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1.  Ladder of effective field theories (EFTs) from  high 
energies to the nuclear scale  

2.  D parameter in the language of EFT 

3.  Scenarios for the D parameter from the EFT 
perspective 

wait for Antonio's talk for concrete examples of leptoquark UV completions of the EFT



Ladder of EFTs: 
from high energies  
to the nuclear seale 
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Connecting high-energy physics to nuclear physics 
 via a series of effective theories
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Several high-energy effects  may contribute to beta decay

WL-WR mixing

In the SM beta decay is mediated by the W boson
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EFT for 
Hadrons

EFT for 
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“Fundamental” 
BSM model

For any “fundamental” model, the Wilson coefficients  
can be calculated in terms of masses and couplings 

of new particles at the high-scale 

Ci

NR EFT for 
beta decay

Literally thousands of different  
interaction terms possible.  

Above, I'm only displaying a small subset 
most relevant for the D parameter 

Above the electroweak scale 
~100 GeV,  interactions  

must be invariant under the full 
SM gauge group SU(3)xSU(2)xU(1)  

ℒEFT ⊃ iCϕudHDμH(ucσμd̄c) +iCϕeνH†DμH†(ecσμν̄c)

+C(3)
lequ(l̄σ̄μνēc)(q̄σ̄μνūc) +C(3)

lνqd(l̄σ̄μνν̄c)(q̄σ̄μνd̄c)

+C(1)
lequ(l̄ē

c)(q̄ūc) +C(1)
lνqd(l̄ν̄c)(q̄d̄c)

+Cledq(l̄ēc)(dcq) +Clνuq(l̄ν̄c)(ucq)

+Ceνud(ecσμν̄c)(ucσμd̄c)
+hc
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C(1)
lνqd, C(3)

lνqd ∼
yLyν

M2
LQ

l

Q dc

νc

NR EFT for 
beta decay

ℒ ⊃ yLS1(Ql) + yνS1(d̄cν̄c) + hc

l

Q dc

νc

ℒEFT ⊃ iCϕudHDμH(ucσμd̄c) +iCϕeνH†DμH†(ecσμν̄c)

+C(3)
lequ(l̄σ̄μνēc)(q̄σ̄μνūc) +C(3)

lνqd(l̄σ̄μνν̄c)(q̄σ̄μνd̄c)

+C(1)
lequ(l̄ē

c)(q̄ūc) +C(1)
lνqd(l̄ν̄c)(q̄d̄c)

+Cledq(l̄ēc)(dcq) +Clνuq(l̄ν̄c)(ucq)

+Ceνud(ecσμν̄c)(ucσμd̄c)
+hc



EFT below electroweak scale

Below the electroweak scale,  there is no W, 
thus all leading effects relevant for beta decays 
are described contact 4-fermion interactions,  

whether in SM or beyond the SM

Much simplified description,  
only 10 (in principle complex) parameters  

at leading order 
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ℒ ⊃ −
2Vud

v2 { (1+ϵL) ēσ̄μν ⋅ ūσ̄μd + ϵ̃L ecσμν̄c ⋅ ūσ̄μd

+ϵR ēσ̄μν ⋅ ucσμd̄c + ϵ̃R ecσμν̄cucσμd̄c

+ϵT
1
4

ecσμνν ⋅ ucσμνd + ϵ̃T
1
4

ēcσ̄μνν̄c ⋅ ūσ̄μνd̄c

+ϵS
1
2

ecν ⋅ (ucd + ūd̄c) + ϵ̃S
1
2

ēν̄c ⋅ (ucd + ūd̄c)

+ϵP
1
2

ecν ⋅ (ucd − ūd̄c) − ϵ̃P
1
2

ēν̄c ⋅ (ucd − ūd̄c)} + h . c .

Quark level effective Lagrangian

Left-handed  
neutrino

Right-handed  
neutrino

v =
1

2GF

≈ 246 GeV

V-A

V+A

Tensor

Scalar

Pseudo- 
scalar

Normalization scale,  
set by Fermi constant

CKM element

Effective Lagrangian defined at a low scale μ ~ 2 GeV  

The Wilson coefficients of this EFT can be connected,  
to the Wilson coefficients above the electroweak scale,  

 and consequently to masses and couplings of new heavy particles at the scale M :

ϵX, ϵ̃X ∼ v2ci ∼ g2
*

v2

M2



At the scale mW, Wilson coefficients  in one EFT  
can be mapped onto Wilson coefficients  in the other EFT

ϵX
CX

ϵR =
v2

2Vud
Cϕud +

v4

4Vud
C8

ϵS = −
v2

2Vud
(C(1)*

lequ + VudC*ledq)

ϵP = −
v2

2Vud
(C(1)*

lequ − VudC*ledq)

ϵT = −
2v2

Vud
C(3)*

lequ

Translation from low-to-high energy EFT
Assuming lack of right-handed neutrinos, the EFT below the weak scale  

can be matched to the EFT above the weak scale 

Known RG running equations can 
translate it to Wilson coefficients  

 and  at a low scale μ ~ 2 GeVϵX ϵ̃X

ϵ̃L = −
v2

2
Cϕeν

ϵ̃R = −
v2

2Vud
Ceνud

ϵ̃S =
v2

2Vud [C(1)
lνqdVud − Clνuq]

ϵ̃P = −
v2

2Vud [C(1)
lνqdVud + Clνuq]

ϵ̃T = 2v2C(3)
lνqd

ℒ ⊃ −
2Vud

v2 { (1+ϵL) ēσ̄μν ⋅ ū σ̄μd + ϵ̃L ecσμν̄c ⋅ ū σ̄μd

+ϵR ēσ̄μν ⋅ ucσμd̄c + ϵ̃R ecσμν̄cucσμd̄c

+ϵT
1
4

ecσμνν ⋅ ucσμνd + ϵ̃T
1
4

ēcσ̄μνν̄c ⋅ ū σ̄μνd̄c

+ϵS
1
2

ecν ⋅ (ucd + ū d̄c) + ϵ̃S
1
2

ēν̄c ⋅ (ucd + ū d̄c)

+ϵP
1
2

ecν ⋅ (ucd − ū d̄c) − ϵ̃P
1
2

ēν̄c ⋅ (ucd − ū d̄c)} + h . c .

ℒEFT ⊃ iCϕudHDμH(ucσμd̄c) +iCϕeνH†DμH†(ecσμν̄c)

+C(3)
lequ(l̄σ̄μνēc)(q̄σ̄μνūc) +C(3)

lνqd(l̄σ̄μνν̄c)(q̄σ̄μνd̄c)

+C(1)
lequ(l̄ē

c)(q̄ūc) +C(1)
lνqd(l̄ν̄c)(q̄d̄c)

+Cledq(l̄ēc)(dcq) +Clνuq(l̄ν̄c)(ucq)

+Ceνud(ecσμν̄c)(ucσμd̄c)
+hc
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NR EFT for nucleons

Now 8 complex parameters  
at leading order to describe physics of  

beta decay

Leading order EFT described by the  Lagrangian

NR EFT for 
beta decay

In beta decay, the momentum transfer  
is much smaller than the nucleon mass,  
due to approximate isospin symmetry  

leading to small mass splittings

Appropriate EFT is non-relativistic!

Below the QCD scale there is no quarks. 
The relevant degrees of freedom are instead nucleons 

ℒEFT = ℒ(0) + ℒ(1) + 𝒪(∇2/m2
N) + h . c .

ℒ(0) = −(ψ†
pψn)[C+

V ēσ̄0ν+C−
V ecσ0ν̄c+C+

S ecν+C−
S ēν̄c]

+
3

∑
k=1

(ψ†
pσkψn)[C+

A ēσ̄kν+C+
A ecσkν̄c+C+

T ecσ0σ̄kν+C−
T ēσ̄kσ̄0ν̄v]



C+
V =

Vud

v2
gV 1 + ΔV

R(1 + ϵL + ϵR) C−
V =

Vud

v2
gV 1 + ΔV

R(ϵ̃L + ϵ̃R)

C+
A = −

Vud

v2
gA 1 + ΔA

R(1 + ϵL − ϵR) C−
A =

Vud

v2
gA 1 + ΔA

R(ϵ̃L − ϵ̃R)

C+
T =

Vud

v2
gTϵT C−

T =
Vud

v2
gTϵ̃T

C+
S =

Vud

v2
gSϵS C−

S =
Vud

v2
gSϵ̃S

Translation from nuclear to particle physics

Lattice + theory fix with good accuracy the non-perturbative parameters in the matching

Non-zero 
in the SM

ΔV
R = 0.02467(22)

Matching includes short-distance  
(inner) radiative corrections  

Seng et al 
1807.10197

gV ≈ 1, gA = 1.246 ± 0.028, gS = 1.02 ± 0.10, gT = 0.989 ± 0.034

Flag’21 Nf=2+1+1 value Gupta et al

1806.09006 

Ademolo, Gatto

(1964) 

Note that pseudoscalar interactions 
do not enter at the leading order

Cirigliano et al  
2202.10439

ΔA
R − ΔV

R = 0.036(8)



• Using this low-energy non-relativistic EFT Lagrangian one can calculate 
differential distributions in nuclear beta transitions, in particular the D 
parameter 


• Using the dictionaries above one can express the D parameter in terms of 
Wilson coefficients of the relativistic EFTs below and above the electroweak 
scale  


• Via this ladder of EFTs, one can connect the D parameter to parameters of 
fundamental UV models, e.g. to leptoquarks masses and  their CP violating 
couplings  to matter 

Summary of the language

ℒ(0) = −(ψ†
pψn)[C+

V ēσ̄0ν+C−
V ecσ0ν̄c+C+

S ecν+C−
S ēν̄c]

+
3

∑
k=1

(ψ†
pσkψn)[C+

A ēσ̄kν+C+
A ecσkν̄c+C+

T ecσ0σ̄kν+C−
T ēσ̄kσ̄0ν̄v]

See the talk of Martin Gonzalez-Alonso for the constraints on the real parts  
of these Wilson coefficients from CP conserving observables



D parameter in EFT



Observables in beta decay

Eν = pν ≈ mN − mN′ − Ee

N

N’

eν
peθeθν

N → N′ e∓ν

( j, m ± 1)

( j, m)

pν
Neutrino energy

Electron energy/momentum

Ee = p2
e + m2

e

Information about  the Wilson coefficients can be accessed by measuring (differential) decay width:

dΓ
dEedΩedΩν

= F(Ee){1+b
me

Ee
+a

pe ⋅ pν

EeEν
+A

⟨J⟩ ⋅ pe

JEe
+B

⟨J⟩ ⋅ pν

JEν

+c
pe ⋅ pν − 3(pe ⋅ j)(pν ⋅ j)

3EeEν [ J(J + 1) − 3(⟨J⟩ ⋅ j)2

J(2J − 1) ]+D
⟨J⟩ ⋅ (pe × pν)

JEeEν }
No-one talks about it

Main focus here
Routinely measured correlationsControl lifetime



D parameter

D = − 2r
J

J + 1

Im{C+
V C̄+

A − C+
S C̄+

T + C−
V C̄−

A − C−
S C̄−

T}
|C+

V |2 + |C+
S |2 + |C−

V |2 + |C−
S |2 + r2[ |C+

A |2 + |C+
T |2 + |C−

A |2 + |C−
T |2 ]

Jackson Treiman Wyld (1957)

Ratio of GT and Fermi 
matrix elements 

measured by experiment

For same spin (J'=J) mixed allowed beta transitions:

r ≈ − ρ/gA

So-called  
mixing parameter 

- Beta decay has to neither pure Fermi nor pure GT 
  
- At least two distinct Wilson coefficients have to be non-zero 
 
- There has to be a relative phase difference between  
these two parameters

For D parameter to be non-zero: 

ℒ(0) = −(ψ†
pψn)[C+

V ēσ̄0ν+C−
V ecσ0ν̄c+C+

S ecν+C−
S ēν̄c]

+
3

∑
k=1

(ψ†
pσkψn)[C+

A ēσ̄kν+C+
A ecσkν̄c+C+

T ecσ0σ̄kν+C−
T ēσ̄kσ̄0ν̄v]
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D parameter
Translation to the quark-level Wilson coefficients 

below the electroweak scale: 

D =
4rgVgA

g2
V + r2g2

A

J
J + 1

Im[ϵR(1 + ϵ*L ) +
gSgT

2gVgA
(ϵSϵ*T + ϵ̃Sϵ̃*T ) − ϵ̃Rϵ̃*L]

At the linear level in Wilson coefficients, 
D parameter measures the imaginary part  

of non-standard right-handed currents 
involving the left-handed neutrino 

At the quadratic level,  
sensitivity to imaginary parts  
of scalar and tensor current 

and to interactions of  
right-handed neutrino

ℒ ⊃ −
2Vud

v2 { (1+ϵL) ēσ̄μν ⋅ ūσ̄μd + ϵ̃L ecσμν̄c ⋅ ūσ̄μd

+ϵR ēσ̄μν ⋅ ucσμd̄c + ϵ̃R ecσμν̄cucσμd̄c

+ϵT
1
4

ecσμνν ⋅ ucσμνd + ϵ̃T
1
4

ēcσ̄μνν̄c ⋅ ūσ̄μνd̄c

+ϵS
1
2

ecν ⋅ (ucd + ū d̄c) + ϵ̃S
1
2

ēν̄c ⋅ (ucd + ū d̄c)

+ϵP
1
2

ecν ⋅ (ucd − ū d̄c) − ϵ̃P
1
2

ēν̄c ⋅ (ucd − ū d̄c)} + h . c .
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D parameter

Translation to the quark-level Wilson coefficients: 

D ≈ κD Im[ϵR(1 + ϵ*L ) + 0.4(ϵSϵ*T + ϵ̃Sϵ̃*T ) − ϵ̃Rϵ̃*L ]

ℒ ⊃ −
2Vud

v2 { (1+ϵL) ēσ̄μν ⋅ ūσ̄μd + ϵ̃L ecσμν̄c ⋅ ūσ̄μd

+ϵR ēσ̄μν ⋅ ucσμd̄c + ϵ̃R ecσμν̄cucσμd̄c

+ϵT
1
4

ecσμνν ⋅ ucσμνd + ϵ̃T
1
4

ēcσ̄μνν̄c ⋅ ūσ̄μνd̄c

+ϵS
1
2

ecν ⋅ (ucd + ū d̄c) + ϵ̃S
1
2

ēν̄c ⋅ (ucd + ū d̄c)

+ϵP
1
2

ecν ⋅ (ucd − ū d̄c) − ϵ̃P
1
2

ēν̄c ⋅ (ucd − ū d̄c)} + h . c .

κD ≡
4rgVgA

g2
V + r2g2

A

J
J + 1

Parent J r D Dexp �Dfuture

n 1/2
p
3 0.88 �1.2(2.0)⇥ 10�4 [12] ?

19Ne 1/2 �1.26 �1.04 0.0001(6) ?
23Mg 3/2 -0.44 �1.30 - < 10�4 [13]
39Ca 3/2 0.52 1.42 - ?

Table 1. The current experimental measurements and future experimental sensitivity for the
D-parameter for various beta transitions. We also show the central value of the proportionality
constant D in the theoretical relation in Eq. (2.8) (its errors are small and are not relevant for the
present study).

C+
S =

Vud

v2
gS✏S , C�

S =
Vud

v2
gS ✏̃S . (2.6)

Here, gV,A,S,T are non-perturbative parameters referred to as the vector, axial, scalar, and
tensor charges of the nucleon. For the vector charge, gV = 1 up to (negligible) quadratic
corrections in isospin-symmetry breaking [7]. The remaining caharges are not known from
symmetry considerations alone and must be fixed from experimental data or by lattice
calculations. In this work we will use the FLAG’21 values: gA = 1.246(28) [8–11], gS =

1.022(100), and gT = 0.989(34) [8, 9].
Using this map, we can translate Eq. (2.4) into the quark-level Wilson coefficients:1

D ⇡
4rgV gA

g2V + r2g2A

r
J

J + 1
Im


✏R(1 + ✏⇤L) +

gSgT
2gV gA

(✏S✏
⇤
T + ✏̃S ✏̃

⇤
T )� ✏̃R✏̃

⇤
L

�
, (2.7)

where we neglected the new physics corrections originating from the denominator of Eq. (2.4),
but we kept the linear and quadratic effects in Wilson coefficients coming from the numer-
ator. We can recast the above in the semi-numerical form as

D ⇡ D Im
⇥
✏R(1 + ✏⇤L) + 0.4(✏S✏

⇤
T + ✏̃S ✏̃

⇤
T )� ✏̃R✏̃

⇤
L], D ⌘

4rgV gA
g2V + r2g2A

r
J

J + 1
. (2.8)

This is the master equation for the D parameter that we will use extensively in the following.
The values of the proportionality constant D for selected beta transitions are displayed
in Table 1. At the linear level, the D parameter only probes CP violation entering via the
so-called right-handed currents, that is the effective weak interactions between left-handed
leptons and right-handed quarks. At the quadratic level, other non-standard currents are
probed as well, in particular the scalar and tensor currents involving the left- and right-
handed neutrinos.

2.3 EFT above the electroweak scale

We move to discussing the effective theory above the electroweak scale that UV-completes
the ⌫WEFT, which is often referred to as the ⌫SMEFT [14, 15]. It has the gauge sym-
metry SU(3) ⇥ SU(2) ⇥ U(1) and the degrees of freedom are those of the SM plus three

1[**From the equations above I find instead D Im
⇥
� ✏R + 0.41(✏T ✏

⇤
S + ✏̃T ✏̃

⇤
S) + ✏̃R✏̃

⇤
L � ✏R✏

⇤
L

⇤
, which

seems to agree with 1303.6953.] Agree, but rewrote it in a bit different form, redefining the sign of D

– 4 –



D parameter

Translation to Wilson coefficients 
 of EFT above electroweak scale 

ϵR =
v2

2Vud
Cϕud

ϵS = −
v2

2Vud
(C(1)*

lequ + Vudc*ledq)

ϵP = −
v2

2Vud
(C(1)*

lequ − VudC*ledq)

ϵT = −
2v2

Vud
C(3)*

lequ

ϵ̃L = −
v2

2
Cϕeν

ϵ̃R = −
v2

2Vud
Ceνud

ϵ̃S =
v2

2Vud [C(1)
lνqdVud − Clνuq]

ϵ̃P = −
v2

2Vud [C(1)
lνqdVud + Clνuq]

ϵ̃T = 2v2C(3)
lνqd

D ≈ κD Im[ϵR(1 + ϵ*L ) + 0.4(ϵSϵ*T + ϵ̃Sϵ̃*T ) − ϵ̃Rϵ̃*L ]

ℒEFT ⊃ iCϕudHDμH(ucσμd̄c) +iCϕeνH†DμH†(ecσμν̄c)

+C(3)
lequ(l̄σ̄μνēc)(q̄σ̄μνūc) +C(3)

lνqd(l̄σ̄μνν̄c)(q̄σ̄μνd̄c)

+C(1)
lequ(l̄ē

c)(q̄ūc) +C(1)
lνqd(l̄ν̄c)(q̄d̄c)

+Cledq(l̄ēc)(dcq) +Clνuq(l̄ν̄c)(ucq)

+Ceνud(ecσμν̄c)(ucσμd̄c)
+hc



EFT scenarios  
for D parameter 



D ≈ κD Im[ϵR(1 + ϵ*L ) + 0.4(ϵSϵ*T + ϵ̃Sϵ̃*T ) − ϵ̃Rϵ̃*L ]

D parameter scenarios

Scenario #1 Scenario #2 Scenario #3 Scenario #4

Scenario ⌫WEFT ⌫SMEFT max |D|

I ✏R HDµHuc�µd̄c [(l̄H�̄µHl)(uc�µd̄c)] O(10�6)

II ✏S , ✏T (l̄�̄µ⌫ ēc)(q̄�̄µ⌫ ūc), (l̄ēc)(q̄ūc), (l̄ēc)(dcq) O(10�14)

III ✏̃S , ✏̃T (l̄�̄µ⌫ ⌫̄c)(q̄�̄µ⌫ d̄c), (l̄⌫̄c)(q̄d̄c), (l̄⌫̄c)(ucq) O(10�6)

IV ✏̃L, ✏̃R H†DµH†ec�µ⌫̄c [ec�µ⌫̄cq̄H†�µH†q], (ec�µ⌫̄c)(uc�µd̄c) O(10�4)

Table 2. Classification of EFT scenarios for generating the D parameter. The estimate of the
maximal value of the D parameter assumes no fine-tuning.

constrained, hence |✏̃R| . O(0.01) is a reasonable estimate. All in all |✏̃L||✏̃R| ⇠ 10�3 is
consistent with the existing bounds, and D ⇠ 10�3 could in principle be achieved in this
scenario without conflicting the LHC and CP-conserving precision observable. In fact, the
neutron’s D parameter measurement |D| . O(10�4) [12] not only probes the imaginary
part of ✏̃✏̃⇤R, but also provides a competitive limit on the absolute value of this product
of Wilson coefficients. However, a word of caution needs to be made about this potential
scenario, since it generates the operator of Eq. (2.13) at one loop level and then it may
become effectively constrained by EDM bounds. Even if up to a certain extent the extra
loop suppression improves the situation, one should check that the size of this constraint is
not too large to exclude a nonzero D at a certain precision level one working in a specific
UV completion[29].

2.4 Summary of EFT analysis

To summarize, purely from the EFT point of view, we have identified two interesting
scenarios for generating the D parameter at an observable level without conflicting other
experimental data. Starting from the master equation (2.8) expressing the D parameter in
terms of the ⌫WEFT Wilson coefficients (tilde) ✏X , the following two interesting possibilities
emerge:

1. Scenario Ib, where the D parameter is generated via the Im ✏R term in Eq. (2.8),
and ✏R descends from the dimension-8 operator (l̄H�̄µHl̃)(uc�µd̄c) in the ⌫SMEFT
effective theory above the scale mW .

2. Scenario IV, where the D parameter is generated via the Im [✏̃R✏̃⇤L] term in Eq. (2.8),
and ✏̃X descend from the dimension-6 operators (ec�µ⌫̄c)(uc�µd̄c) and H̃†DµH†(ec�µ⌫̄c)

in the ⌫SMEFT.

In these scenarios, the D parameter of order 10�4 is generically consistent with other ex-
perimental bounds, without any need to fine-tuned cancellations between different EFT
Wilson coefficients. In both of these cases the D parameter is O(⇤�4) in the ⌫SMEFT
power counting. We do not consider scenarios where D ⇠ O(⇤�6) as these will certainly
face more stringent experimental constraints.

Two more scenarios can lead to an O(10�4) D parameter at the cost of 1/10-1/100
fine-tuning [**To be corrected]:

1. Scenario Ia, where the D parameter is generated via the Im ✏R term in Eq. (2.8),
and ✏R descends from the dimension-6 operator H̃†DµH(uc�µd̄c).

– 10 –



D parameter scenario #1

D ≈ κD Im[ϵR(1 + ϵ*L ) + 0.4(ϵSϵ*T + ϵ̃Sϵ̃*T ) − ϵ̃Rϵ̃*L ]

ϵR =
v2

2Vud
Cϕud

ϵS = −
v2

2Vud
(C(1)*

lequ + Vudc*ledq)

ϵP = −
v2

2Vud
(C(1)*

lequ − VudC*ledq)

ϵT = −
2v2

Vud
C(3)*

lequ

One can generate imaginary right-handed currents  
from a dimension-6 or a dimension-8 operator 

ℒEFT ⊃ iCϕudHDμH(ucσμd̄c) +iCϕeνH†DμH†(ecσμν̄c)

+C(3)
lequ(l̄σ̄μνēc)(q̄σ̄μνūc) +C(3)

lνqd(l̄σ̄μνν̄c)(q̄σ̄μνd̄c)

+C(1)
lequ(l̄ē

c)(q̄ūc) +C(1)
lνqd(l̄ν̄c)(q̄d̄c)

+Cledq(l̄ēc)(dcq) +Clνuq(l̄ν̄c)(ucq)

+Ceνud(ecσμν̄c)(ucσμd̄c)
+hc



D parameter scenario #1a

D ≈ κD Im[ϵR(1 + ϵ*L ) + 0.4(ϵSϵ*T + ϵ̃Sϵ̃*T ) − ϵ̃Rϵ̃*L ]

ϵR =
v2

2Vud
Cϕud

ϵS = −
v2

2Vud
(C(1)*

lequ + Vudc*ledq)

ϵP = −
v2

2Vud
(C(1)*

lequ − VudC*ledq)

ϵT = −
2v2

Vud
C(3)*

lequ

Dimension-6 is naively a better option, because then  

where v=246 GeV is the electroweak scale, and  is the mass scale of new BSM particles 
Moreover, the Wilson coefficients  is generated by many motivated BSM models,  

for example by the left-right symmetric models 

D ∼
v2

Λ2

Λ
Cϕud

However, there are strong model-independent constraints from EDMs...

ℒEFT ⊃ iCϕudHDμH(ucσμd̄c) +iCϕeνH†DμH†(ecσμν̄c)

+C(3)
lequ(l̄σ̄μνēc)(q̄σ̄μνūc) +C(3)

lνqd(l̄σ̄μνν̄c)(q̄σ̄μνd̄c)

+C(1)
lequ(l̄ē

c)(q̄ūc) +C(1)
lνqd(l̄ν̄c)(q̄d̄c)

+Cledq(l̄ēc)(dcq) +Clνuq(l̄ν̄c)(ucq)

+Ceνud(ecσμν̄c)(ucσμd̄c)
+hc



D parameter scenario #1a

  contributes not only to the D parameter, but also to a 4-quark operator contributing 
to nuclear EDM, with both contribution being governed by the same parameter

Cϕud

ℒνSMEFT ⊃
gL

2
W+

μ [ν̄σ̄μe + Vudūσ̄μd +
v2

2
Cϕuducσμd̄c]

Integrating out the W boson
ℒνWEFT ⊃ − Cϕud(ēσ̄μν)(ūcσμd̄c) − VudCϕud(d̄σ̄μu)(ucσμd̄c) + h . c .

Contributes to D Contributes to EDM

EDM constraints dominated by 199Hg 

v2 | Im[Cϕud] | ≲ 3 × 10−6
v2 | ImCϕud | ≲ 1 × 10−5

if only neutron EDM contraints used

uc

l̄

d̄c

ν

uc

d̄

d̄c

u

It follows that assuming absence of fine-tuning

|D | ≈
|κD |

2
v2 | Im[Cϕud] | ≲ 2 × 10−6

|D | ≲ 5 × 10−6

See Ramsey-Musolf & Vasquez [arXiv:2012.02799] for a more general discussion allowing fine-tuning EDM against    θQCD



D parameter scenario #1b

D ≈ κD Im[ϵR(1 + ϵ*L ) + 0.4(ϵSϵ*T + ϵ̃Sϵ̃*T ) − ϵ̃Rϵ̃*L ]

ϵR =
v2

2Vud
Cϕud +

v4

4Vud
C8

ϵS = −
v2

2Vud
(C(1)*

lequ + Vudc*ledq)

ϵP = −
v2

2Vud
(C(1)*

lequ − VudC*ledq)

ϵT = −
2v2

Vud
C(3)*

lequ

Generating D parameter via a dimension-8 operator means that D is more suppressed:  

where v=246 GeV is the electroweak scale, and  is the mass scale of new BSM particles 
This  dimension-8 operator can be generated at tree level in certain leptoquark models

D ∼
v4

Λ4

Λ

Constraints from EDMs are now weaker and model dependent...

Ng Tulin 
arXiv:1111.0649

ℒEFT ⊃ iCϕudHDμH(ucσμd̄c) +iCϕeνH†DμH†(ecσμν̄c)

+C(3)
lequ(l̄σ̄μνēc)(q̄σ̄μνūc) +C(3)

lνqd(l̄σ̄μνν̄c)(q̄σ̄μνd̄c)

+C(1)
lequ(l̄ē

c)(q̄ūc) +C(1)
lνqd(l̄ν̄c)(q̄d̄c)

+Cledq(l̄ēc)(dcq) +Clνuq(l̄ν̄c)(ucq)

+C8(l̄Hσ̄μHl)(ucσμd̄c) +Ceνud(ecσμν̄c)(ucσμd̄c)
+hc



dR eL

uR νeL

R−

R̃+

dR

uR

uL

dL

R−

R̃+

νeL

eL

W

dR

uR

uL

dL
R−

R̃+

R̃−

νeL
W

dR

uR

uL

dL
R+

R−

R̃+

eL
W

FIG. 3: Scalar LQ case: tree-level exchange generates β-decay amplitude aVLR (left), while OLR is
generated by one-loop vertex corrections (right), contributing to EDMs dn, dHg, dD. Diagrams are

shown in weak-eigenstate LQ basis to illustrate that the same CP-violating phases from LQ-mixing
(denoted ⊗) and couplings enter both Dt and EDMs.

where ± states are weak isospin components, and the SU(3)C × SU(2)L × U(1)Y quan-
tum numbers are given in parentheses.6 In both cases, the most general renormalizable
interactions to first generation fermions (including νeR) are

scalar: Lint = hL ūRL
T
LεR + hR Q̄LeRR + h̃L d̄RL

T
LεR̃ + h̃R Q̄LνeRR̃ + h.c. (21a)

vector: Lint = gL d̄
c
Rγ

µLT
LεVµ + gR Q̄c

Lγ
µeR εVµ + g̃L ū

c
Rγ

µLT
LεṼµ + g̃R Q̄c

Lγ
µνeR εṼµ + h.c.

(21b)

with quark and lepton doublets QL = (uL, dL) and LL = (νeL, eL). Here, hL,R, h̃L,R, gL,R,
g̃L,R are couplings (with L,R denoting lepton chirality). The presence of both L,R-type
couplings will lead to lepton universality violation in π+ → e+ν; to avoid this constraint, we
set R-type couplings to zero [32]. The relevant mass terms are

scalar: −Lmass = m2
RR

†R +m2
R̃
R̃†R̃ +

(
λR(R

†H)(R̃H) + h.c.
)

(22a)

vector: Lmass = m2
V V

†
µV

µ +m2

Ṽ
Ṽ †
µ Ṽ

µ +
(
λV (V

†
µH)(Ṽ µH) + h.c.

)
(22b)

Through electroweak symmetry breaking, the quartic interactions (with couplings λR,V ) give

rise to R−-R̃+ mixing and V−-Ṽ+ mixing by generating off-diagonal mass terms proportional
to λR,V v2, where v ≡ 〈H0〉. Diagonalizing the R−-R̃+ and V−-Ṽ+ mass matrices, we can
express the mass eigenstates, denoted R1,2 and V1,2, as

scalar: R1 ≡ cos θR R− + sin θR eiφRR̃+ , R2 ≡ cos θR R̃+ − sin θR e−iφRR− (23a)

vector: V1 ≡ cos θV V− + sin θV eiφV Ṽ+ , V2 ≡ cos θV Ṽ+ − sin θV e−iφV− (23b)

6 We follow the notation of Ref. [32] for LQ states, except we omit an additional subscript identifying the

SU(2)L representation.
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D parameter scenario #1b

As soon as 4-fermion vertex leading to  non-zero  appears,  
4-quark operators leading to EDM is generated  at 1 loop in EFT 

although its coefficient is not calculable in EFT 

ϵR

ℒνWEFT ⊃ − C1LR(d̄σ̄μu)(ucσμd̄c) + h . c .

C1LR ∼
C8Λ2

16π2

|D | ∼
v4ImC8

4
≲ 10−4 v2

Λ2

v2Λ2ImC8 ≲ 3 × 10−4

In the scenario 1b the D parameter can be large only when new physics is at the EW scale, 
which is difficult to achieve in realistic models.  

As soon as new physics is at 3 TeV, we are back to the severe constraint   
 

|D | ≲ 10−6

Mind that these are just rough estimates, a quantitative limit can only be obtained 
in specific UV models where the quadratic divergence is resolved



D parameter scenario 1c

D ≈ κD Im[ϵR(1 + ϵ*L ) + 0.4(ϵSϵ*T + ϵ̃Sϵ̃*T ) − ϵ̃Rϵ̃*L ]

ϵR =
v2

2Vud
Cϕud +

v4

4Vud
C8

ϵS = −
v2

2Vud
(C(1)*

lequ + Vudc*ledq)

ϵP = −
v2

2Vud
(C(1)*

lequ − VudC*ledq)

ϵT = −
2v2

Vud
C(3)*

lequ

One more possible option is that operators contributing to   are real,  
and the imaginary part  is contained  in   .  

Note that the real part  can be at percent level, as constraints are relatively weak  

ϵR
ϵL

ϵR
 [arXiv:2010.13797]  with Martin Gonzalez-Alonso, Oscar Naviliat-Cuncic

ℒEFT ⊃ iCϕudHDμH(ucσμd̄c) +iCϕeνH†DμH†(ecσμν̄c)

+C(3)
lequ(l̄σ̄μνēc)(q̄σ̄μνūc) +C(3)

lνqd(l̄σ̄μνν̄c)(q̄σ̄μνd̄c)

+C(1)
lequ(l̄ē

c)(q̄ūc) +C(1)
lνqd(l̄ν̄c)(q̄d̄c)

+Cledq(l̄ēc)(dcq) +Clνuq(l̄ν̄c)(ucq)

+C8(l̄Hσ̄μHl)(ucσμd̄c) +Ceνud(ecσμν̄c)(ucσμd̄c)
+hc



D parameter scenario 1c

D ≈ κD Im[ϵR(1 + ϵ*L ) + 0.4(ϵSϵ*T + ϵ̃Sϵ̃*T ) − ϵ̃Rϵ̃*L ]

One more possible option is that operators contributing to   are real,  
and the imaginary part  is contained  in    

ϵR
ϵL

This is not a very attractive scenario for BSM,  
because dimension-6 operators lead to a real  ,  

thus D would be at least of order 

ϵL
v6

Λ6

However,  effectively acquires a complex part due to SM loop effect,  
because of a photon going on-shell in the loop 

Thus, in the scenario 1c the D parameter may be a sensitive probe of  

CP conserving new physics contribution to ,  

as long as the SM contribution can be reliably calculated

ϵL

ϵR ∼
v2

Λ2



ℒEFT ⊃ iCϕudHDμH(ucσμd̄c) +iCϕeνH†DμH†(ecσμν̄c)

+C(3)
lequ(l̄σ̄μνēc)(q̄σ̄μνūc) +C(3)

lνqd(l̄σ̄μνν̄c)(q̄σ̄μνd̄c)

+C(1)
lequ(l̄ē

c)(q̄ūc) +C(1)
lνqd(l̄ν̄c)(q̄d̄c)

+Cledq(l̄ēc)(dcq) +Clνuq(l̄ν̄c)(ucq)

+Ceνud(ecσμν̄c)(ucσμd̄c)
+hc

D parameter scenario #2

D ≈ κD Im[ϵR(1 + ϵ*L ) + 0.4(ϵSϵ*T + ϵ̃Sϵ̃*T ) − ϵ̃Rϵ̃*L ]

ϵR =
v2

2Vud
Cϕud

ϵS = −
v2

2Vud
(C(1)*

lequ + Vudc*ledq)

ϵP = −
v2

2Vud
(C(1)*

lequ − VudC*ledq)

ϵT = −
2v2

Vud
C(3)*

lequ

This scenario is doomed from the start, because EDM constraints on the imaginary 
parts of  are prohibitiveC(1,3)

lequ , Cledq

v2 | ImC(1)
lequ | ≲ 3 × 10−11 v2 | ImC(3)

lequ | ≲ 1 × 10−11 v2 | ImCledq | ≲ 3 × 10−11

de Vries et al  arXiv:1809.09114 
Dekens et al arXiv: 1810.05675



ℒEFT ⊃ iCϕudHDμH(ucσμd̄c) +iCϕeνH†DμH†(ecσμν̄c)

+C(3)
lequ(l̄σ̄μνēc)(q̄σ̄μνūc) +C(3)

lνqd(l̄σ̄μνν̄c)(q̄σ̄μνd̄c)

+C(1)
lequ(l̄ē

c)(q̄ūc) +C(1)
lνqd(l̄ν̄c)(q̄d̄c)

+Cledq(l̄ēc)(dcq) +Clνuq(l̄ν̄c)(ucq)

+Ceνud(ecσμν̄c)(ucσμd̄c)
+hc

D parameter scenario #3

D ≈ κD Im[ϵR(1 + ϵ*L ) + 0.4(ϵSϵ*T + ϵ̃Sϵ̃*T ) − ϵ̃Rϵ̃*L ]

This scenario does not have the EDM problem,  
because the neutral curent from the scalar and tensor operators with RH neutrinos 

do not generate  terms. Moreover, constraints on  from beta decay 
are less stringent, at the percent level, because of the lack of interference with SM 

amplitudes

ēeq̄q ϵ̃S,T

ϵ̃L = −
v2

2
Cϕeν

ϵ̃R = −
v2

2Vud
Ceνud

ϵ̃S =
v2

2Vud [C(1)
lνqdVud − Clνuq]

ϵ̃P = −
v2

2Vud [C(1)
lνqdVud + Clνuq]

ϵ̃T = 2v2C(3)
lνqd

However it has the pion decay problem ...



D parameter scenario #3

D ≈ κD Im[ϵR(1 + ϵ*L ) + 0.4(ϵSϵ*T + ϵ̃Sϵ̃*T ) − ϵ̃Rϵ̃*L ]

ϵ̃L = −
v2

2
Cϕeν

ϵ̃R = −
v2

2Vud
Ceνud

ϵ̃S =
v2

2Vud [C(1)
lνqdVud − Clνuq]

ϵ̃P = −
v2

2Vud [C(1)
lνqdVud + Clνuq]

ϵ̃T = 2v2C(3)
lνqd

The problem here is that this scenario generically predicts  
and from measure  one has 

ϵ̃S ∼ ϵ̃P
Br(π → eν) | ϵ̃P | ≲ 10−5

D ∼ 10−6κDIm[( ϵ̃T

10−1 )( ϵ̃S

10−5 )] ⇒ |D | ≲ 10−6

ℒEFT ⊃ iCϕudHDμH(ucσμd̄c) +iCϕeνH†DμH†(ecσμν̄c)

+C(3)
lequ(l̄σ̄μνēc)(q̄σ̄μνūc) +C(3)

lνqd(l̄σ̄μνν̄c)(q̄σ̄μνd̄c)

+C(1)
lequ(l̄ē

c)(q̄ūc) +C(1)
lνqd(l̄ν̄c)(q̄d̄c)

+Cledq(l̄ēc)(dcq) +Clνuq(l̄ν̄c)(ucq)

+Ceνud(ecσμν̄c)(ucσμd̄c)
+hc



D parameter scenario #3

D ≈ κD Im[ϵR(1 + ϵ*L ) + 0.4(ϵSϵ*T + ϵ̃Sϵ̃*T ) − ϵ̃Rϵ̃*L ]

ϵ̃L = −
v2

2
Cϕeν

ϵ̃R = −
v2

2Vud
Ceνud

ϵ̃S =
v2

2Vud [C(1)
lνqdVud − Clνuq]

ϵ̃P = −
v2

2Vud [C(1)
lνqdVud + Clνuq]

ϵ̃T = 2v2C(3)
lνqd

Additional constraint is provided by the fact that the gauge invariant operators,  
  contribute to the neutrino masses and neutrino magnetic moment,  

which requires fine-tuning unless v2 |Clνqd,lνuq | ≲ 10−3

ℒEFT ⊃ iCϕudHDμH(ucσμd̄c) +iCϕeνH†DμH†(ecσμν̄c)

+C(3)
lequ(l̄σ̄μνēc)(q̄σ̄μνūc) +C(3)

lνqd(l̄σ̄μνν̄c)(q̄σ̄μνd̄c)

+C(1)
lequ(l̄ē

c)(q̄ūc) +C(1)
lνqd(l̄ν̄c)(q̄d̄c)

+Cledq(l̄ēc)(dcq) +Clνuq(l̄ν̄c)(ucq)

+Ceνud(ecσμν̄c)(ucσμd̄c)
+hc



D parameter scenario #4

D ≈ κD Im[ϵR(1 + ϵ*L ) + 0.4(ϵSϵ*T + ϵ̃Sϵ̃*T ) − ϵ̃Rϵ̃*L ]

ϵ̃L = −
v2

2
Cϕeν

ϵ̃R = −
v2

2Vud
Ceνud

ϵ̃S =
v2

2Vud [C(1)
lνqdVud − Clνuq]

ϵ̃P = −
v2

2Vud [C(1)
lνqdVud + Clνuq]

ϵ̃T = 2v2C(3)
lνqd

From the EFT point of view, scenario 4 looks promising, because model-independent  
constraints on the highlighted operators are relatively mild.  

In particular, from  one gets  
while  at the LHC leads to  

At loop level, there is a quadratic in  contribution to the 4-quark EDM operator,  
but in this case we gain the loop and quadratic suppressions

Br(W → eν) v2 |Cϕeν | ≲ 0.3
pp → eν v2 |Ceνud | ≲ 𝒪(0.01)

Ceνud

ℒEFT ⊃ iCϕudHDμH(ucσμd̄c) +iCϕeνH†DμH†(ecσμν̄c)

+C(3)
lequ(l̄σ̄μνēc)(q̄σ̄μνūc) +C(3)

lνqd(l̄σ̄μνν̄c)(q̄σ̄μνd̄c)

+C(1)
lequ(l̄ē

c)(q̄ūc) +C(1)
lνqd(l̄ν̄c)(q̄d̄c)

+Cledq(l̄ēc)(dcq) +Clνuq(l̄ν̄c)(ucq)

+Ceνud(ecσμν̄c)(ucσμd̄c)
+hc



ℒEFT ⊃ iCϕudHDμH(ucσμd̄c) +iCϕeνH†DμH†(ecσμν̄c)

+C(3)
lequ(l̄σ̄μνēc)(q̄σ̄μνūc) +C(3)

lνqd(l̄σ̄μνν̄c)(q̄σ̄μνd̄c)

+C(1)
lequ(l̄ē

c)(q̄ūc) +C(1)
lνqd(l̄ν̄c)(q̄d̄c)

+Cledq(l̄ēc)(dcq) +Clνuq(l̄ν̄c)(ucq)

+Ceνud(ecσμν̄c)(ucσμd̄c)

+C̃8(ecσμν̄c)(q̄H†σμH†q)
+hc

D parameter scenario #4

D ≈ κD Im[ϵR(1 + ϵ*L ) + 0.4(ϵSϵ*T + ϵ̃Sϵ̃*T ) − ϵ̃Rϵ̃*L ]

ϵ̃L = −
v2

2
Cϕeν

ϵ̃R = −
v2

2Vud
Ceνud

ϵ̃S =
v2

2Vud [C(1)
lνqdVud − Clνuq]

ϵ̃P = −
v2

2Vud [C(1)
lνqdVud + Clνuq]

ϵ̃T = 2v2C(3)
lνqd

Much as in scenario 1, one can trade one dimension-6 operators for a dimension-8 one 
leading to the same interaction below the electroweak scale. 

The advantage is that the latter can be generated in lepoquark models,  

the disadvantage is that  so new physics has to be very lightD ∼
v6

Λ6



Scenario ⌫WEFT ⌫SMEFT max |D|

I ✏R HDµHuc�µd̄c [(l̄H�̄µHl)(uc�µd̄c)] O(10�6)

II ✏S , ✏T (l̄�̄µ⌫ ēc)(q̄�̄µ⌫ ūc), (l̄ēc)(q̄ūc), (l̄ēc)(dcq) O(10�14)

III ✏̃S , ✏̃T (l̄�̄µ⌫ ⌫̄c)(q̄�̄µ⌫ d̄c), (l̄⌫̄c)(q̄d̄c), (l̄⌫̄c)(ucq) O(10�6)

IV ✏̃L, ✏̃R H†DµH†ec�µ⌫̄c [ec�µ⌫̄cq̄H†�µH†q], (ec�µ⌫̄c)(uc�µd̄c) O(10�4)

Table 2. Classification of EFT scenarios for generating the D parameter. The estimate of the
maximal value of the D parameter assumes no fine-tuning.

constrained, hence |✏̃R| . O(0.01) is a reasonable estimate. All in all |✏̃L||✏̃R| ⇠ 10�3 is
consistent with the existing bounds, and D ⇠ 10�3 could in principle be achieved in this
scenario without conflicting the LHC and CP-conserving precision observable. In fact, the
neutron’s D parameter measurement |D| . O(10�4) [12] not only probes the imaginary
part of ✏̃✏̃⇤R, but also provides a competitive limit on the absolute value of this product
of Wilson coefficients. However, a word of caution needs to be made about this potential
scenario, since it generates the operator of Eq. (2.13) at one loop level and then it may
become effectively constrained by EDM bounds. Even if up to a certain extent the extra
loop suppression improves the situation, one should check that the size of this constraint is
not too large to exclude a nonzero D at a certain precision level one working in a specific
UV completion[29].

2.4 Summary of EFT analysis

To summarize, purely from the EFT point of view, we have identified two interesting
scenarios for generating the D parameter at an observable level without conflicting other
experimental data. Starting from the master equation (2.8) expressing the D parameter in
terms of the ⌫WEFT Wilson coefficients (tilde) ✏X , the following two interesting possibilities
emerge:

1. Scenario Ib, where the D parameter is generated via the Im ✏R term in Eq. (2.8),
and ✏R descends from the dimension-8 operator (l̄H�̄µHl̃)(uc�µd̄c) in the ⌫SMEFT
effective theory above the scale mW .

2. Scenario IV, where the D parameter is generated via the Im [✏̃R✏̃⇤L] term in Eq. (2.8),
and ✏̃X descend from the dimension-6 operators (ec�µ⌫̄c)(uc�µd̄c) and H̃†DµH†(ec�µ⌫̄c)

in the ⌫SMEFT.

In these scenarios, the D parameter of order 10�4 is generically consistent with other ex-
perimental bounds, without any need to fine-tuned cancellations between different EFT
Wilson coefficients. In both of these cases the D parameter is O(⇤�4) in the ⌫SMEFT
power counting. We do not consider scenarios where D ⇠ O(⇤�6) as these will certainly
face more stringent experimental constraints.

Two more scenarios can lead to an O(10�4) D parameter at the cost of 1/10-1/100
fine-tuning [**To be corrected]:

1. Scenario Ia, where the D parameter is generated via the Im ✏R term in Eq. (2.8),
and ✏R descends from the dimension-6 operator H̃†DµH(uc�µd̄c).

– 10 –

D parameter scenarios



Summary

• The most convenient language to discuss low-energy precision 
measurement is that of EFTs


• D-parameter measurements are essential to constrain the parameter 
space of the ladder of EFTs from the electroweak scale down to 
nuclear scales


• The EFT approach leads, in a transparent way,  to correlations 
between the D-parameter and other CP-violating and CP-conserving 
observables (EDMs, pion decays, etc)


• Certain directions are already severely disfavored in a model 
independent way


• For other scenarios, studies of explicit UV completions is necessary, 
see the next talk for leptoquark UV completions   



Fantastic Beasts and Where To Find Them

CMS 
Imaginary  

Λ
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Leptoquarks

Two main families

Scalar

Spin 0 
UV complete  

models

Spin 1 
Effective 
theories

In both cases, leptoquarks can be classified according to quantum numbers 
under the SM SU(3)xSU(2)xU(1) gauge group, see e.g.

Quark

Lepton

LQ

Vector

Quark

Lepton

LQ

Dorsner et al 
arXiv:1603.04993

Leptoquarks are particles carrying both lepton and baryon quantum numbers



Leptoquarks for D-parameter 

Name Quantum numbers Yukawa couplings

S1 (3̄,1,1/3) ql, ūcēc, d̄c⌫̄c

S̄1 (3̄,1,�2/3) ūc⌫̄c

S̃1 (3̄,1,4/3) d̄cēc

R2 (3,2,7/6) ucl, q̄ēc

R̃2 (3,2,1/6) dcl, q̄⌫̄c

S3 (3̄,3,1/3) q�kl

Table 3: Complete list of scalar leptoquarks that can have renormalizable couplings to
the SM fermions and right-handed neutrinos.

Name Quantum numbers Vector couplings

U1 (3,1,2/3) q̄�̄µl, dc�µēc, uc�µ⌫̄c

Ū1 (3,1,�1/3) dc�µ⌫̄c

Ũ1 (3,1,5/3) uc�µēc

V2 (3̄,2,5/6) l�µd̄c, q�µēc

Ṽ2 (3̄,2,�1/6) l�µūc, q�µ⌫̄c

U3 (3,3,2/3) Q�kl

Table 4: Complete list of vector leptoquarks that can have renormalizable couplings to
the SM fermions and right-handed neutrinos.
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Leptoquarks for D-parameter 

ℒ ⊃ − M2
R |R2 |2 − M2

R̃ | R̃2 |2 + [λ(R†
2 H)(R̃2H) + yRR2ucl + yR̃R̃2dcl + hc]

Mass terms

Mass mixing

Yukawa coupling

uc

l

d̄c

l̄

R2 R̃†
2

H H

uc

l

d̄c

l̄
H H

After integrating out the leptoquarks one gets the operators 

ℒeff ⊃ −
|yR |2

2M2
R

(l̄σ̄μl)(ucσμūc) −
|yR̃ |2

2M2
R̃

(l̄σ̄μl)(dcσμd̄c) − [ λyRȳR̃

2M2
RM2

R̃
(l̄Hσ̄μHl)(ucσμd̄c) + hc]

Ng Tulin 
arXiv:1111.0649

D = − κ
v4

8VudM2
RM2

R̃
Im[λyRȳR̃]

The last one contributes to the D parameter as 



Leptoquarks for D-parameter 

ℒ ⊃ − M2
R |R |2 − M2

R̃ | R̃ |2 + [λ(R†H)(R̃H) + yRR2ucl + yR̃R̃2dcl + hc]
Mass terms

Mass mixing

Yukawa coupling

uc

l

d̄c

l̄

R2 R̃†
2

H H

uc

l

d̄c

l̄
H H

After integrating out the leptoquarks one gets the operators 

ℒeff ⊃ −
|yR |2

2M2
R

(l̄σ̄μl)(ucσμūc) −
|yR̃ |2

2M2
R̃

(l̄σ̄μl)(dcσμd̄c) − [ λyRȳR̃

2M2
RM2

R̃
(l̄Hσ̄μHl)(ucσμd̄c) + hc]

Ng Tulin 
arXiv:1111.0649

The first two contribute to 
Drell-Yan production at the LHC 

and are strongly constrained! 

q

q̄

l

l̄
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Figure 1: Distributions of (a) dielectron and (b) dimuon reconstructed invariant mass (m``) after selection, for data
and the SM background estimates as well as their ratio before and after marginalisation. Selected Z0

� signals with a
pole mass of 3, 4 and 5 TeV are overlaid. The bin width of the distributions is constant in log(m``) and the shaded
band in the lower panels illustrates the total systematic uncertainty, as explained in Sec. 7. The data points are
shown together with their statistical uncertainty.

A search for Z0
� signals as well as generic Z0 signals with widths from 1% to 12% is performed utilising

the LLR test described in Ref. [54]. This second approach is specifically sensitive to narrow Z0-like
signals, and is thus complimentary to the more general BH approach. To perform the LLR search, the
Histfactory [55] package, together with RooStats [56] and RooFit [57] packages are used. The p-value
for finding a Z0

� signal excess (at a given pole mass), as well as variable width generic Z0 excess (at a
given central mass and with a given width), more significant than the observed, is computed analytically,
using the test statistic q0. The test statistic q0 is based on the logarithm of the profile likelihood ratio �(µ).
The test statistic is modified for signal masses below 1.5 TeV to also quantify the significance of potential
deficits in the data. As in the BH search the SM background model is constructed using the modes of
marginalised posteriors of the nuisance parameters from the MCMC, and these nuisance parameters are
not included in the likelihood at this stage. Starting with mZ 0 of 150 GeV, multiple mass hypotheses are
tested in pole mass steps corresponding to the histogram bin width to compute the local p-values — that
is p-values corresponding to specific signal mass hypotheses. Simulated experiments (for mZ 0 > 1.5 TeV)
and asymptotic relations (for mZ 0 < 1.5 TeV) in Ref. [54] are used to estimate the global p-value, which
is the probability to find anywhere in the m`` distribution a Z0-like excess more significant than that
observed in the data.

10 Results

The data, scrutinised with the statistical tests described in the previous section, show no significant ex-
cesses. The LLR tests for a Z0

� find global p-values of 58%, 91% and 83% in the dielectron, dimuon,

14

Effective quark-lepton interactions would show up as an excess 
of events at the high invariant mass tail of the distribution

q

q̄

e−

e+



Leptoquarks for D-parameter 

Name Quantum numbers Yukawa couplings

S1 (3̄,1,1/3) ql, ūcēc, d̄c⌫̄c

S̄1 (3̄,1,�2/3) ūc⌫̄c

S̃1 (3̄,1,4/3) d̄cēc

R2 (3,2,7/6) ucl, q̄ēc

R̃2 (3,2,1/6) dcl, q̄⌫̄c

S3 (3̄,3,1/3) q�kl

Table 3: Complete list of scalar leptoquarks that can have renormalizable couplings to
the SM fermions and right-handed neutrinos.

Name Quantum numbers Vector couplings

U1 (3,1,2/3) q̄�̄µl, dc�µēc, uc�µ⌫̄c

Ū1 (3,1,�1/3) dc�µ⌫̄c

Ũ1 (3,1,5/3) uc�µēc

V2 (3̄,2,5/6) l�µd̄c, q�µēc

Ṽ2 (3̄,2,�1/6) l�µūc, q�µ⌫̄c

U3 (3,3,2/3) Q�kl

Table 4: Complete list of vector leptoquarks that can have renormalizable couplings to
the SM fermions and right-handed neutrinos.
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