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Scope

 Searching for GW signals, with a focus on 
 Compact binary coalescences
 Ground-based detectors
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From data to catalogs
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First things first: calibration

 Data analysis needs calibrated data
 Interferometer response calibrated against
 Laser wavelength reference
 Known mirror displacements from auxiliary laser radiation pressure, aka photon calibrator (PCal)
 Known mirror displacements from gravitational coupling to nearby rotating masses,                  

aka Newtonian calibrator (NCal)
 Detector is a maze of feedback loops 
 h(t) reconstruction needs to use control signals in addition to output power measurement

 Also need to check that timing is consistent across detectors
 Typical accuracy ∼2-5% on amplitude, ∼2-4 deg on phase
 Has to get better to match the sensitivity progress

 Especially for cosmology applications
 h(t) reconstruction typically includes some noise subtraction, aka data cleaning
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Run online (low-latency)

Pipelines

 cWB

 GstLAL
 MBTA
 PyCBC
 SPIIR
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Generic search

Dedicated searches

Run offline



in practice

Last stable orbit

Dominant frequency

The (inspiral) signal in a nutshell
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Matched filtering

 If we know what we’re 
looking for, and we know 
the properties of detector 
noise

 Correlation of data with 
expected signal, weighted 
by sensitivity curve

7



 As a function of the (unknown) arrival time

 Maximize over unknown phase

 Record trigger at       if           exceeds some threshold

Matched filtering (cont.)
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Matched filtering is “optimal”

 Noise SNR distribution:     with 2 degrees of freedom
 Signal SNR distribution: non-central      distribution  
∼ Gaussian distribution if signal strong enough
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 Matched filter optimizes SNR

In Gaussian, stationary noise with known PSD…

 Selecting triggers by setting 
threshold on SNR 
guarantees lowest false 
alarm probability for given 
detection probability

But…



Matched filtering SNR & likelihood ratio

 Likelihood ratio of signal vs noise

 Take 

 Maximize 
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See part II of lecture for why 
the likelihood takes this form



Noise spectrum

 Detector noise spectrum has complex structure
 Broadband noise
 Narrow features
 Large dynamic range

 Noise spectrum is not stationary
 Estimated by averaging consecutive FFTs

 Over time large enough to get smooth estimate, 
short enough to follow medium-term variations
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Waveforms

 Approximate analytical solutions
 Perturbative approaches
 Post-Newtonian expansion
 Effective-one-body approach
 Final black hole ringdown

 Accurate for inspiral and ringdown, 
loses accuracy close to merger
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 Numerical solutions
 Solving Einstein’s equations directly 

with numerical evolution methods
 Computationally expensive
 Cannot be used to model many orbits

 Can model merger

 Hybrid models
 Combining results from analytical and numerical approaches
 Provide full inspiral-merger-ringdown waveforms



Signal model

 Received signal

 Measured signal
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 Searching a reduced parameter space
 Assume that there is no eccentricity
 Assume that there is no precession of the orbital plane
 Assume that both bodies are black holes
 Restrict to the dominant mode of the signal 
 Orientation and location parameters now enter as overall 

scale, time or phase shifts, easily maximized over
 Scan a 4-dimensional space: 

Parameters
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 In general, compact binary is described by up to 19 parameters
 Intrinsic parameters drive system dynamics

 Masses (2)
 Spins (6)
 Deformability for neutron stars (2)
 Eccentricity (2)

 Extrinsic parameters impact measured signal
 Position : luminosity distance, right ascension, declination (3)
 Orientation: inclination, polarization (2)
 Time and phase at coalescence (2)



Template banks

 Overlap (inner product)

 Match

 Fitting factor

 Criterion for template bank

 Historically
 Optimize effectualness vs size
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Few cycles in signal at high masses
 sparse template bank

Many cycles in signal at low masses
 dense template bank



Building template banks
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 Geometric placement
 Quadratic approximation to the match

 Reparametrize to a space where
 e.g.   

 Cover space with optimal grid (e.g. hexagonal in 2D)
 Transform back to parameters that can be used to generate 

waveforms
 Very efficient
 Metric cannot be easily computed for any waveform model

Chirp time at leading order



Building template banks (cont.)

 Hybrid banks
 Searches 

typically use 
banks built 
upon a mix of 
geometric and 
stochastic 
placement
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 Stochastic placement
 Pick a random point in the search space
 Calculate the fitting factor with the previous points
 If fitting factor smaller than 0.97, keep the new point
 Iterate

 Straightforward and applicable with any waveform 
model

 Slow & does not guarantee complete coverage



Template banks: example

 PyCBC O2 bank
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Aligned spins extend the inspiral
Anti-aligned spins shorten the inspiral

arXiv:1705.01845



Search parameter space
 Detected masses are redshifted

 For given (source-frame) parameter space, 
search parameter space needs to extend to 
higher masses as detector reach increases

 Number of observed cycles impacts density of 
template banks
 For given parameter space, number of templates 

increases as low-frequency detector sensitivity 
improves and lower frequency cutoff decreases
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 Main CBC search


 Template bank size ∼ 4 105 (O2), ∼ 8 105 (O3)
 Sub-solar mass search



 Template bank size ∼ 1.9 106

 Intermediate-mass BH search


 Template bank size ∼ 103



Noise is not Gaussian

 Environmental or instrumental artefacts 
are common in the data
 Aka glitches
 Responsible for long tails in SNR distributions

 Coping strategies
 Use data quality tools to diagnose and flag 

issues where possible
 Go beyond SNR by considering additional 

observables to distinguish between 
astrophysical signals and glitches

 Estimate the background from the data
 Requiring coincidence between detectors both 

reduces the background and provides ways to 
estimate it 20
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Strategies to improve data quality

 Veto data or triggers 
based on data-quality 
flags
 Using environmental and 

instrumental safe 
auxiliary channels
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 iDQ
 Supervised learning 

framework using safe 
auxiliary channels to 
predict glitch probability 
as a function of time

 Gating
 Excise short stretches of 

data based on drops in 
instantaneous BNS range
 Potentially unsafe but 

useful to use surrounding 
data and avoid biasing PSD

 MBTA: Excess rate
 Monitor rate of triggers 

produced by search, 
penalize times with 
excess rate



Signal consistency tests

 Is signal distributed over frequency band as expected?

22Instrumental artefactAstrophysical event
Allen PRD 71 062001 (2005) 



Signal consistency tests (cont.)

 Is SNR time series consistent 
with expected autocorrelation 
of template? 
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Signal consistency across detectors

 Phase and time differences between 
detectors determined by source sky 
location and orientation with respect 
to detectors
 Pattern expected for isotropic source 

population
 Uniform distributions for noise

 Pattern also expected for SNR ratio 
between detectors, depending on 
detector sensitivities
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Ranking statistics

 Combine SNR with outcome 
of signal consistency tests to 
rank triggers
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 PyCBC

 GstLAL



 Coincidences
 Triggers appearing in ≥ 2 detectors within 

coincidence time window, for the same template
 Construct a background from the data
 Using some combination of single-detector 

triggers
 FAR: rate of noise events with same or higher 

ranking statistic value
 False alarm probability

 Equivalent number of single-sided Gaussian 
standard deviations

Significance
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 Assigning a significance 
to single-detector 
triggers requires
 Some extrapolation of 

FAR vs RS distribution
 Being more aggressive at 

vetoing likely noise events
 Being more conservative



Estimating the background

 With time slides

 Without time slides
 Use all pairs of single-detector triggers
 Account for probability that they could form a coincidence 27

Coincidences between single 
detector triggers from GW150914 
and noise in other detector

Background excluding contribution from GW150914 
to gauge significance of other triggers

Hierarchical removal of 
confirmed signals from 
background to assess 
significance of other events



IFAR plots
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On average

IFAR plots (cont.)

 Cumulative number of triggers with IFAR ≥ x-axis value
 The expected background distribution is universal 

(modulo the analysis time)
 O1+O2 analysis time T = 0.46 y
 Expect on average 1 noise trigger with IFAR ≥ T, 2 with 

IFAR ≥ T/2, 3 with IFAR ≥ T/3, etc. 
 The expected background distribution says nothing 

about the sensitivity of the search
 The IFAR vs ranking statistic relationship does
 If FARs reported by the search are self-consistent, noise 

triggers will follow the expected background distribution 
within statistical uncertainties
 Number of noise triggers follows Poisson statistics
 Error bars mark rates that can fluctuate up or down to n observed 

triggers at the 1, 2, 3 σ level, i.e. with probability 

 Some systematic uncertainties too (non-stationarities)
 Foreground candidate events appear as outliers 29

One trigger per 
analysis time



Trials factor: templates

 When assessing significance of candidate 
event coming from a template, wee need 
to take into account that:
 We collect candidates from other templates

 Look-elsewhere effect, aka trials factor
 Search backgrounds are not uniform across 

templates
 [Signal rate is not uniform across templates]

 Divide search space into classes (aka bins)
 Background and local significance estimated 

within a given class
 Global significance = local significance / 

number of classes
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 GstLAL
 1 template = 1 bin

 MBTA
 3 broad bins: BNS, NSBH, BBH

 PyCBC
 1 bin
 Ranking statistic modified to account for 

actual background distribution in each 
template  ranking statistic distribution 
more uniform across templates


ApJ 849:118 (7pp), 2017



Trials factor: coincidence types

 In 3-detector coincident 
search, 4 different 
coincidence types
 HL, HV, LV, HLV
 Flat trials factor of 4 sub-

optimal as coincidence 
types not as likely for 
astrophysical signals, due 
to differences in detector 
sensitivities
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Relative sensitive  volume 
for given coincidence type

(ln of) network sensitive 
volume for given template 
and coincidence type

 MBTA

 PyCBC
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Burst generic search method

 Robust search paradigm
 Require coherent signals in multiple detectors, using direction-dependent antenna response
 Look for excess power in time-frequency space
 Using wavelet decomposition
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 Detection statistic
 dimensionless coherent signal energy obtained by 

cross-correlating the two reconstructed waveforms
 dimensionless residual noise energy after 

reconstructed signal is subtracted from data

 Getting the background under control is a challenge
 No waveform assumed

 But class for signal morphologies consistent with chirp
 Noise artifacts have greater impact than for CBC searches, 

especially at lower frequencies
 Data quality and vetoes



Injections and search sensitivity

 Simulated signals added to data 
in software, aka injections
 Used to design and tune signal 

consistency tests
 Used to validate analysis
 Used to estimate search sensitivity 
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Expected number 
of detections

Merger rate per unit volume 
and unit observing time

Detection efficiencySource population 
characteristics

arXiv:2111.03606



Probability of astrophysical origin

34

Background density
Estimated from data

Astrophysical foreground density
Estimated by projecting 
population model onto dataExpected number of 

background events

Expected number of 
foreground events

Farr et al. PRD 91 023005 (2015)

Kapadia et al. CQG 37 045007 (2020)
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Offline vs online analyses

 Offline analyses
 Use data with final calibration 

and cleaning
 Have access to final data quality 

information
 Analyze data in chunks

representing ∼ 1 week of 
coincident data

 Assess significance with respect 
to background in chunk / full run

 Use p_astro threshold for 
inclusion in catalogs
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 Online analyses
 Are configured to minimize 

latency
 Use online calibrated data
 Have access to limited data 

quality information
 Can only assess data based on 

past information
 Have a limited set of 

background events
 Use FAR threshold to send alerts



Early warning

 At design sensitivity of 
advanced detectors
 ∼ 49% of detectable BNS 

detected 10 s before merger
 ∼ 7% 60 s before merger
 ∼ 2% detected before merger 

with localization ≤ 100 deg2
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GRB triggered searches

 GRB & GW
 Long GRBs are extreme cases of stellar collapse
 BNS or NSBH mergers progenitors or short, hard GRBs

 Search data around times of GRBs observed by γ - Xray satellite based 
instruments
 O1-O2-O3: > 300 GRBs with enough data to be analyzed

 1 coincident detection GW170817
 Short GRBs analyzed with BNS and NSBH search, short & long GRBs analyzed with burst 

search
 Triggered searches
 Small amount of data searched leads to lower background and better sensitivity
 Known sky position makes coherent search across detectors possible also for CBC search
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