{k}^+}{P^+} \end{aligned} \\ \begin{array}{ll} \text{with } x_B = \frac{Q^2}{2M\nu} \\ \bullet & x = \frac{\bar{k}^+}{P^+} \end{aligned}$$

Deeply Virtual Compton Scattering off nuclei

- Exclusive processes → 3-dimensional structure function
- Exclusive electro-production of a photon \rightarrow clean access to Generalized Parton distributions (factorization property, i.e. $-\Delta^2 \ll Q^2$)
- Two DVCS channels in nuclei:
- \blacktriangleright Coherent channel \rightarrow GPDs of the whole nucleus
- ▶ Incoherent channel → GPDs of the bound nucleon

ALERT: for the rigorous GPD formalism see, e.g., Ji, PRL (1997), Diehl, Phys. Rept. (2003), Belitsky et al., Phys. Rept. (2005)

GPDs are defined in terms of non-diagonal matrix elements of non-local operators

$$\frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ix\bar{P}^{+}z^{-}} \langle P'S' | \bar{\psi} \left(-\frac{z^{-}}{2} \right) \gamma^{+} \psi \left(\frac{z^{-}}{2} \right) | PS \rangle$$
$$= \frac{1}{2\bar{P}^{+}} \left[\mathbf{H}_{\mathbf{q}}(\mathbf{x}, \boldsymbol{\xi}, \mathbf{t}) \bar{u}(P', S') \gamma^{+} u(P, S) + \mathbf{E}_{\mathbf{q}}(\mathbf{x}, \boldsymbol{\xi}, \mathbf{t}) \bar{u}(P', S') \frac{i\sigma^{+\alpha} \Delta_{\alpha}}{2M} u(P, S) \right]$$

· GPDs without quarks helicity flip

ALERT: for the rigorous GPD formalism see, e.g., Ji, PRL (1997), Diehl, Phys. Rept. (2003), Belitsky et al., Phys. Rept. (2005)

GPDs are defined in terms of non-diagonal matrix elements of non-local operators

$$\frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ix\bar{P}^{+}z^{-}} \langle P'S' | \bar{\psi} \left(-\frac{z^{-}}{2} \right) \gamma^{+} \psi \left(\frac{z^{-}}{2} \right) | PS \rangle$$
$$= \frac{1}{2\bar{P}^{+}} \left[\mathbf{H}_{\mathbf{q}}(\mathbf{x}, \boldsymbol{\xi}, \mathbf{t}) \bar{u}(P', S') \gamma^{+} u(P, S) + \mathbf{E}_{\mathbf{q}}(\mathbf{x}, \boldsymbol{\xi}, \mathbf{t}) \bar{u}(P', S') \frac{i\sigma^{+\alpha} \Delta_{\alpha}}{2M} u(P, S) \right]$$

· GPDs without quarks helicity flip + GPDs with quarks helicity flip

ALERT: for the rigorous GPD formalism see, e.g., Ji, PRL (1997), Diehl, Phys. Rept. (2003), Belitsky et al., Phys. Rept. (2005)

GPDs are defined in terms of non-diagonal matrix elements of non-local operators

$$\frac{1}{2} \int \frac{dz^{-}}{2\pi} e^{ix\bar{P}^{+}z^{-}} \langle P'S' | \bar{\psi} \left(-\frac{z^{-}}{2} \right) \gamma^{+} \psi \left(\frac{z^{-}}{2} \right) | PS \rangle$$
$$= \frac{1}{2\bar{P}^{+}} \left[\mathbf{H}_{\mathbf{q}}(\mathbf{x}, \boldsymbol{\xi}, \mathbf{t}) \bar{u}(P', S') \gamma^{+} u(P, S) + \mathbf{E}_{\mathbf{q}}(\mathbf{x}, \boldsymbol{\xi}, \mathbf{t}) \bar{u}(P', S') \frac{i\sigma^{+\alpha} \Delta_{\alpha}}{2M} u(P, S) \right]$$

- · GPDs without quarks helicity flip + GPDs with quarks helicity flip
 - a system of spin S has $2(2S+1)^2$ quark GPDs and $2(2S+1)^2$ gluon GPDs

→ 4(2S+1) x 4(2S+1) GPDs

Special role played by light nuclei

· Polinomiality property, e.g. the first moment yields the form factor

$$\int dx H_q(x,\xi,t) = F_1^q(t)$$

· Polinomiality property, e.g. the first moment yields the form factor

$$\int dx H_q(x,\xi,t) = F_1^q(t)$$

• In the forward limit, one recovers the parton distribution function

$$H_q(x,\xi = 0, t = 0) = q(x), x > 0$$

Helpful to constrain phenomenological models

· Polinomiality property, e.g. the first moment yields the form factor

$$\int dx H_q(x,\xi,t) = F_1^q(t)$$

• In the forward limit, one recovers the parton distribution function

$$H_q(x,\xi = 0, t = 0) = q(x), x > 0$$

Helpful to constrain phenomenological models

GPDs have a probabilistic interpretation in the impact parameter space

$$\rho_{\boldsymbol{q}}(\boldsymbol{x}, \vec{\boldsymbol{b}}_{\perp}) = \int \frac{d^2 \vec{\Delta}_{\perp}}{(2\pi)^2} e^{-i \vec{\boldsymbol{b}}_{\perp} \cdot \vec{\Delta}_{\perp}} H_{\boldsymbol{q}}(\boldsymbol{x}, 0, \Delta_{\perp}^2)$$

Correlations btw d.o.f of the constituents

· Polinomiality property, e.g. the first moment yields the form factor

$$\int dx H_q(x,\xi,t) = F_1^q(t)$$

• In the forward limit, one recovers the parton distribution function

$$H_q(x,\xi = 0, t = 0) = q(x), x > 0$$

Helpful to constrain phenomenological models

GPDs have a probabilistic interpretation in the impact parameter space

$$oldsymbol{
ho}_{oldsymbol{q}}(oldsymbol{x},oldsymbol{ar{b}}_{\perp}) = \int rac{d^2ec{\Delta}_{\perp}}{(2\pi)^2} e^{-iec{b}_{\perp}\cdotec{\Delta}_{\perp}} H_q(x,0,\Delta_{\perp}^2)$$

Correlations btw d.o.f of the constituents

GPDs are universal objects, linked to the Compton Form Factors

$$\mathcal{H}_q(\xi,t) = \int_0^1 dx \left(\frac{1}{x+\xi} + \frac{1}{x-\xi}\right) \left(H_q(x,\xi,t) - H_q(x,-\xi,t)\right)$$

GPDs can be only extracted

5/16

Making Impulse approximation models

Impulse approximation to the handbag approximation

- · Only nucleonic degrees of freedom
- · The bound proton is kinematically off-shell

$$p_0 = M_A - \sqrt{M_{A-1}^{*2} + \vec{p}^2} \simeq M - E - T_{rec} \longrightarrow \mathbf{p}^2 \neq \mathbf{M}^2$$

where the *removal energy* is $E = |E_A| - |E_{A-1}| - E^*$

- · Possible final state interaction (FSI) effects are neglected
- Convolution formulas (for the cross section, for the GPD...) between nuclear (spectral functions obtained with realistic potential and 3-body forces,

i.e. Argonne 18 (Av18) + Urbana IX $\Big)$ and nucleonic ingredients

Coherent DVCS off ${}^{4}\text{He}$

In IA, a convolution formula for the chiral even GPD H_q of the helium-4 can be obtained in terms of:

- GPDs of the inner nucleons $H_q^{4He}(x,\xi,\Delta^2) = \sum_N \int_{|x|}^1 \frac{dz}{z} h_N^{4He}(z,\xi,\Delta^2) \qquad \mathbf{H}_{\mathbf{q}}^{\mathbf{N}}\left(\frac{x}{\zeta},\frac{\xi}{\zeta},\Delta^2\right)$
- light-cone momentum distribution -

$$h_{N}^{^{4}He}(z,\Delta^{2},\xi) = \frac{M_{A}}{M} \int dE \, \int_{p_{min}}^{\infty} dp \int_{0}^{2\pi} d\phi \, p \, \tilde{M} P_{N}^{^{4}He}(\vec{p},\vec{p}+\vec{\Delta},E)$$

$$\tilde{M} = \frac{M}{M_A} \left(M_A + \frac{\Delta^+}{\sqrt{2}} \right), \mathbf{H}_{\mathbf{q}}^{\mathbf{N}} = \sqrt{1 - \xi^2} [H_q^N - \frac{\xi^2}{1 - \xi^2} E_q^N]$$

One needs the non-diagonal spectral function and the nucleonic GPDs (we used the Goloskokov-Kroll models (EPJ C (2008)-EPJ C (2009))

Modelling the spectral function

$$P_{N}^{^{4}He}(\vec{p},\vec{p}+\vec{\Delta},E) = \rho(E) \sum_{\alpha\,\sigma} \langle P+\Delta| - p\,E\,\alpha, p+\Delta\,\sigma\rangle\langle p\,\sigma_{N}, -p\,E\,\alpha|P\rangle$$

 $P^{^{4}He}(\vec{p},\vec{p}+\Delta,E) = \simeq a_{0}(|\vec{p}|)a_{0}(|\vec{p}+\vec{\Delta}|)\delta(E) + \sqrt{n_{1}(|\vec{p}|)n_{1}(|\vec{p}+\vec{\Delta}|)}\delta(E-\vec{E})$

- the total momentum distribution is $n(p) \propto \int d\vec{r_1} d\vec{r'_1} e^{i\vec{p}\cdot(\vec{r_1}-\vec{r'_1})} \rho_1(\vec{r_1},\vec{r'_1})$
- the ground momentum distribution is $n_0(ec{p}ec{}) = ec{a}_0(ec{p}ec{}) ec{}^2$ with

$$a_0(|\vec{p}|) \approx \langle \Phi_{^3He/^3H} | \Phi_{^4He} \rangle$$
.

the excited momentum distribution is

$$\mathbf{n_1}(|\vec{p}|) = n(|\vec{p}|) - n_0(|\vec{p}|)$$

- n(p), $n_0(p)$ have been evaluated within the Av18 NN interaction (Wiringa et al., PRC (1995)) + UIX 3-body forces (Pudliner et al., PRL (1995))
- \overline{E} is the average excitation energy of the recoiling system (the model for the excited part of the diagonal s.f. M. Viviani et al., PRC (2003) is a realistic update of the model by Ciofi et al., PRC (1996), i.e. $P_1^{\text{our model}} = N(p)P_{exc}^{\text{ciofi's model}}$)

Beam spin asymmetry as a function of azimuthal angle

$$A_{LU}(\phi) = \frac{\alpha_0(\phi)\,\Im m(\mathcal{H}_A)}{\alpha_1(\phi) + \alpha_2(\phi)\,\Re e(\mathcal{H}_A) + \alpha_3(\phi)\left(\Re e(\mathcal{H}_A)^2 + \Im m(\mathcal{H}_A)^2\right)}$$

• $\alpha_i(\phi)$ are kinematical coefficients from **A. V. Belitsky et al., PRD (2009)**

•
$$H^{^{4}He}(x,\xi,t) = \sum_{q=u,d,s} \epsilon_{q}^{^{2}} H_{q}^{^{4}He}(x,\xi,t)$$
 comes from our model

$$\blacktriangleright \Im m \mathcal{H}_A(\xi, t) = H^{^4He}(x = \xi, \xi, t) - H^{^4He}(x = -\xi, \xi, t)$$

•
$$\Re e \mathcal{H}_A(\xi, t) = \Pr \int_{-1}^1 dx \frac{H^* H^e(x, \xi, t)}{x - \xi + i\epsilon}$$

Results of our model (PRC(2018)) VS JLab data (Hattawy et al., PRL (2017))

 $A_{LU}^{Coh} \equiv A_{LU}(\phi = 90^o)$ is shown in the experimental Q^2 , x_B and -t bins

9/16

Incoherent DVCS off ⁴He

Incoherent DVCS off ⁴He: S.F., S. Scopetta, M. Viviani, PRC(2021)-PRD(2021)

$$d\sigma^{\pm} \approx \int d\vec{p} dE P^{4} H^{e}(\vec{p}, E) |\mathcal{A}^{\pm}(\vec{p}, E, K)|^{2} \xrightarrow{(W) \xrightarrow{(W)}{16} \xrightarrow{(Y)}{16}} \mathbf{x} \xrightarrow{(W) \xrightarrow{(Y)}{16} \xrightarrow{(Y)}{16}} \mathbf{x} \xrightarrow{(Y) \xrightarrow{(Y) \xrightarrow{(Y)}{16}} \mathbf{x} \xrightarrow{(Y) \xrightarrow{(Y)}{16}$$

- nuclear effects affect the motion of the proton in the nuclear medium (no modifications to the functional form of the GPDs and FFs)
- in $\mathcal{I}(\vec{p}, E, K) \propto \Im m \mathcal{H}(\xi', \Delta^2, Q^2)$, we used the nucleon GPD model evaluated for $\xi' = \frac{\mathbf{Q}^2}{(\mathbf{p}+\mathbf{p}')(\mathbf{q_1}+\mathbf{q_2})}$

10/16

Nuclear effects in A^{Incoh}: S.F., S. Scopetta, M. Viviani PRC(2021)

What kind of nuclear effects we are describing? Let us consider the super ratio

$$A_{LU}^{Incoh}/A_{LU}^p = \frac{\mathcal{I}^{^4He}}{\mathcal{I}^{\,p}} \frac{T_{BH}^{^2 \,p}}{T_{BH}^{^2 \,4He}} = \frac{R_{\mathcal{I}}}{R_{BH}} \propto \frac{(nucl.eff.)_{\mathcal{I}}}{(nucl.eff.)_{BH}} \,,$$

These effects are due to the **dependence on the 4-momenta components** of the bound proton entering the amplitudes. This behaviour hasn't to do with a modification of the **parton structure!**

It is confirmed by:

- the ratio A_{LU}^{Incoh}/A_{LU}^p for "pointlike" protons
- · the "EMC-like" trend

$$R_{EMC-like} = \frac{1}{\mathcal{N}} \frac{\int_{exp} dE \, d\vec{p} \, P^{4He}(\vec{p}, E) \, \Im m \, \mathcal{H}(\xi', \Delta^2)}{\Im m \, \mathcal{H}(\xi, \Delta^2)}$$

11/16

From models to event generation

TOPEG is a Root based generator (**S. Jadach (2005**)) + **our model** for the coherent/incoherent DVCS off light nuclei

Use of the TFoam class to create and memorize a grid and then to generate events

So far, we have results only for the coherent DVCS off 4 He (version **1.0** released)

JLab

- · Check for the events generated at the kinematics with 6 GeV electron beam
- Good also for CLAS 12 GeV

► EIC

- We generated events for the three electron helium-4 beam energy configurations
 - (5x41) GeV
 - (10x110) GeV
 - (18x110) GeV
- These latter results are included in the EIC Yellow Report (e-Print: 2103.05419)

Promising results:

- the NUCLEAR DVCS can be observed at the EIC
- TOPEG is a flexible tool to do the GPDs phenomenology

(18 x 110) GeV: kinematical distributions

We generated events weighted by the cross section $\frac{d^4\sigma}{d\Omega^2 dt d\phi dx_B}$

- · 1 million events
- in the x-section, we set $\Re e(CFF)=0$ (limitation in the computation time)
- Luminosity: 250 nb⁻¹ (NOT ENOUGH!!)
- + $Q^2>2~{\rm GeV^2}$, y<0.8 , $t_{min}<|t|< t_{min}$ + $0.5~{\rm GeV^2}$

For small |t|, we expect an enhancement of the cross section for the dominance of the BH process ($\simeq FF^2$).

$$\left| |t_{min}| = \frac{4M_{4_{H_c}}^2 \xi^2}{1-\xi^2} \quad \text{with} \quad \xi = \frac{x_B}{2-x_B} \quad \text{and} \quad x_B = \frac{Q^2}{y(s-M_{4_{H_c}})}$$

Coherent DVCS

- Improvement of the ⁴He spectral function (fully realistic calculation) (in slow progress)
- Toward the semi-realistic description of the EMC effect in the helium-4 (in progress)
- Impact of the target mass corrections on the observables (planned)
- Inclusion of shadowing effects

Incoherent DVCS

- New formalism for ⁴He and the deuteron (in progress)
- Introduction of some final state interaction effects (TBD)

Ongoing developments of **TOPEG**:

- Preliminary results for the **projections for the** ⁴He profiles toward the **first nuclear tomography**
- Study the impact of non nucleonic d.o.f.
- Tech improvements to include Re(CFF) in the simulations (in progress)
- MultiThreading to shorten the calculation time (done)
- Complete the simulation accounting for the EIC smearing
- Add more models, other (light) nuclei, e.g. ³He
 - Incoherent off ⁴He and off ²H almost ready (in progress)
- Write the documentation and then the version 1.1 is ready

Backup slides

Incoherent channel

- · Nuclear part: momentum distribution (it is exact: instant form or light front)
- · Key study also for heavier nuclei

Coherent channel

- 9 quark GPDs
- Formalism already developed and established (see Cano, Pire EPJA (2004))
- there is a connection between the light-cone wave function of the deuteron (helicity amplitudes → GPDs) in terms of light-cone coordinates and the ordinary (instant-form) relativistic wave function that fulfills a Schrödinger type equation (we can update the potential)
- · we can compute

$$\chi(\vec{k};\mu_{1},\mu_{2}) = \sum_{L;m_{L};m_{S}} \langle \frac{1}{2} \frac{1}{2} 1 | \mu_{1},\mu_{2},m_{S} \rangle \langle L11 | m_{L}m_{S}\lambda \rangle Y_{L,M_{L}}(\hat{k}) u_{L}(k)$$

with AV18 and perform a Melosh rotation to relate the spin in the light-front with the spin in the instant-form frame of the dynamics

Coherent DVCS off ⁴He

Model for the only one chiral-even GPD of ⁴He in **S. Fucini, S.Scopetta, M. Viviani, PRC 98 (2018)**

$$\frac{d^4\sigma^{\lambda=\pm}}{dx_A dt dQ^2 d\phi} = \frac{\alpha^3 x_A y^2}{8\pi Q^4 \sqrt{1+\epsilon^2}} \frac{|\mathcal{A}|^2}{e^6}; A_{LU} = \frac{d^4\sigma^+ - d^4\sigma^-}{d^4\sigma^+ + d^4\sigma^-}$$

 $T^2_{DVCS} \propto F^2_*(t) : T^2_{DVCS} \propto \Im m \mathcal{H}^2 + \Re e \mathcal{H}^2 : I^{\lambda}_{3H-DVCS} \propto F_A(t) \Im m \mathcal{H}$

Data from **Hattawy et al., PRL (2017)**; our model including (red dots) or not (blue triangles) the real part of \mathcal{H} . As an illustration, we plot $d^4\sigma_{^4He} \times (F_p^1/F_C^A)^2$ and $d^4\sigma_{proton} * 4$

DVCS off bound proton

3-momenta components of the final proton can be obtained brute-force solving

$$\begin{cases} \sqrt{|\vec{p}|^2 + |\vec{p}'|^2 + |q_1^z|^2 - 2|\vec{p}||\vec{p}'|\cos\theta_{pp'} - 2|\vec{p}'|q_1^z\cos\theta_N + 2|\vec{p}|q_1^z\cos\vartheta - p_0 + E_2 - \nu = 0\\ -\Delta^2 + M^2 + p_0^2 - |\vec{p}|^2 - 2p_0\sqrt{M^2 + |\vec{p}'|^2 + 2|\vec{p}'||\vec{p}|\cos\theta_{pp'}} = 0 \end{cases}$$

Numerical sol. (slow the program and there is some instability) \longrightarrow analytical sol.

ϕ is not boost invariant: still studying the impact (5-10%) of this behavior on the x-sections

Is it possible to study the region around the first diffraction minimum in the ^4He FF (t_{dif.\,\min}=-0.48~\text{GeV}^2)?

(18 x 110) GeV: analysis

Is it possible to study the region around the first diffraction minimum in the ^4He FF (t_{dif.min} = -0.48 GeV²)? YES, we can!

- 99%+ electrons and photons are in the acceptance of the detector matrix
- · This is true for all energy configurations

Electrons and photons appear in easily accessible kinematics according to the detector matrix requirements (exceptions for small angles photons)

- · Acceptance at low -t will be cut passing through the detectors
 - t_{min} is set by the detector features
 - t_{max} is fixed by the luminosity (billion of events to generate)

From left to right, the kinematical distributions of the final particles: electron, photon and ⁴He

