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From QCD to QGP:

@ Atlow T and low pug —
Hadronic gas

@ At low T and high up — gas
of neutron

@ For T > 175MeV — QGP

@ At high T and pg — 0, Big
Bang

Nuclear collisions and the QGP expansion
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Figure: Space-time evolution of
HIC.
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Figure: Phase diagram of nuclear
matter [1].

Current Accelerators:

e SPS & LHC, CERN

e RHIC, BNL, New York
Future Accelerators:

o FAIR, Germany

o NICA, Russia
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usion and Outlook

nergy conserving multiple scattering "artons, parton

ladder and strings Off-shell remnantes Saturation [2, 3].

INITIAL CONDITION: A Gribov-Regge multiple scattering approach is employed
(PBGRT).

CORE-CORONA SEPARATION: based on momentum and density of string segments.

VISCOUS HYDRODYNAMIC EXPANSION: Using core part and cross-over equation
of state (EOS) compatible with lattice QCD.

STATISTICAL HADRONIZATION: employing Microcanonical decay/Cooper-Frye
procedure and equilibrium hadron distribution.

FINAL STATE HADRONIC CASCADE: applying the UrQMD model.

on Hadron Stri

INITIAL A4+A COLLISION: leads to formation of strings that decays to pre-hadrons,
done by PYTHIA.

QGP FORMATION: based on local energy-density.

QGP STAGE: evolution based on off-shell transport eqgs. derived by Kadanoff-Baym
eqs. with the DQPM defining the parton spectral function i.e. masses and widths.
HADRONIZATION: massive off-shell partons with broad spectral functions hadronize
to off-shell baryons and mesons.

HADRONIC PHASE: evolution based on the off-shell transport eqs. with
hadron-hadron interaction.
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EPOSi+PHSDe : Employing a sophisticated EPOS approach to
determine the initial distribution of matter (EPOSI)
(partons/hadrons) and then using PHSD for the evolution of
matter in a non-equilibrium transport approach (PHSDe).
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Purpose: Separate ”initial” and ”evolution” effects



Initial Condition in EPOS:

Parton Based Gribov Regge Theory (PBGRT) [6]:

e Hard/Soft processes, Energy conservation by multiple
Pomeron exchange

e Calculation of elastic/inelastic Cross-Sections (uncut
ladder, soft contribution)

e Particle production [7] (cut ladder, semi-hard/hard
contribution)
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Core-Corona Separation in EPOS:

it transverse plane for given T

Energy loss of each string segment at given time 7:
PP = P~ frions [ pil
¥

If P*** > 0 — Corona particle
If P <0 — Core particle
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Core-Corona pre-hadrons in EPOSi+PHSDe:

transverse plane for given ©
X transverse plane for given T
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= | - —_— Torona
g segments —

Rope segment ~ 3 string segments

@ rope segments: longitudinal color field, consider in 3D, larger
string tension and transverse momentum

@ Core pre-hadrons : decay of rope segments/clusters based on
Microcanonical treatment [8]

@ Corona pre-hadrons = Corona particles
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EPOS2PHSD
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Au-Au@200GeV, b=7fm Au-Au@200GeV, b=7fm
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remnant/strmggcoron EPOS pre-hadrons corona . PHSD pre-hadrons
spectator curona ot spectator corona
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o All EPOS core/corona pre-hadrons are inserted into PHSD
arrays

@ Core pre-hadrons melted into QGP with respect to the melting
condition (¢ > 0.5GeV/ fm?)

@ Enegy Density is computed in the Comoving frame in the three
models: TH(q) = [ d’ SLprp” (T, D), €= 700
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Energy Density Evolution
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Figure: Time evolution of the energy density in the x-y plane (at z=0)

for Au-Au collisions at 200A GeV with an impact parameter of 7fm,
for three models.



y [fm]

(a) EPOS

energy density [GeV/m’] (1.=0.0,7=1.72fmic) JO

greray Density (GeV/fm"3), time = 1.718 fm/c

Au-Au@200GeV,b=7fm,Num=20

y(fm)

85 -6 -4 -2

o 2
x(fm)

(b) EPOSi+PHSDe

greray Density (GeV/fm
Au-Au@200GeV,|

~3), time = 1.719 fm/c

y(fm)

88 6 -4 -2

o 2
x(fm)

(c) pure PHSD

Figure: Time evolution of the energy density in the x-y plane (at z=0)
for Au-Au collisions at 200A GeV with an impact parameter of 7fm,

for three models.
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Figure: Time evolution of the energy density in the x-y plane (at z=0)
for Au-Au collisions at 200A GeV with an impact parameter of 7fm,
for three models.

o EPOS: system expands in the longitudinal direction
e EPOSi+PHSDe: nearly identical to the EPOS
o PHSD: begins later and has more ED than others
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Figure: Time evolution of the energy density in the x-y plane (at z=0)

for Au-Au collisions at 200A GeV with an impact parameter of 7fm,
for three models.
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Figure: Time evolution of the energy density in the x-y plane (at z=0)

for Au-Au collisions at 200A GeV with an impact parameter of 7fm,
for three models.
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Figure: Time evolution of the energy density in the x-y plane (at z=0)

for Au-Au collisions at 200A GeV with an impact parameter of 7fm,
for three models.
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Figure: Time evolution of the energy density in the x-y plane (at z=0)

for Au-Au collisions at 200A GeV with an impact parameter of 7fm,
for three models.
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Figure: Time evolution of the energy density in the x-y plane (at z=0)

for Au-Au collisions at 200A GeV with an impact parameter of 7fm,
for three models.
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Figure: Time evolution of the energy density in the x-y plane (at z=0)

for Au-Au collisions at 200A GeV with an impact parameter of 7fm,
for three models.
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Figure: Time evolution of the energy density in the x-y plane (at z=0)
for Au-Au collisions at 200A GeV with an impact parameter of 7fm,
for three models.
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Figure: Time evolution of the energy density in the x-y plane (at z=0)
for Au-Au collisions at 200A GeV with an impact parameter of 7fm,
for three models.
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Figure: Time evolution of the energy density in the x-y plane (at z=0)
for Au-Au collisions at 200A GeV with an impact parameter of 7fm,
for three models.

e EPOS: strong transverse expansion leads to more
transverse flows

o EPOSi+PHSDe: less transverse expansion than EPOS,
same forms as pure PHSD

o PHSD: more ED than others and expands spherically



Dynamical description of strongly interacting system in

PHSD

Dyson Series>l .
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In scalar field theory, one can

obtain the evolution equation

for different Green’s function
called “Kadanoff-Baym equation™
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dE /dt
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A uses in DQPM
— to calculate
effective mass,
spectral width
and scalar mean-
fields.
DQPM computes
entropy/energy
density, pressure
and interaction
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Results

RESULTS

Comparing the
Particle Production, Transverse Momentum (pr), Anisotropic
Flow (v2 and v3) for Au-Au@200GeV
With different simulations:
EPOSi+PHSD, EPOS, and pure PHSD
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Transverse Momentum spectra: Au-Au@200GeV
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Anisotropic Flow

Event Plane method, Fourier series:
3 2
BAN = L CdEN (14 53 2uncos(n(6 — Yip))
vn(pt, y) =< cos(n(¢ —¥pp)) >
vo = elliptic flow, v3 = triangular flow, v4 = quadrangular flow

¥ pp = Event Plane angle [9].
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Figure: EPOS, EPOSi+PHSD, pure PHSD
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Conclusion and Outlook
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Summary and Conclusion:

Two different HIC models were successfully combined
Comparison of space-time and energy density evolution by
EPOSi+PHSDe with pure EPOS and pure PHSD
Comparing observables like charged particles production,
pr, U2, v3 in three different frameworks

High pr part has not been improved yet by EPOSi+PHSDe
The distinctions between EPOS and PHSD are related to

their ”evolutions”

In EPOSi+PHSDe and pure PHSD, the partons do not
interact strongly enough to produce something equivalent
to "strong pressure gradiants”, which are reasonable to the
transverse flow in EPOS

The partonic scatterings do not provide sufficient
”thermalization” in EPOSi+PHSDe
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Current work:
o Investigation of dilepton production in EPOSi+PHSDe
compared to pure PHSD.
Outlook:
o Employing the early hydrodynamical evolution from EPOS

(EPOSh), then use the PHSD evolution (PHSDe) to study
the production of particles in higher pr.

@ Checking the heavy-flavor particle behavior in
EPOSi+PHSDe and comparing the results with two other
models.

o Comparing EPOSi+PHSDe with different ranges energies
from RHIC to LHC for various systems like p-p and Au-Au.

o Studying the inclusive photon yield in EPOSi+PHSDe
compared to pure PHSD.
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