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From QCD to QGP:

At low T and low µB →
Hadronic gas

At low T and high µB → gas
of neutron

For T > 175MeV → QGP

At high T and µB → 0, Big
Bang Figure: Phase diagram of nuclear

matter [1].

Figure: Space-time evolution of
HIC.

Current Accelerators:

SPS & LHC, CERN

RHIC, BNL, New York

Future Accelerators:

FAIR, Germany

NICA, Russia
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EPOS: Energy conserving multiple scattering Partons, parton
ladder and strings Off-shell remnantes Saturation [2, 3].

INITIAL CONDITION: A Gribov-Regge multiple scattering approach is employed
(PBGRT).

CORE-CORONA SEPARATION: based on momentum and density of string segments.

VISCOUS HYDRODYNAMIC EXPANSION: Using core part and cross-over equation
of state (EOS) compatible with lattice QCD.

STATISTICAL HADRONIZATION: employing Microcanonical decay/Cooper-Frye
procedure and equilibrium hadron distribution.

FINAL STATE HADRONIC CASCADE: applying the UrQMD model.

PHSD: Parton Hadron String Dynamics [4, 5].

INITIAL A+A COLLISION: leads to formation of strings that decays to pre-hadrons,
done by PYTHIA.

QGP FORMATION: based on local energy-density.

QGP STAGE: evolution based on off-shell transport eqs. derived by Kadanoff-Baym
eqs. with the DQPM defining the parton spectral function i.e. masses and widths.

HADRONIZATION: massive off-shell partons with broad spectral functions hadronize
to off-shell baryons and mesons.

HADRONIC PHASE: evolution based on the off-shell transport eqs. with
hadron-hadron interaction.
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EPOSi+PHSDe : Employing a sophisticated EPOS approach to
determine the initial distribution of matter (EPOSi)

(partons/hadrons) and then using PHSD for the evolution of
matter in a non-equilibrium transport approach (PHSDe).

M
odels

Steps
EPOS PHSD

Initial
Conditions

(i)

Evolutions
(e)

PBGRT PYTHIA

Core-Corona Separation

Viscous Hydrodynamic Expansion

Statistical Hadronization

Final State Hadronic Cascade

QGP Formation

EPOSi+PHSDe

Non-Equilibrium
Parton/Hadron

Evolution

Purpose: Separate ”initial” and ”evolution” effects
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Initial Condition in EPOS:

Parton Based Gribov Regge Theory (PBGRT) [6]:

Hard/Soft processes, Energy conservation by multiple
Pomeron exchange

Calculation of elastic/inelastic Cross-Sections (uncut
ladder, soft contribution)

Particle production [7] (cut ladder, semi-hard/hard
contribution)
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Core-Corona Separation in EPOS:

s.
s.

s.
s.

s.
s.

s.
s.

s.
s.

s.
s.

s.
s.

s.
s.

s.
s.

s.
s.

S.O.
s.s. ~ string segment
s.o. ~ string origin

CFD

CFD ~ Color Flow Diagram

s.
s.

s.
s.

s.
s.

s.
s. s.
s.

s.
s.

s.
s.

s.
s.

s.
s.

s.
s. s.

s. s.
s.

s.
s.

s.
s.

S.O.

s.s. ~ string segment
s.o. ~ string origin
CFD ~ Color Flow Diagram

CFD

string segments

Cor
e

Cor
e

Corona

Corona

Energy loss of each string segment at given time τ :

Pnew
t = Pt − fEloss

∫
γ

ρdL

If Pnew
t > 0 → Corona particle

If Pnew
t < 0 → Core particle
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Core-Corona pre-hadrons in EPOSi+PHSDe:

string segments

rope segments: longitudinal color field, consider in 3D, larger
string tension and transverse momentum

Core pre-hadrons : decay of rope segments/clusters based on
Microcanonical treatment [8]

Corona pre-hadrons = Corona particles
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Inserting all pre-hadrons from EPOS into PHSD:

S.O.
S.O.
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All EPOS core/corona pre-hadrons are inserted into PHSD
arrays

Core pre-hadrons melted into QGP with respect to the melting
condition (ε > 0.5GeV/fm3)

Enegy Density is computed in the Comoving frame in the three

models: Tµν(q⃗) =
∫

d3p
E pµpνf(q⃗, p⃗), ε = T 00
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Energy Density Evolution

(a) EPOS (b) EPOSi+PHSDe (c) pure PHSD

Figure: Time evolution of the energy density in the x-y plane (at z=0)
for Au-Au collisions at 200A GeV with an impact parameter of 7fm,
for three models.



11/31

Introduction EPOS EPOS2PHSD PHSD Results Conclusion and Outlook References

(a) EPOS (b) EPOSi+PHSDe (c) pure PHSD

Figure: Time evolution of the energy density in the x-y plane (at z=0)
for Au-Au collisions at 200A GeV with an impact parameter of 7fm,
for three models.
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(a) EPOS (b) EPOSi+PHSDe (c) pure PHSD

Figure: Time evolution of the energy density in the x-y plane (at z=0)
for Au-Au collisions at 200A GeV with an impact parameter of 7fm,
for three models.

EPOS: system expands in the longitudinal direction

EPOSi+PHSDe: nearly identical to the EPOS

PHSD: begins later and has more ED than others
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(a) EPOS (b) EPOSi+PHSDe (c) pure PHSD

Figure: Time evolution of the energy density in the x-y plane (at z=0)
for Au-Au collisions at 200A GeV with an impact parameter of 7fm,
for three models.
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(a) EPOS (b) EPOSi+PHSDe (c) pure PHSD

Figure: Time evolution of the energy density in the x-y plane (at z=0)
for Au-Au collisions at 200A GeV with an impact parameter of 7fm,
for three models.
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(a) EPOS (b) EPOSi+PHSDe (c) pure PHSD

Figure: Time evolution of the energy density in the x-y plane (at z=0)
for Au-Au collisions at 200A GeV with an impact parameter of 7fm,
for three models.
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(a) EPOS (b) EPOSi+PHSDe (c) pure PHSD

Figure: Time evolution of the energy density in the x-y plane (at z=0)
for Au-Au collisions at 200A GeV with an impact parameter of 7fm,
for three models.
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(a) EPOS (b) EPOSi+PHSDe (c) pure PHSD

Figure: Time evolution of the energy density in the x-y plane (at z=0)
for Au-Au collisions at 200A GeV with an impact parameter of 7fm,
for three models.
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(a) EPOS (b) EPOSi+PHSDe (c) pure PHSD

Figure: Time evolution of the energy density in the x-y plane (at z=0)
for Au-Au collisions at 200A GeV with an impact parameter of 7fm,
for three models.
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(a) EPOS (b) EPOSi+PHSDe (c) pure PHSD

Figure: Time evolution of the energy density in the x-y plane (at z=0)
for Au-Au collisions at 200A GeV with an impact parameter of 7fm,
for three models.
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(a) EPOS (b) EPOSi+PHSDe (c) pure PHSD

Figure: Time evolution of the energy density in the x-y plane (at z=0)
for Au-Au collisions at 200A GeV with an impact parameter of 7fm,
for three models.
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(a) EPOS (b) EPOSi+PHSDe (c) pure PHSD

Figure: Time evolution of the energy density in the x-y plane (at z=0)
for Au-Au collisions at 200A GeV with an impact parameter of 7fm,
for three models.

EPOS: strong transverse expansion leads to more
transverse flows

EPOSi+PHSDe: less transverse expansion than EPOS,
same forms as pure PHSD

PHSD: more ED than others and expands spherically



22/31

Introduction EPOS EPOS2PHSD PHSD Results Conclusion and Outlook References

Dynamical description of strongly interacting system in
PHSD



23/31

Introduction EPOS EPOS2PHSD PHSD Results Conclusion and Outlook References

RESULTS
Comparing the

Particle Production, Transverse Momentum (pT ), Anisotropic
Flow (v2 and v3) for Au-Au@200GeV

With different simulations:
EPOSi+PHSD, EPOS, and pure PHSD
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Charged Particle Production: Au-Au@200GeV
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Transverse Momentum spectra: Au-Au@200GeV
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Anisotropic Flow

Event Plane method, Fourier series:
E d3N

d3p
= 1

2π
d2N

ptdptdy
(1 +

∑∞
n=1 2vncos(n(ϕ − ΨEP )))

vn(pt, y) =< cos(n(ϕ − ΨEP )) >
v2 = elliptic flow, v3 = triangular flow, v4 = quadrangular flow

ΨEP = Event Plane angle [9].
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Figure: EPOS, EPOSi+PHSD, pure PHSD
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Flow behavior v2, and v3: Au-Au@200GeV
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Summary and Conclusion:

Two different HIC models were successfully combined

Comparison of space-time and energy density evolution by
EPOSi+PHSDe with pure EPOS and pure PHSD

Comparing observables like charged particles production,
pT , v2, v3 in three different frameworks

High pT part has not been improved yet by EPOSi+PHSDe

The distinctions between EPOS and PHSD are related to
their ”evolutions”

In EPOSi+PHSDe and pure PHSD, the partons do not
interact strongly enough to produce something equivalent
to ”strong pressure gradiants”, which are reasonable to the
transverse flow in EPOS

The partonic scatterings do not provide sufficient
”thermalization” in EPOSi+PHSDe
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Current work:

Investigation of dilepton production in EPOSi+PHSDe
compared to pure PHSD.

Outlook:

Employing the early hydrodynamical evolution from EPOS
(EPOSh), then use the PHSD evolution (PHSDe) to study
the production of particles in higher pT .

Checking the heavy-flavor particle behavior in
EPOSi+PHSDe and comparing the results with two other
models.

Comparing EPOSi+PHSDe with different ranges energies
from RHIC to LHC for various systems like p-p and Au-Au.

Studying the inclusive photon yield in EPOSi+PHSDe
compared to pure PHSD.
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