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▪CP Violation 

▪Positronium physics

▪Previous measurements and sensitivity goal

▪Positronium production and detection

▪Hardware design and prototyping

▪Full experimental design and simulations

▪Next steps

Overview

T.E. Haugen, MORA Workshop, May 2022, Slide 2



▪Combined Charge (C) and Parity 
(P) reversal.

▪Standard model admits CP 
violation through:
• Phases in CKM and PMNS mixing 

matrices.
» Discovered in Kaons at Na31 experiment 

in 1964

» Observed in neutrinos at T2K in 2020

▪Generation of observed matter-
antimatter asymmetry requires 
CP-violation.
• Observed amount requires beyond 

standard model physics.

CP Violation
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▪Purely leptonic system.

▪Charge and Parity eigenstate.

▪ Forms two states:
• Spin zero singlet, “para-Positronium”
» Two photon decay

» Lifetime 125 ps

• Spin one triplet, “ortho-Positronium”
» Three photon decay

» Lifetime 142 ns

Positronium physics
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▪ Three body phase space 
characterized by:
• Normal of decay plane,

• Rotation within decay plane,

• Energies of two particles.

▪ Phase space is flat in E1 and E2

▪ Our particles are:
• Massless, no lower bound.

• Identical, region is 6-fold 
redundant.

Kinematics of three photon decay
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Kinematics of three photon decay (cont.)
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▪ Ore Powell calculated energy distribution 
for unpolarized o-Ps.

▪ Simulated angles in the plane, where the 
energies go as 𝒌1 > 𝒌2 > 𝒌3.

▪ Angular distribution within decay plane 
shown.



▪ Vectors of interest:

• Spin of positronium,

• Photon 1 momentum,

• Photon 2 momentum,

• Normal of decay plane.

▪ CPT odd observable,

𝐶𝐶𝑃𝑇𝒔 ⋅ 𝒌1 × 𝒌2
• Excluded at 2% precision in 1988 [1]

• Exluded at 0.3% precision in 2003 [2]

Constructing Observables
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▪ Vectors of interest:

• Spin of positronium,

• Photon 1 momentum,

• Photon 2 momentum,

• Normal of decay plane.

▪ CPT odd observable,

𝐶𝐶𝑃𝑇𝒔 ⋅ 𝒌1 × 𝒌2
• Excluded at 2% precision in 1988 [1]
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▪ CP odd observable,

𝐶𝐶𝑃 𝒔 ⋅ 𝒌1 𝒔 ⋅ 𝒌1 × 𝒌2

• Any CP violation in positronium will 
result in a non-zero correlation [3]

Constructing Observables

T.E. Haugen, MORA Workshop, May 2022, Slide 9

[1] B. K. Arbic, S. Hatamian, M. Skalsey, J. Van House, and W. Zheng 

Phys. Rev. A 37, 3189 (1988)

[2] P. A. Vetter and S. J. Freedman, Phys. Rev. Lett. 91, 263401 (2003)
[3] W. Bernreuther, U. Low, J. P. Ma, and O. Nachtmann, Z. Phys. C 41, 
143 (1988).

𝒌1 𝒌2

𝒔

𝜃

𝜙
𝜓

𝒌1 × 𝒌2



▪ CP violating observable,

𝐶𝐶𝑃 𝒔 ⋅ 𝒌1 𝒔 ⋅ 𝒌1 × 𝒌2

= CCP
𝑃2
2
sin 2𝜃 sin𝜓 cos𝜙

• Require tensor polarized positronium.

𝑃2 =
𝑁+ − 2𝑁0 + 𝑁−
𝑁+ + 𝑁0 + 𝑁−

▪ Define combination of angles as
geometric analyzing power

𝐺𝑒 =
1

2
sin2𝜃sin𝜓cos𝜙

▪ Sign of correlation changes under:

• Flip of 𝑃2,

• Flip of normal of decay plane.

▪Sign does not change under 
interchange of 𝒌1 ↔ 𝒌2

Constructing Observables
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Tensor Polarization from Time Spectroscopy
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▪m = 0 states mix in magnetic 
field.

▪Small mixing leads to large 
quenching from difference in 
lifetime.

▪New states:

• pseudoSinglet,

• pseudoTriplet.

▪ Tensor polarization now
evolves in time.

𝑃2 =
𝑁+ − 2𝑁𝑇′ +𝑁−
𝑁+ + 𝑁𝑇′ +𝑁−



Positronium Decay Spectrum
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Simulation

Direct annihilation 

& singlet decay
pseudoTriplet

Decay

Triplet Decay

▪Construct time spectra of 
positronium decay.

▪Sharp peak from 
annihilation

▪ Two lifetime components:

• Triplet decay

• pseudoTriplet decay



Positronium Decay Spectrum
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Simulation

▪Construct time spectra of 
positronium decay.

▪Sharp peak from 
annihilation

▪ Two lifetime components:

• Triplet decay

• pseudoTriplet decay

▪ Integrate in 2 time windows 
flips the sign of the tensor 
polarization.



▪ Form Positronium in magnetic field.

▪Measure coincident g, 

• Dedicated k1 detector.

• Flip decay plane by using different k2

detectors

• Measure difference in counts between 
configurations.

▪Measured at University of Michigan 
(1991) [4],

𝐶𝑐𝑝 = −0.0056 ± 0.0154

UoM measurement
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▪ Have detectors in plane

▪ Move detector setup in circle

▪ Search for sin(f) correlation

▪ Measured at University of Tokyo (2010) [5]

𝐶𝑐𝑝 = 0.0013 ± 0.0021 stat ± 0.0006 (syst)

▪ Ran for 6 months and were statistically 
limited!

▪ Main systematic uncertainty was step size 
of stepper motor.

UTokyo measurement
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▪ Follow design of UoM.

▪ Detector system placed within electromagnet.

• FRIB Positron Polarimeter magnet will be used.

• Can run up to 2 Tesla

▪ Positronium source at center of array.

▪ Sets of 3-detectors to allow flipping of k2.

▪ Maximize number of sets to increase 
statistics

▪ Goal of ten-fold improvement on limit in 
one month of runtime.

Design outline
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▪We can flip sign of correlation twice.

▪ This allows us to utilize a super-ratio.

𝑟 =
𝑁+𝜓
+𝑃2𝑁−𝜓

−𝑃2

𝑁−𝜓
+𝑃2𝑁+𝜓

−𝑃2

▪ This leads to cancellation of additive 
backgrounds and multiplicative 
efficiencies.

▪Extract observable as,

𝐴𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 =
1 − 𝑟

1 + 𝑟

𝐶𝐶𝑃 =
𝐴𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝐺𝑒𝑃2

Super-ratio
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▪ Take a b+ emitter

▪Surround with low density powder, positron can pick off an electron.

▪Detect the b +, and a photon.

▪Record the time difference.

▪Decaying exponential shows a bound state.

Positronium Formation
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▪Detect emission of beta

• 1.2 MeV de-excitation photon,

• or direct detection of beta

▪Direct detection of beta will be used 
in experiment.

▪ Test stand has been built to 
quantify positronium formation.

• Uses two LaBr3 gamma detectors.

• Can extract:

» Lifetime of o-Ps,

» Formation fraction of material.

Positron annihilation lifetime spectroscopy
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g detectors
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and target

b+ detectors



▪ Test stand used for 

prototyping ultimate DAQ 

system.

▪ System using NSCLDAQ and 

PIXIE-16 modules,

• 16 channels per board.

• 250 MSPS boards (will 

upgrade to 500 MSPS)

• Digital CFD processing of 

signal.

• Impose coincidence triggering.

▪ Achieved 0.45 ns time 

resolution with LaBr3

detectors with online CFD 

algorithm.

Data acquisition system
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Aluminum Target

Positronium lifetime in 

plastic surrounding source

ns

ns



Positronium Formation
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▪ Measured lifetime 70 ns

▪Remaining work includes:
• Testing powder materials
»SiO2, 

»MgO, 

»XAD-4

• Testing grain size of powders.

• Testing preparation techniques
»Dessicating powder.

»Pumping powder under vacuum

» Flushing with Nitrogen.
ns



Photon Detector
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22 mm

30 mm

17 mm

LPC-Caen

Wittenberg

20 mm

30 mm
20 mm

▪Use LYSO crystals as photon 
detectors.
• Large effective Z.

• 45 ns decay time.

▪Crystal scintillators read out by 
Silicon Photomultipliers (SiPM).
• Impervious to magnetic fields.

• Much smaller than a PMT



Detector R&D
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Tyvek covering
Time Difference between 

two LYSO detectors.

Caen

▪Effects studied (FRIB, Caen, Wittenberg):
• Wrapping material and method

• Coupling method of crystal to SiPM

• Timing jitter for LYSO + SiPM

• Timing resolution of pair of LYSO

• Internal radioactivity of LYSO crystal

• Accidentals from LYSO background

• Linearity of LYSO gain

• Simulation of Energy resolution and light collection of 
crystals



Photon detector apparatus
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▪ Full geometry with 48 detectors.

▪Count pairs based on reference 
detector (black)

• Black-Blue: 135º

• Black-Red: 157.5º

▪Only symmetric is shown, also 
configurations for hits in middle 
ring.

▪Massive increase in angular 
acceptance and percentage of 
decays seen.

▪Middle ring doubles configurations 
and allows study of systematics.



▪ Geant4 simulation of event 
distribution from pure 3g decays.

▪ Plotting energy deposit in detector 
one vs. two.

▪ Energy cuts allow us to clean our 
event selection.

▪ Finite resolution will cause some 
mislabeling of events.

Event distribution
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▪ Two photon events appear as peak at 
top corner of distribution.

▪ Finite resolution smears some 
contamination into our energy 
window.

▪Add cuts on energy sums.

▪ 511’s dilute our analyzing power.

▪Shift energy cuts and measure how 
analyzing power varies.

▪Optimal value and 2-gamma dilution 
are resolution dependent.

Event contamination
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Monte Carlo Results
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▪Sensitivity calculated from Monte 
Carlo simulations.

▪Concurrent simulations in both 
Geant4 and EGSnrc.

▪Effects and backgrounds studied 
so far (FRIB, Wittenberg):
• Finite source distribution size.

• Effect of B-field on source distribution.

• Contribution from 2g events

• Accidentals from 2g events and 1.27 MeV 

de-excitation photon from 22Na decay

• Scattering of photons from Ps formation 

region

• (Dis)advantage of adding shielding between 

rings

• Angular misalignment of single ring

• Longitudinal offset of the source



Engineering the Full Apparatus
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C. Snow, FRIB

▪Design of full support 
structure is underway at 
FRIB.

▪Shown is support of 
photon detector rings.
• Includes attachments to 

outer flanges of magnet.

▪Photon detector ring is 
22 cm diameter (about 
the size of a soccer ball).

▪Designed to maintain as 
much symmetry as 
possible.
• Allow for systematic 

tests.



Time Estimate
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▪ For statistical sensitivity ~10-4

• Source rate 1.85 MBq (50 uCi).

• Ps formation (0.4), ¾ go into O-PS.

• Alignment ~0.54, 77% of O-Ps decays in time windows

• Geometric analyzing power (Number of Counts):

» 157.5º Symmetric : 0.125 (0.0120)

» 135º Symmetric : 0.254 (0.0040)

»Asymmetric events not included in estimate.

▪Should reach sensitivity with ~34 days of continuous running.



▪We are building an apparatus to reach a high sensitivity goal for CP-

violation in ortho-Positronium.

▪We have a strong control on systematics by manipulating both angular 

correlation, and tensor polarization of the system.

▪We have demonstrated Positronium formation, tested prototype 

detectors, simulated the photon detection system, and are now 

simulating systematics.

▪We plan to finish construction and begin taking data in 2023!

Summary
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LYSO Background
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3 cm x 3 cm x 5 cm1 cm x 1 cm x 1.5 cm

Alva-Sanchez H. et al. (2018). Understanding the 

intrinsic radioactivity energy spectrum from 176Lu in 

LYSO/LSO scintillation crystals. Scientific Reports 8

▪ Internal radiation from b
decay of 176Lu

▪ For large and small 
crystal we see 39.4 cps/g 
and 37.7 cps/g.

• Saint-Gobain quotes 39 
cps/g.



Spreading of Source
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Transverse distribution of 

stopping position at B = 0.5 T

▪Simulated stopping position 
of positrons in MgO 
powder.
• Simulated in EGSnrc

▪Varying thickness of start 
detector:
• 0.150 mm (Bk)

• 0.17 mm (R) 

• 0.19 mm (G)

• 0.21 mm (Bl)

▪Sampled decay spectrum 
from 22Na and 68Ge.
• Note different scales of X-

axis.


