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Physical Picture




m Heavy nuclei are smashed
together at the LHC and RHIC,
liberating their constituents and
forming the Quark Gluon Plasma
(QGP)

Relativistic Heavy-Ion Collisions

m Short lifetime makes QGP o
Helnz, 201
extremely difficult to study, so [ 3]
what do we do?




m A natural feature of gauge
theories, jets, are structures of
high enery, self-collimated final
state particles

m Produced in both proton-proton
collisions and heavy-ion
collisions
= Nice probe for QGP
= Jet Quenching '

p+p A+A

m Transverse momentum M. Rybar/ATLAS Collaboration
broadening coefficient, g serves
in part to characterise
quenching



m Consider a nearly on shell,
highly energetic (hard) parton
with energy, E produced in a
heavy ion collision

Quark Gluon
Plasma

m Parton undergoes collisions
with medium constituents
while propagating through the
plasma



m Hard parton picks up
transverse momentum, R, < E
from collisions with medium Hard  PBarton

constituents e~ — U

V'

m View as diffusion process and >
define diffusion coefficient, g
as ki =4qL




m The dominant mechanism for
energy loss in the QGP is not

the energy lost through these m
elastic collisions

m Instead, it comes from the
bremsstrahlung induced from
these elastic collisions




This depends on the quantum mechanical formation time,
T ~ w/Rk3 associated with the radiated gluon and can be crudely
separated into two cases:

m Case 1: Radiated gluon with energy w
is triggered by just collision with
medium constituent —

—
» Known as Bethe-Heitler or

single-scattering regime

m Case 2: Many collisions with smaller
momentum exchange add up to
trigger gluon radiation with energy w

» Known as harmonic oscillator or /\/\/\af;
many-scattering regime (I will
explain why shortly)

> Requires LPM resummation



m Physics of these two regimes is very different

®m In many-scattering regime, many collisions need to be
resummed via BDMPS-Z/AMY formalisms
[Baier et al., 1995, Zakharov, 1997, Arnold et al., 2003]

m Within this formalism, analytical solutions can be found if
Harmonic Oscillator Approximation is made, where potential
describing soft interactions of hard partons with the
medium oc gx3




g: Context and Motivation




m In the many-scattering
regime, g appears very
naturally in expression used
for calculating
bremsstrahlung rate

m Turns out that § can be UML) (.0
related to the transverse o l—>
scattering rate, C(kR,)
(0,21) (L,z,)
. d’k o
q(p) = / 2 ; 2C(RL) [Ghiglieri and Teaney, 2015]

(1)
m C(ky) canin turn be related
to a Wilson loop in the
(x*,x.) plane



m Leading order contributions calculated by
[Aurenche et al., 2002] and [Arnold and Xiao, 2008] coming
from soft scale kR, ~ gT and hard scale k, ~ T respectively

m O(g) classical contributions from soft scale calculated by
perturbatively [Caron-Huot, 2009] and later on the lattice by
[Panero et al., 2014, Moore and Schlusser, 2020,

Moore et al., 2021]




m O(g?) correction found to have
double logarithmic ~ In*(L/7y;,) @and single logarithmic
enhancements by [Liou et al., 2013](LMW) and separately by
[Blaizot et al., 2014](BDIM)

m These are radiative, quantum corrections coming from the
single-scattering regime

m Both of these calculations were done by making use of the
Harmonic Oscillator Approximation in a static-scattering
picture




Which is larger: KO(g) or In*(#)0O(g?)?

Hard to say... But can definitey make a start by revisiting
computation of quantum corrections




Quantum Corrections to §




m Relax Harmonic Oscillator Approximation

m Compute C(k ) using HTL resummation instead of Random
Colour Approximation

m Investigate which logs are produced by soft, collinear modes

through a semi-collinear process
[Ghiglieri et al., 2013, Ghiglieri et al., 2016]

K+ L
K+ L

P P+L
P P+ L

Now timelike interactions are allowed too

=

Only spacelike interactions with medium
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Jdo
Keeps us away from multiple-scattering

w
T>72

Comes from enforcing UV cutoff,  on k|
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IR cutoff on 7




Need to emend BDIM/LMW result in order to compare their
result with ours

asCr . /“z/a" dr [T dw
Jdo —
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l

R Co [#/Go ¢ 1T o
04142 = OH/ T/ —w(1 + 2ng(w))
7 g

0go =

™

T int 7-2 oT? w
asCp . 1 wr 1
_ qo{ln2 M g T } N(w) = —
27 quint 2 quint et —1

’ Adjust scale on shortest 7 ‘




. o > Ting :
0q314 = o golIn " + subleading logs

T
Leading contrubution to strict single-scattering

Disappearance of i,

wr = 2nTe E T Inwr Il nt

~ ~ ~ 1.
0Qplog = 0q1+2 + 0Q314 X Areaq 3 = ZQO In

qowrt
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Why is it that region 2’and 4 do not contribute to the double Logs?




First, note that

Jim (1 + an(w)) =1+ g — 1 (2)

The absence of the IR scale in any logarithms can then be seen
by looking at the following integral, with vr < T < vyy

vy dw( 1 42n ( )> | Vyy I 2T | 27T
v W ~ ‘B,—/ VIR vIR VIRe’
vacuum thermal v thv 1
vacuum Crma
2T vyy e
<0 —'— I + . (3)
VIR 2T




Region of phase space from which O(g) corrections emerge

Ing  Inwr Inp’rg In—

T . .
— corrections cancel against those extracted from [Caron-Huot, 2009]!
VIR




m Throughout our calculation, we assume an infinitely long
medium and send E — oo so that the parton’s behaviour
eikonalizes

m Our results appear as set of double, single and triple logs -
this is because once the Harmonic Oscillator Approximation
is undone, go — q(n) itself contains a logarithm

m We find that all parts of our final expression, which come
from relaxing the instantaneous approximation are
subleading

m If we consider ;. > T, we can show that our results become
parametrically less important with respect to the BDIM/LMW
double logs




m Double and single logarithmic corrections computed within
the setting of a weakly coupled QGP

m Emended BDIM/LMW result so that it includes thermal
corrections

m Can show how our result fits with respect to these emended
corrections as well as the soft corrections coming in at O(g)

m Still would like to better understand the phase space
bounday between single-scattering and multiple-scattering



THANKS FOR LISTENING!
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m Formation time of radiated particle is given parametrically
as (see e.g [Blaizot and Mehtar-Tani, 2015])

w
T~ (4)
ke

m Let )\, be the mean free path associated with collisions with
the medium

m If 7 < )\, the so-called Bethe-Heitler spectrum turns out to
be proportional to the number of elastic collisions, N

d  asN asNe L

~ dsflepy = Osffe = (5)

w— -
dw 7T T el




m Now, assume that 7 > )\, and that radiate gluon undergoes
transverse momentum kicks during formation time and

picks up k7 ~ gy
— = \/g (6)

m Then, we can crudely say that if N, = 7/)¢ is the number
of coherent collisions that

di Ne N N g
W= asTle - CL\/E 7)
dw 7 Neon 0 w

= As w increases, spectrum suppressed = LPM Effect




Wilson loop defined, in the x~ = o plane in as
(W(x1,0)) = Nic Tr([0,x ]-W'(x1)lx1, 01 W(0)),  (8)
where ,
Wixs) = Pexp (ig [ dxta(x x.)) (9)
One can show that [D’Eramo et al., 2011, Benzke et al., 2013]
Jim (W(x 1)) = exp(~C(x1)L) (10)
where

C(x1) = / ?Z—k;m —e*ki)e(kr)) (11)

27



T
g~ a2T3{CyIn — +Gnk +C5+Kg+as(Cs In*(#) +C In # +...)}
D

-
(12)



m Can think of sticking together
amplitude and conjugate
amplitude to get diagrams on the
right

m Black lines represent hard parton
in the amplitude and conjugate
amplitude

m Red gluons are bremsstrahlung, \gj

represented by thermal
propagators

m Blue gluons are those that are
exchanged with the medium and
are represented by Hard Thermal
Loop propagators
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