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Introduction
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My PhD thesis: jets in heavy-ion collisions

Quark Gluon Plasma

@ The QGP is re-created in high energy collisions of large nuclei (LHC, RHIC).
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@ Extremely short lifetime! Difficult to measure directly its property.
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My PhD thesis: jets in heavy-ion collisions

Jets as hard probes

@ A hard scattering produces a pair of highly energetic partons.

@ The subsequent evolution of the parton = jets.
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@ In PbPb, interaction with the plasma during propagation. 2/25



Introduction
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Jets in pp vs jets in heavy-ions collisions

parton shower D —— parton shower
‘ ‘ log(Q) x x x log(@Q)
| —> i - >
Qxp ~ 1GeV prlt >> Qnp Qup ~ 1GeV We ~ qL7 prR >> w,

mediun

A complicated physical system
Jets are sensitive to a broad range of scales and thus to many medium-induced mechanisms.

duced emissions
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pQCD picture of jet fragmentation in
dense QCD media



pQCD jet fragmentation
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Key idea: find an approximation consistent with pQCD

@ Rely on a suitable approximation under pQCD control.

@ Most simple approximation: double logarithmic limit!
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pQCD jet fragmentation
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How does a vacuum jet look like within the DLA?

@ Vacuum-like emissions (VLEs) = Bremsstrahlung triggered by the virtuality:

s Cr dw d6?
d2 vle = o
P w 0?2
@ Duration of the process: tr ~ 1/(w6?).
@ Markovian process with angular ordering to o ’ T (E,R)
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pQCD jet fragmentation
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Parton propagation in dense media

(1) Transverse momentum broadening: (k3) = GAt

T E pr+ky
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pQCD jet fragmentation
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Parton propagation in dense media

(1) Transverse momentum broadening: (k?) = §At
(2) Medium-induced emissions.
asCrdw dt

d?’,Pmie ~
™ w tf,med

Pbroad(o)d97 with tf med = V w/fl
—————

Gaussian

= No collinear divergence when § — 0.
= Typical kf_ ~ /.

w, 0

Y
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pQCD jet fragmentation
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How does an in-medium jet look like at DLA?

Phase space constraint for vacuum-like emissions

1/(w6?)
=
@ During tr = 1/(w#?), in-medium partons acquire k2 = § x " tf

@ For VLEs inside, lower bound on the k| ~ wf of emission:

ki > qtr
(E, R) (E,R)
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@ No VLEs allowed for formation times \/w/§ < tr < L. 625



pQCD jet fragmentation
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How does an in-medium jet look like at DLA?

Decoherence

@ Color decoherence: after t; = (§0%)~'/3, = independent sources of soft large angle
gluons.

!

0<0

@ However, no consequences for VLEs in the medium

e Large angle in-medium VLEs occur very fast = tr < tg.

e Gluon cascades are angular ordered as in the vacuum.
9/25



pQCD jet fragmentation
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How does an in-medium jet look like at DLA?

Decoherence

-1/3

@ Color decoherence: after t; = (§6?) , = independent sources of soft large angle

gluons.

_ 0>0
0<0

@ But an important consequence for the first emission outside tr > L:
e Critical angle 6. such that t,(6.) = L.

o If6>0. = 2/4/§L3, the first emission outside can have any angle.
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pQCD jet fragmentation
0000000

Beyond DLA: including medium-induced emissions

@ MIEs satisfy k2 ~ Gt <= tfmed = /w/§.
@ Each VLE inside with 6 > 6. radiates MIEs.

@ Markovian process in time and no angular ordering, with rate:

0sCrdw dt

™ w tf,med

d27)mie =

10/25



pQCD jet fragmentation
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Summary: jet evolution to leading-log accuracy

@ The evolution of a jet factorizes into three steps:

(1) one angular ordered vacuum-like shower inside the medium ,
(2) medium-induced emissions triggered by previous sources,
(3) finally, a vacuum-like shower outside the medium.

@ Re-opening of the phase space for the first emission outside the medium.

outside
medium
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Phenomenology at the LHC:
jet quenching in Pb-Pb collisions



Jet observables in PbPb
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Jet observables discussed in this presentation

@ Jet cross-section

@ Fragmentation function

Calculations with 3 parameters §, L and o med-
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Jet observables in PbPb
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The inclusive jet cross section in Pb-Pb collisions

Definition

_ cross-section for jets with pr in PbPb |
RAA(P T) " cross-section in pp X number of binary collisions <ll!

Steeply falling spectrum + energy loss
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Jet observables in PbPb
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Physical interpretation: large number of in-medium VLEs

@ As a function of pt and R, the energy loss increases because the VLEs multiplicity inside
the medium increases:

PT
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E(pT, R) x 2§ / dw/ d9d d@e

average energy loss - prg dependence
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Jet observables in PbPb
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Raa ratio: jet cross section in PbPb/ jet cross section in pp

@ In-medium multiplicity of VLEs keeps Raa small (+non negligible nPDFs effets at large pr)

@ Raa is controlled by wp, = a2§L2.

Raa: fixed O¢,w¢, vary wy,

jet Raa (expanding medium, EPPS16NLO) 1 : :
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Fragmentation function (FF): definition

@ Energy distribution of particles
within jets.
1 dN

Njets dx

D(x) =

with x ~ p7/pT jet

@ Nuclear modification:

R = D

Jet observables in PbPb
o
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Jet observables in PbPb
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Monte-Carlo calculations cc v e soer 200

Fragmentation function ratio
dependence of R on medium parameters

{ = 2.0 GeV¥/fm, L =4 fm, s meq = 0.20
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X

Two regimes

Nuclear enhancement at large x and low x: same behaviour seen in the data.
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Jet observables in PbPb
000000080

Large-x behaviour: bias towards “hard-branching” jets

Raa for different bins of xmax

. . e 1.0 -
@ Change in the statistics of =15 GeV/fm, L=4fm
. . . L s meq=0.24
hard-fragmenting jets induced by 09 ’
the steeply falling spectrum. 08f
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@ Hard-fragmenting jets have less 05 _-=" - gllojets os
e 0.0 < Xpax < 0.
structure, hence they lose less 0.4l — 0.5 <Xmex<0.9
energy. anti-k(R=0.4), |yjee] <2.8 = 0.9 <Xmax<1.0
0'}00 200 300 400 500600 1000
pr.jet [GeV]

—— Xmax Momentum fraction of the
leading particle in jets.
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Jet observables in PbPb
00000000e

Enhancement at low x: colour decoherence and MIEs

Monte Carlo and analytic tests of various mechanisms
@ Black curve: no MIEs.
@ VLEs and MIEs no colour decoherence,

@ Full MC including decoherence.

Nuclear modification factor at DLA
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Outlook
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Two directions

@ Find qualitative new physics.

@ Use jet substructure to pin down specific aspects of in-medium jet dynamics.

Medium-induced turbulent behaviour, thermalization.

e NLO corrections to §, anomalous k diffusion in large systems.

See also talk by E. Weitz this afternoon

o Towards precision phenomenology of jet quenching.

22/25



Use jet substructure techniques to reveal color coherence

Example: 6, distribution

@ Basic idea: groom soft large angle emissions to find hard branches, and measure the angle
6 of this hard branch.

@ Jet substructure observable under pQCD control. < 16
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Towards precision jet physics in HIC

New theoretical and numerical developments

@ Improve the in-medium vacuum-like cascade:
e Full LL, NLL?
e Use dipoles.

@ Improve medium-induced physics
o Account for (rare) hard scatterings in a consistent way.

e Include recent exciting developments in the computation of medium-induced
emissions spectra.
See talk by C. Andres this afternoon

@ Improve modeling aspects: geometry, medium response, in-medium
hadronization,...
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A big thank to the GDR QCD for this prize!
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