

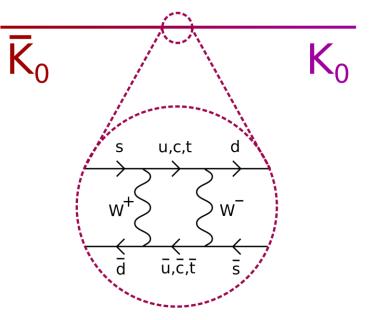
Search for CP-Violation in ortho-Positronium Decay

T.E. Haugen¹, E.A. George², O. Naviliat-Cuncic^{1,3}, P.A. Voytas²

- 1. Department of Physics and Astronomy and Facility for Rare Isotope Beams, Michigan State University,
- 2. Department of Physics, Wittenberg University
- 3. Laboratoire de Physique Corpusculaire de Caen, IN2P3/CNRS and Universite de Caen Normandie

This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC000061, the State of Michigan and Michigan State University. Michigan State University designs and establishes FRIB as a DOE Office of Science National User Facility in support of the mission of the Office of Nuclear Physics.

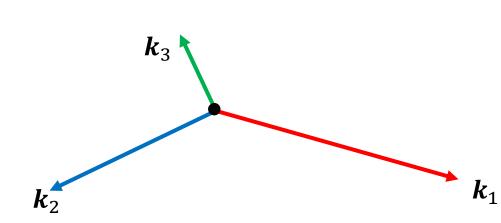
Overview

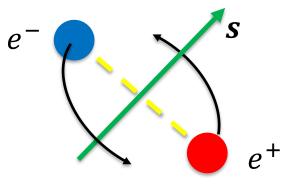

- CP Violation
- Positronium physics
- Previous measurements and sensitivity goal
- Positronium production and detection
- Hardware design and prototyping
- Full experimental design and simulations

Next steps

CP Violation

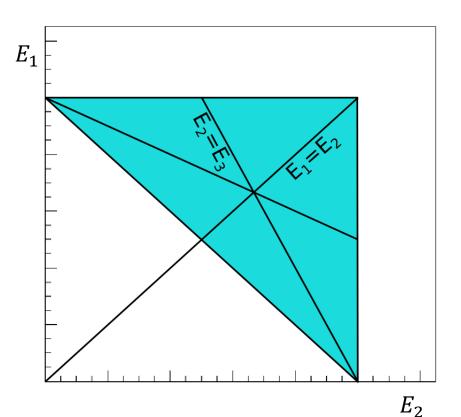
- Combined Charge (C) and Parity (P) reversal.
- Standard model admits CP violation through:
 - Phases in CKM and PMNS mixing matrices.
 - » Discovered in Kaons at Na31 experiment in 1964
 - » Observed in neutrinos at T2K in 2020
- Generation of observed matterantimatter asymmetry requires CP-violation.
 - Observed amount requires beyond standard model physics.

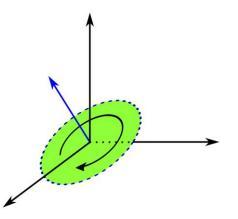



File:Kaon-box-diagram-with-bar.svg. (2016, February 27). *Wikimedia Commons, the free media repository*.

Positronium physics

- Purely leptonic system.
- Charge and Parity eigenstate.
- Forms two states:
 - Spin zero singlet, "para-Positronium"
 » Two photon decay
 » Lifetime 125 ps
 Spin one triplet, "ortho-Positronium"
 - Spin one triplet, "ortho-Positronium"
 » Three photon decay
 » Lifetime 142 ns

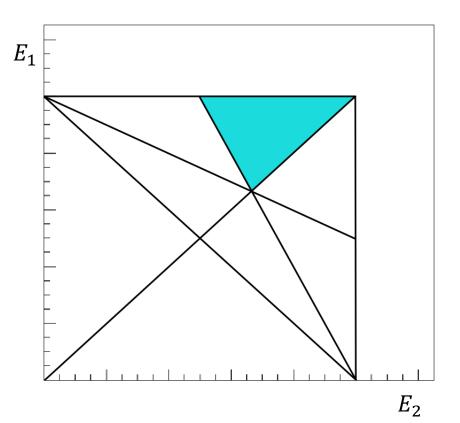

$$|S = 0, m = 0\rangle = \frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle - |\uparrow\downarrow\rangle)$$
$$|S = 1, m = 1\rangle = |\uparrow\uparrow\rangle$$
$$|S = 1, m = 0\rangle = \frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle + |\uparrow\downarrow\rangle)$$
$$|S = 1, m = -1\rangle = |\downarrow\downarrow\rangle$$

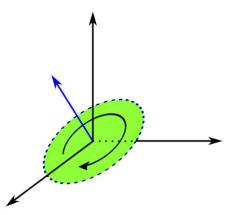


U.S. Department of Energy Office of Science National Science Foundation Michigan State University

Kinematics of three photon decay

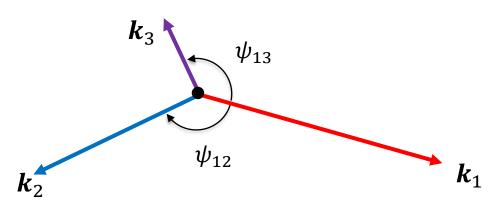
- Three body phase space characterized by:
 - Normal of decay plane,
 - Rotation within decay plane,
 - Energies of two particles.
- Phase space is flat in E₁ and E₂
- Our particles are:
 - Massless, no lower bound.
 - Identical, region is 6-fold redundant.

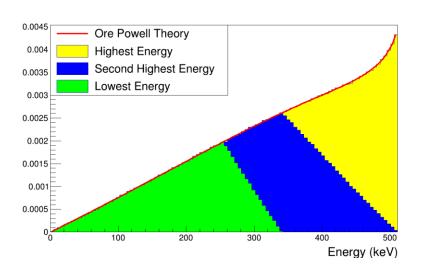


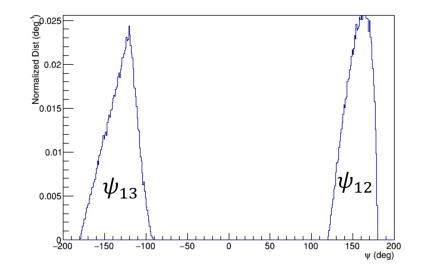


Kinematics of three photon decay

- Three body phase space characterized by:
 - Normal of decay plane,
 - Rotation within decay plane,
 - Energies of two particles.
- Phase space is flat in E₁ and E₂
- Our particles are:
 - Massless, no lower bound.
 - Identical, region is 6-fold redundant.

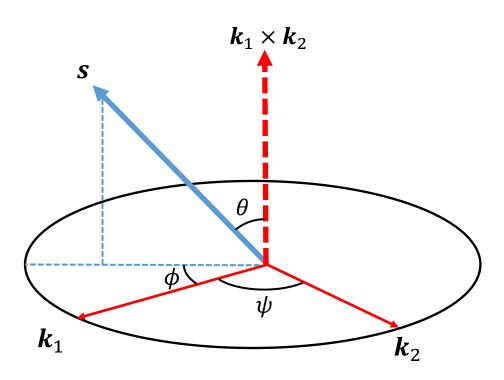



U.S. Department of Energy Office of Science National Science Foundation Michigan State University


T.E. Haugen, MORA Workshop, May 2022, Slide 6

Kinematics of three photon decay (cont.)

- Ore Powell calculated energy distribution for unpolarized o-Ps.
- Simulated angles in the plane, where the energies go as k₁ > k₂ > k₃.
- Angular distribution within decay plane shown.



Constructing Observables

- Vectors of interest:
 - Spin of positronium,
 - Photon 1 momentum,
 - Photon 2 momentum,
 - Normal of decay plane.
- CPT odd observable,

 $C_{CPT} \boldsymbol{s} \cdot (\boldsymbol{k}_1 \times \boldsymbol{k}_2)$

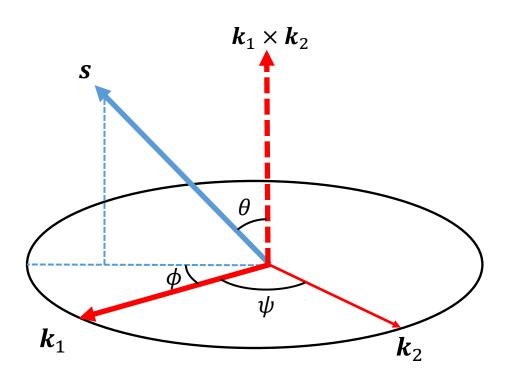
- Excluded at 2% precision in 1988 [1]
- Exluded at 0.3% precision in 2003 [2]

[1] B. K. Arbic, S. Hatamian, M. Skalsey, J. Van House, and W. Zheng Phys. Rev. A 37, 3189 (1988)
[2] P. A. Vetter and S. J. Freedman, Phys. Rev. Lett. 91, 263401 (2003)

[2] P. A. Vetter and S. J. Freedman, Phys. Rev. Lett. 91, 263401 (2003)
[3] W. Bernreuther, U. Low, J. P. Ma, and O. Nachtmann, Z. Phys. C 41, 143 (1988).

Constructing Observables

- Vectors of interest:
 - Spin of positronium,
 - Photon 1 momentum,
 - Photon 2 momentum,
 - Normal of decay plane.
- CPT odd observable,


 $C_{CPT} \boldsymbol{s} \cdot (\boldsymbol{k}_1 \times \boldsymbol{k}_2)$

- Excluded at 2% precision in 1988 [1]
- Exluded at 0.3% precision in 2003 [2]
- CP odd observable,
 - $C_{CP}(\boldsymbol{s}\cdot\boldsymbol{k}_1)[\boldsymbol{s}\cdot(\boldsymbol{k}_1\times\boldsymbol{k}_2)]$
 - Any CP violation in positronium will result in a non-zero correlation [3]

[1] B. K. Arbic, S. Hatamian, M. Skalsey, J. Van House, and W. Zheng Phys. Rev. A 37, 3189 (1988)

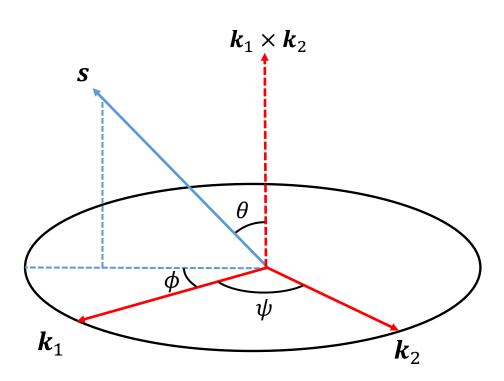
[2] P. A. Vetter and S. J. Freedman, Phys. Rev. Lett. 91, 263401 (2003)
[3] W. Bernreuther, U. Low, J. P. Ma, and O. Nachtmann, Z. Phys. C 41, 143 (1988).

Constructing Observables

CP violating observable,

 $C_{CP}(\boldsymbol{s} \cdot \boldsymbol{k}_1)[\boldsymbol{s} \cdot (\boldsymbol{k}_1 \times \boldsymbol{k}_2)]$ = $C_{CP} \frac{P_2}{2} \sin 2\theta \sin \psi \cos \phi$

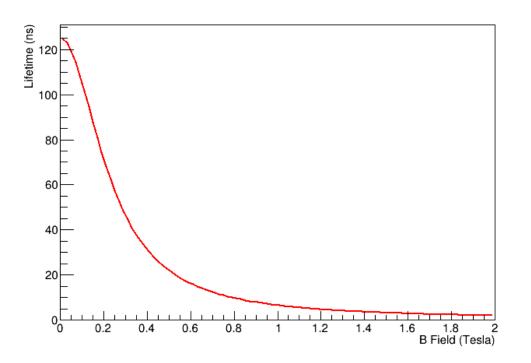
• Require tensor polarized positronium.


$$P_2 = \frac{N_+ - 2N_0 + N_-}{N_+ + N_0 + N_-}$$

 Define combination of angles as geometric analyzing power

$$G_e = \frac{1}{2} \sin 2\theta \sin \psi \cos \phi$$

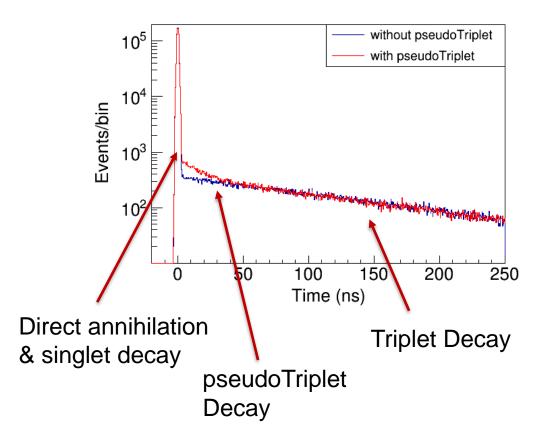
- Sign of correlation changes under:
 - Flip of P_2 ,
 - Flip of normal of decay plane.
- Sign **does not change** under interchange of $k_1 \leftrightarrow k_2$



Tensor Polarization from Time Spectroscopy

- m = 0 states mix in magnetic field.
- Small mixing leads to large quenching from difference in lifetime.
- New states:
 - pseudoSinglet,
 - pseudoTriplet.
- Tensor polarization now evolves in time.

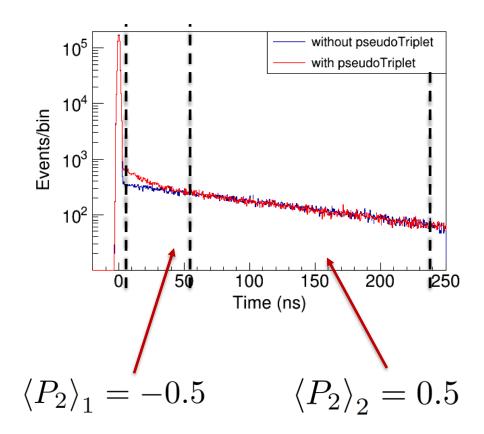
$$P_2 = \frac{N_+ - 2N_T, + N_-}{N_+ + N_T, + N_-}$$



$$\begin{aligned} |\psi_{S'}\rangle &= \cos\theta \,|\psi_S\rangle - \sin\theta \,|\psi_T\rangle \\ |\psi_{T'}\rangle &= \sin\theta \,|\psi_S\rangle + \cos\theta \,|\psi_T\rangle \end{aligned}$$

Positronium Decay Spectrum

- Construct time spectra of positronium decay.
- Sharp peak from annihilation
- Two lifetime components:
 - Triplet decay
 - pseudoTriplet decay



Simulation

Positronium Decay Spectrum

- Construct time spectra of positronium decay.
- Sharp peak from annihilation
- Two lifetime components:
 - Triplet decay
 - pseudoTriplet decay
- Integrate in 2 time windows flips the sign of the tensor polarization.

Simulation

UoM measurement

- Form Positronium in magnetic field.
- Measure coincident γ,
 - Dedicated k₁ detector.
 - Flip decay plane by using different k₂ detectors
 - Measure difference in counts between configurations.
- Measured at University of Michigan (1991) [4], $C_{cp} = -0.0056 \pm 0.0154$

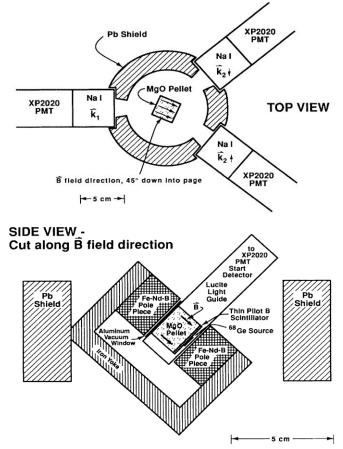


FIG. 1. Experimental apparatus. Spin-aligned Ps is formed in MgO powder from ⁶⁸Ge e^+ in the presence of a magnetic field. Annihilation γ rays are detected using three NaI scintillators.

[4] M. Skalsey and J. V. House, Phys. Rev. Lett. 67, 1993 (1991).

UTokyo measurement

- Have detectors in plane
- Move detector setup in circle
- Search for sin(\$\$) correlation
- Measured at University of Tokyo (2010) [5]
 - $C_{cp} = 0.0013 \pm 0.0021 \text{ (stat) } \pm 0.0006 \text{ (syst)}$
- Ran for 6 months and were statistically limited!
- Main systematic uncertainty was step size of stepper motor.

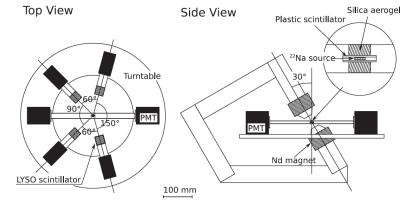
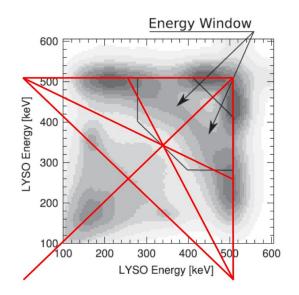
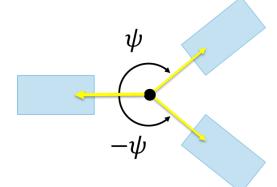



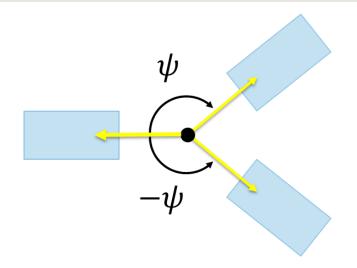
FIG. 1. Schematic diagrams of the experimental setup. The magnified view around the 22 Na source is shown in the circle. Left and right show the top and side view, respectively.


[5] T. Yamazaki, T. Namba, S. Asai, T. Kobayashi, Phys. Rev. Lett. **104**, 083401 (2010).

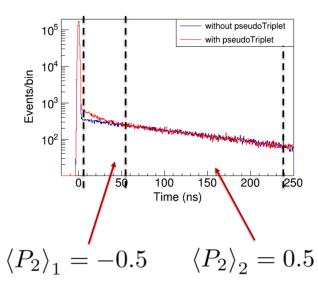
T.E. Haugen, MORA Workshop, May 2022, Slide 15

Design outline

- Follow design of UoM.
- Detector system placed within electromagnet.
 - FRIB Positron Polarimeter magnet will be used.
 - Can run up to 2 Tesla
- Positronium source at center of array.
- Sets of 3-detectors to allow flipping of k₂.
- Maximize number of sets to increase statistics
- Goal of ten-fold improvement on limit in one month of runtime.

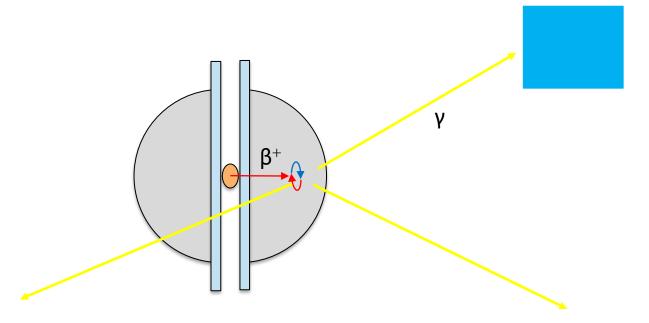

Super-ratio

- We can flip sign of correlation twice.
- This allows us to utilize a super-ratio.


$$r = \frac{N_{+\psi}^{+P_2} N_{-\psi}^{-P_2}}{N_{-\psi}^{+P_2} N_{+\psi}^{-P_2}}$$

- This leads to cancellation of additive backgrounds and multiplicative efficiencies.
- Extract observable as,

$$A_{measured} = \frac{1 - \sqrt{r}}{1 + \sqrt{r}}$$
$$C_{CP} = \frac{A_{measured}}{G_e P_2}$$

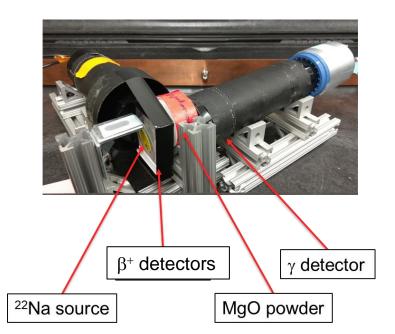


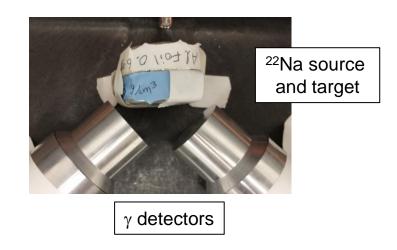
U.S. Department of Energy Office of Science National Science Foundation Michigan State University

T.E. Haugen, MORA Workshop, May 2022, Slide 17

Positronium Formation

- Take a β^+ emitter
- Surround with low density powder, positron can pick off an electron.
- \blacksquare Detect the $\beta^{\,\scriptscriptstyle +}\!,$ and a photon.
- Record the time difference.
- Decaying exponential shows a bound state.

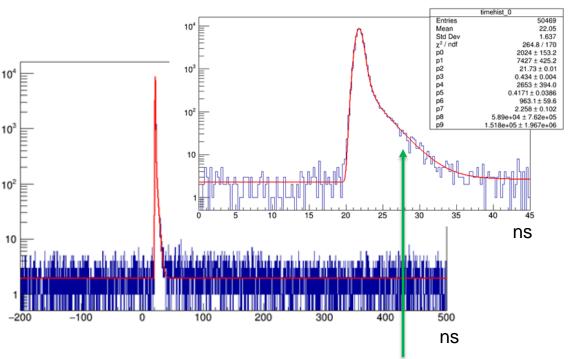




Positron annihilation lifetime spectroscopy

Detect emission of beta

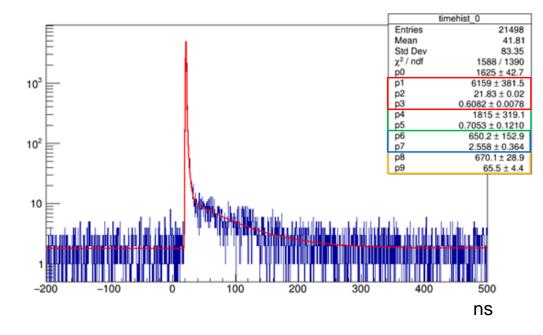
- 1.2 MeV de-excitation photon,
- or direct detection of beta
- Direct detection of beta will be used in experiment.
- Test stand has been built to quantify positronium formation.
 - Uses two LaBr₃ gamma detectors.
 - Can extract:
 - » Lifetime of o-Ps,
 - » Formation fraction of material.



T.E. Haugen, MORA Workshop, May 2022, Slide 19

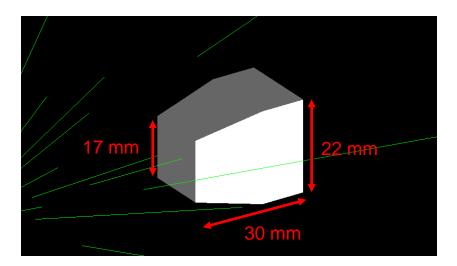
Data acquisition system

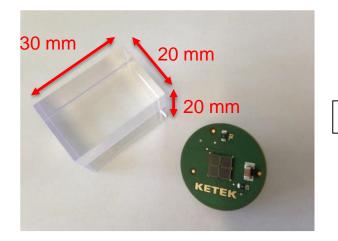
- Test stand used for prototyping ultimate DAQ system.
- System using NSCLDAQ and PIXIE-16 modules,
 - 16 channels per board.
 - 250 MSPS boards (will upgrade to 500 MSPS)
 - Digital CFD processing of signal.
 - Impose coincidence triggering.
- Achieved 0.45 ns time resolution with LaBr₃ detectors with online CFD algorithm.

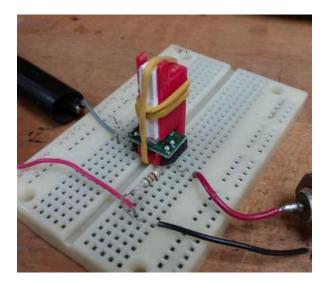


Positronium lifetime in plastic surrounding source

Positronium Formation


- Measured lifetime 70 ns
- Remaining work includes:
 - Testing powder materials
 » SiO₂,
 - » MgO,
 - » XAD-4
 - Testing grain size of powders.
 - Testing preparation techniques
 - » Dessicating powder.
 - » Pumping powder under vacuum
 - » Flushing with Nitrogen.

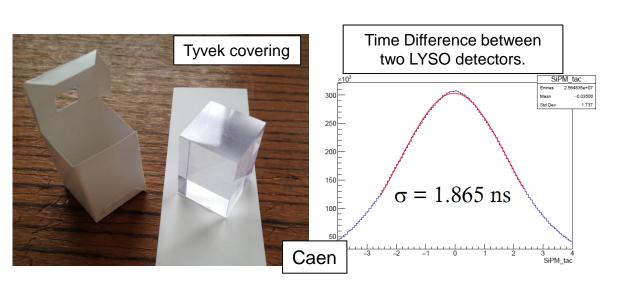


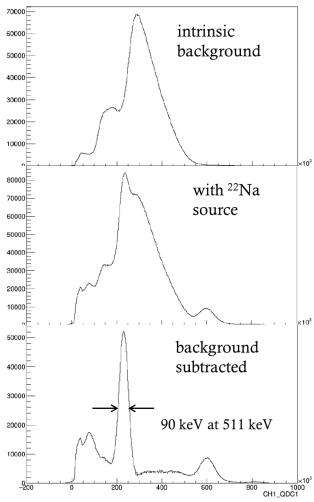

Photon Detector

- Use LYSO crystals as photon detectors.
 - Large effective Z.
 - 45 ns decay time.
- Crystal scintillators read out by Silicon Photomultipliers (SiPM).
 - Impervious to magnetic fields.
 - Much smaller than a PMT

LPC-Caen

Wittenberg

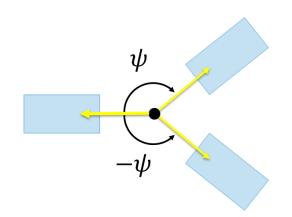


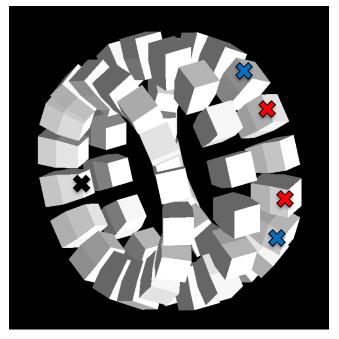

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

Detector R&D

Effects studied (FRIB, Caen, Wittenberg):

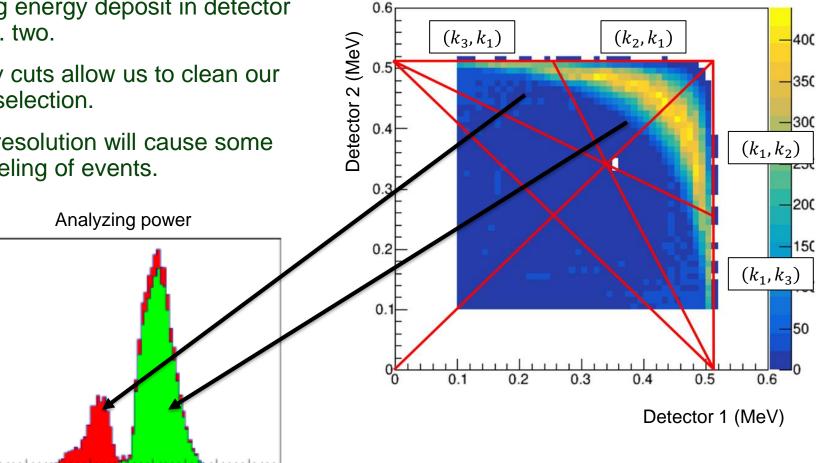
- Wrapping material and method
- Coupling method of crystal to SiPM
- Timing jitter for LYSO + SiPM
- Timing resolution of pair of LYSO
- Internal radioactivity of LYSO crystal
- Accidentals from LYSO background
- Linearity of LYSO gain
- Simulation of Energy resolution and light collection of crystals





Photon detector apparatus

- Full geometry with 48 detectors.
- Count pairs based on reference detector (black)
 - Black-Blue: 135°
 - Black-Red: 157.5°
- Only symmetric is shown, also configurations for hits in middle ring.
- Massive increase in angular acceptance and percentage of decays seen.
- Middle ring doubles configurations and allows study of systematics.



Event distribution

- Geant4 simulation of event distribution from pure 3γ decays.
- Plotting energy deposit in detector one vs. two.
- Energy cuts allow us to clean our event selection.
- Finite resolution will cause some mislabeling of events.

900F

800 700 600

500

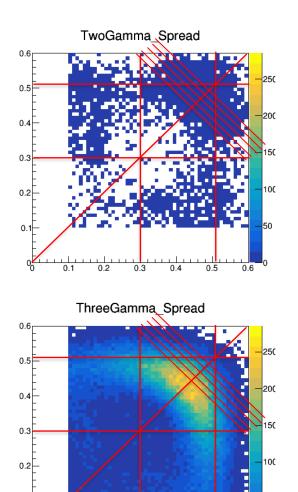
400

300

200 100

-D.1

D


0.1

0.2

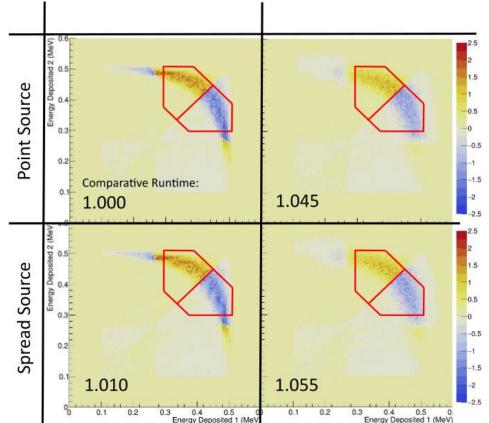
-0.2

Event contamination

- Two photon events appear as peak at top corner of distribution.
- Finite resolution smears some contamination into our energy window.
- Add cuts on energy sums.
- 511's dilute our analyzing power.
- Shift energy cuts and measure how analyzing power varies.
- Optimal value and 2-gamma dilution are resolution dependent.

0.3

0.4

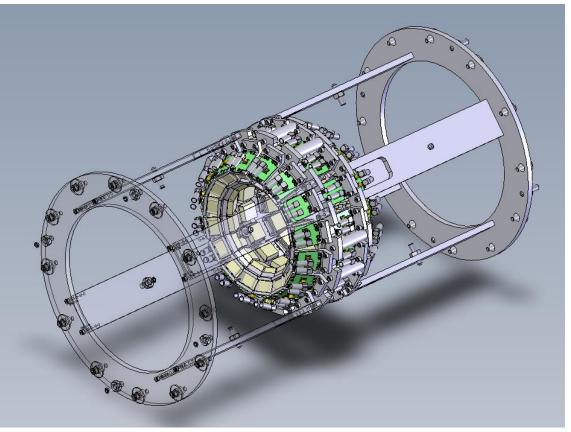

0.5

0.2

0.1

Monte Carlo Results

- Sensitivity calculated from Monte Carlo simulations.
- Concurrent simulations in both Geant4 and EGSnrc.
- Effects and backgrounds studied so far (FRIB, Wittenberg):
 - Finite source distribution size.
 - Effect of B-field on source distribution.
 - Contribution from 2g events
 - Accidentals from 2g events and 1.27 MeV de-excitation photon from ²²Na decay
 - Scattering of photons from Ps formation region
 - (Dis)advantage of adding shielding between rings
 - Angular misalignment of single ring
 - Longitudinal offset of the source



Engineering the Full Apparatus

- Design of full support structure is underway at FRIB.
- Shown is support of photon detector rings.
 - Includes attachments to outer flanges of magnet.
- Photon detector ring is 22 cm diameter (about the size of a soccer ball).
- Designed to maintain as much symmetry as possible.
 - Allow for systematic tests.

C. Snow, FRIB

Time Estimate

- For statistical sensitivity ~10⁻⁴
 - Source rate 1.85 MBq (50 uCi).
 - Ps formation (0.4), ³/₄ go into O-PS.
 - Alignment ~0.54, 77% of O-Ps decays in time windows
 - Geometric analyzing power (Number of Counts):
 - » 157.5° Symmetric : 0.125 (0.0120)
 - » 135° Symmetric : 0.254 (0.0040)
 - » Asymmetric events not included in estimate.
- Should reach sensitivity with ~34 days of continuous running.

Summary

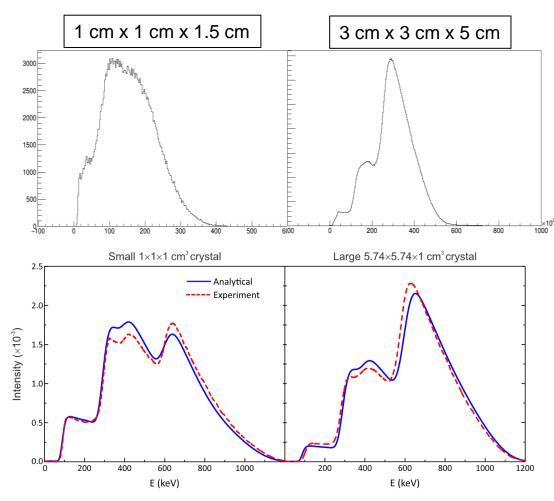
- We are building an apparatus to reach a high sensitivity goal for CPviolation in ortho-Positronium.
- We have a strong control on systematics by manipulating both angular correlation, and tensor polarization of the system.
- We have demonstrated Positronium formation, tested prototype detectors, simulated the photon detection system, and are now simulating systematics.
- We plan to finish construction and begin taking data in 2023!

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grants No. PHY-1920065, PHY-1565546, and PHY-2013557.

Undergraduate Contributors:

- Evan Zobel¹
- Ziyan Yuwen¹
- Katherine Robinson²
- Joshua Darang²


- Amy Brennan²
- Jacob Durmis²
- Theo Allard³

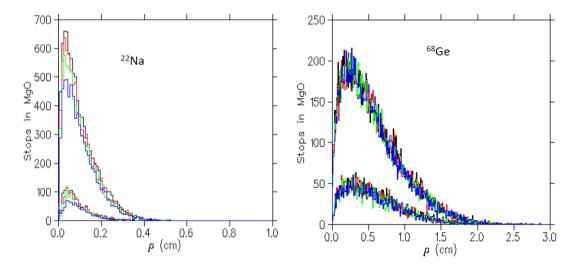
- 1. Department of Physics and Astronomy and Facility for Rare Isotope Beams, Michigan State University
- 2. Department of Physics, Wittenberg University
- 3. Laboratoire de Physique Corpusculaire de Caen, IN2P3/CNRS and Universite de Caen Normandie

LYSO Background

- Internal radiation from β decay of ¹⁷⁶Lu
- For large and small crystal we see 39.4 cps/g and 37.7 cps/g.
 - Saint-Gobain quotes 39 cps/g.

Figure 3. Analytical (solid line), convolved with a varying Gaussian kernel, and experimental (dashed line) LYSO normalized energy spectra.

Alva-Sanchez H. et al. (2018). Understanding the intrinsic radioactivity energy spectrum from ¹⁷⁶Lu in LYSO/LSO scintillation crystals. *Scientific Reports 8*



U.S. Department of Energy Office of Science National Science Foundation Michigan State University

Spreading of Source

- Simulated stopping position of positrons in MgO powder.
 - Simulated in EGSnrc
- Varying thickness of start detector:
 - 0.150 mm (Bk)
 - 0.17 mm (R)
 - 0.19 mm (G)
 - 0.21 mm (BI)
- Sampled decay spectrum from ²²Na and ⁶⁸Ge.
 - Note different scales of Xaxis.

Transverse distribution of stopping position at B = 0.5 T

P.A. Voytas, Wittenberg University

