

Low Q-value decays for absolute mass scale determination of the neutrino

T. Eronen, Z. Ge, J. Kostensalo, A. de Roubin, J. Suhonen

MORA workshop

The determination of the absolute mass scale of the neutrino

The determination of the absolute mass scale of the neutrino is one of the burning question in physics

Neutrino mixing experiments have revealed that neutrinos have a non-zero mass

BUT: not able to gauge the absolute mass values! (only the difference of squared neutrino masses)

How to pinpoint the (anti)neutrino mass?

- Precisely
- In a model independent way

Kinematical studies $\succ \beta^-$ decay \succ Electron capture

Direct (anti)neutrino mass measurements

Single Electron Capture

- Decay energy shared between:
 - Emitted neutrino
 - Atomic excitation of the daughter atom
 - (recoiling nucleus)
- Experimental approach:
 - Low temperature calorimetry measurements (ECHo, HOLMES, NuMECS)

L. Gastaldo et al., Eur. Phys. J. Special Topics **226**, 1623 (2017) M. Faverzani et al., J. Low Temp. Phys. **184**, 922 (2016) A. Faessler et al., Phys. Rev. C **91**, 045505 (2015)

Single β^- decay

• Energy is distributed between the decay products

- Experimental approaches:
 - Electron spectroscopy (KATRIN) C. Weinheimer, Prog. Part. Nucl. Phys., 48, 141 (2002) KATRIN collaboration, Nat. Phys., 18, 160 (2022)
 - Cyclotron radiation emission spectroscopy (Super8) B. Monreal et al. Mass. Phys. Rev., D 80, 051301 (2009)

Interested in the endpoint of the energy spectrum!

Need decay with a small Q value to maximize the sensitivity to the neutrino mass!

Single electron capture

 $^{163}Ho + e^- \rightarrow ^{163}Dy^* + \nu_e \implies Q_{EC} = 2.3 - 2.8 \text{ keV}$

- Measurement of emitted particles and their energies following the EC
- The mismatch of energy available in decay and emitted energy reveals the neutrino mass
- Upper limit of the effective electron-neutrino mass $m_{\nu_e} = 150 \text{ eV/c}^2$ (95% confidence level)

C. Velte et al., Eur. Phys. J. C 79, 1026 (2019)

Single β^- decay

 $^{3}H \rightarrow ^{3}He + e^{-} + \overline{\nu}_{e}$

 $Q_{EC} = 18.6$ keV

- Measurement of emitted electron energy
- The maximum energy is linked to the neutrino mass
- Upper limit of the effective electron-neutrino mass $m_{\nu_e} = 0.8 \text{ eV/c}^2$ (90% confidence level) KATRIN collaboration, Nat. Phys., **18**, 160 (2022)

Interested in the endpoint of the energy spectrum!

Need decay with a small Q value to maximize the sensitivity to the neutrino mass!

Smallest GS-to-GS Q-values around 1 keV

Interested in the endpoint of the energy spectrum!

Need decay with a small Q value to maximize the sensitivity to the neutrino mass!

Smallest GS-to-GS Q-values around 1 keV

• Possibility to use decays with even smaller Q-values

$$\rightarrow {}^{115}In(9/2^+) \xrightarrow{\beta^-} {}^{115}Sn(3/2^+)$$

 \rightarrow Q = 0.155(24) keV \rightarrow smallest β Q-value ever measured

 \rightarrow A « detector » for the neutrino mass ?

• Other possible low Q-values

- → Many potential candidates
- \rightarrow Need to identify them with Penning traps

B.J. Mount, M. Redshav, E.G. Myers, Phys. Rev. Lett. 103 122502 (2009) J. S. E. Wieslander, Phys. Rev. Lett. 103, 122501 (2009) C.M. Cattadori, Nucl. Phys. A, 748, 333-347 (2005)

Mother(J^{π}) Ground state	Daughter (J^{π}) Excited state	E* (keV)	Q (keV)	Type of decay	
¹³⁵ Cs(7/2 ⁺)	¹³⁵ Ba(11/2 ⁻)	268.218(20)	0.5(12)	β^-	
¹⁵⁹ Dy(3/2 ⁻)	¹⁵⁹ Tb(5/2 ⁻)	363.5449(14)	1.7(12)	EC	
	¹⁵⁹ Tb(11/2+)	362.050(40)	3.2(12)	EC	
¹¹¹ In(9/2+)	¹¹¹ Cd(7/2+)	853.94(7)	6.3(34)	EC	
	¹¹¹ Cd(3/2+)	855.6(10)	4.6(36)	EC	
	¹¹¹ Cd(3/2+)	864.8(3)	-4.6(35)	EC	
	¹¹¹ Cd(3/2+)	866.60(6)	-6.4(34)	EC	
¹³¹ I(7/2 ⁺)	¹³¹ Xe(9/2+)	971.22(13)	-0.42(61)	β^{-}	

The IGISOL-4 facility

Penning trap

Radial confinement

- strong homogeneous magnetic field
- Axial confinement
 electric field

3 ion motions

- Axial
- Magnetron
- Reduced cyclotron

3 ion frequencies

- V_Z
- v_

 ν_+

ron •

Invariance theorem

- $\nu_{c}^{2} = \nu_{-}^{2} + \nu_{+}^{2} + \nu_{z}^{2}$
- Cyclotron frequency

$$\nu_c = \nu_- + \nu_+$$

Cyclotron frequency

<u> </u>	$1 q_{P}$
$v_c -$	$\overline{2\pi} \overline{m}^{D}$

q : electric charge
B : magnetic field
m : mass

10

11

MicroChannel Plate detector (position sensitive)

Injection and capture of the ions

> 100 μs

Purification Trap
Diaphragm
Accumulation Trap

MicroChannel Plate detector (position sensitive)

Cooling of radial and axial motions

> 30 - 100 ms

From RFQ CB

From RFQ CB

MicroChannel Plate detector (position sensitive)

Buffer gas cooling technique

Magnetron excitation: v_
 ▶ 10 ms

From RFQ CB

MicroChannel Plate detector (position sensitive)

Buffer gas cooling technique

- **1.** Magnetron excitation: v_{-}
 - > 10 ms
- 2. Quadrupole excitation: $v_c = v_+ + v_-$
 - Convert the radial magnetron motion (v₋) into modified cyclotron motion (v₊)
 - ▶ 40 400 ms
 - Centering the « good guys »

This excitation is mass dependent !! Magnetron motion is amplified modified cyclotron motion is damped

G. Savard et al., Phys. Lett. A 158 (1991) 247-252

16

850

From RFQ CB

MicroChannel Plate detector (position sensitive)

ToF-ICR technique (Time-of-Flight Ion Cyclotron Resonance)

Transfer of the clean ion sample to the measurement trap

From RFQ CB

MicroChannel Plate detector (position sensitive)

ToF-ICR technique

- 1. Magnetron excitation: v
 - > 10 ms
 - Give a slow radial motion to the ions

18

From RFQ CB

ToF-ICR technique

- 1. Magnetron excitation: v_
 - > 10 ms
 - Give a slow radial motion to the ions
- 2. Quadrupole excitation: $v_c = v_+ + v_-$
 - Convert the radial magnetron motion (v) into modified cyclotron motion (v)
 - ≻ 40 400 ms

The modified cyclotron motion is a fast motion The ions are not recentered (no gas) Extraction towards the MCP

From RFQ CB

Position sensitive detector

A. de Roubin

Phase-imaging ion cyclotron resonance technique (PI-ICR)

Phase-imaging ion cyclotron resonance technique (PI-ICR)

-10

-5

0

x [mm]

5

10

Advantages of PI-ICR over TOF-ICR:

- No scanning of frequency, just data collection to one spot
- x40 faster x5 increase in precision

Requirements:

- Need to prepare the ion more carefully
- Damping of ion motions; longer setting up time
- Sensitive to voltage fluctuations

-10

-5

0

x [mm]

10

5

Isomeric cleaning

Ramsey cleaning

Same cleaning processed was needed for different measurements presented here

Mother(J^{π}) <i>Ground state</i>	Daughter (J^{π}) Excited state	E* (keV)	Q (keV)	Type of decay	
¹¹¹ In(9/2 ⁺)	¹¹¹ Cd(7/2+)	853.94(7)	6.3(34)	EC	
	¹¹¹ Cd(3/2+)	855.6(10)	4.6(36)	EC	
	¹¹¹ Cd(3/2+)	864.8(3)	-4.6(35)	EC	
	¹¹¹ Cd(3/2+)	866.60(6)	-6.4(34)	EC	
¹³¹ I(7/2 ⁺)	¹³¹ Xe(9/2+)	971.22(13)	-0.42(61)	β^{-}	
¹³⁵ Cs(7/2+)	¹³⁵ Ba(11/2 ⁻)	268.218(20)	0.5(12)	β^-	
¹⁵⁹ Dy(3/2 ⁻)	¹⁵⁹ Tb(5/2 ⁻)	363.5449(14)	1.7(12)	EC	
	¹⁵⁹ Tb(11/2 ⁺)	362.050(40)	3.2(12)	EC	

 $^{135}Cs(7/2^+) \xrightarrow{\beta^-} ^{135}Ba(11/2^-)$

 $Q_{ff} = 268.9(1.1) \ keV \rightarrow Q_{11/2^-} = 0.5(1.2) \ keV$

New measurement of Q_{ff} with Penning traps!!

[1] M. Wang et al., Chin. Phys. C 41, 030003 (2017)

$^{135}Cs(7/2^+) \xrightarrow{\beta^-} ^{135}Ba(11/2^-)$

 $Q_{gs-gs} = 268.66(30) \ keV$ $\Rightarrow \ Q_{11/2^-} = 0.44(31) \ keV$ $\Rightarrow \ Q_{1/2^+} = 47.69(31) \ keV$

Half-lives calculations computed with NuShell@MSU

•
$$T_{1/2} (^{135}\text{Ba}(11/2^{-})) = 8.2(32) \cdot 10^{11} y$$

• $T_{1/2} (^{135}\text{Ba}(1/2^{+})) = 6.5(17) \cdot 10^{13} y$

Branching ratio $(0.04 - 16) \cdot 10^{-6}$

 $^{135}_{56}Ba_{79}$

A. de Roubin et al., Phys. Rev. Lett. A 124, 222503 (2020)

Conclusion:

- $^{135}Cs(7/2^+) \rightarrow ^{135}Ba(11/2^-) > 0$
- First direct Q value measurement
- Direct measurement of the antineutrino mass?

Expected challenges:

- Half-live of the 11/2⁻ state too long
- Cannot be use in coincidence

¹³¹I(7/2⁺) $\xrightarrow{\beta^-}$ ¹³¹Xe(3/2⁺)

$$Q_{gs-gs} = 972.25(19) \ keV$$

 $\rightarrow \ Q_{9/2^+} = 1.03(23) \ keV$

T. Eronen et al. accepted for publication in PLB

Half-lives calculations for this transition

- Nuclear shell model calculations with NuShellX B. Brown, W. Rae, Nucl. Data Sheets **120**, 115 (2014)
- Partial half-life is extremely sensitive to the exact value of the decay energy

Conclusion:

- The decay $7/2 \rightarrow 9/2 +$ is of allowed type
- The transition has a simple universal shape

Expected challenge:

• The branching ratio $\sim 10^{-10}$

28

¹⁵⁹Dy(3/2⁻) \xrightarrow{EC} ¹⁵⁹Tb(5/2⁻)

EC spectrum of ¹⁵⁹Dy ($3/2^- \rightarrow 5/2^-$) compared to ¹⁶³Ho

(Dirac-Hartree-Fock atomic many-body calculations)

Courtesy of Z. Ge

Z. Ge, T. Eronen, K. S. Tyrin et al., Phys. Rev. Lett. 127, 272301 (2021)

¹⁵⁹Dy(3/2⁻) \xrightarrow{EC} ¹⁵⁹Tb(5/2⁻)

*Q*_{EC}^{*} = 1.18(19) keV

• Lowest EC Q value

- Lower than the GS-to-GS Q_{EC} of ¹⁶³Ho, utilized in presently running or planned direct neutrino mass experiments
- allowed transition
- known branching ratio $1.9(5) \times 10^{-6}$
- Smallest EC Q value

The most promising gs-to-excited state transition for future calorimetric experiment

EC spectrum of ¹⁵⁹Dy ($3/2^- \rightarrow 5/2^-$) compared to ¹⁶³Ho

(Dirac-Hartree-Fock atomic many-body calculations)

Courtesy of Z. Ge

¹¹¹In(9/2⁺) \xrightarrow{EC} ¹¹¹Cd(7/2⁺)

Transition excluded!

Z. Ge et al., arXiv:2201.12573v1

¹¹¹In(9/2⁺) \xrightarrow{EC} ¹¹¹Cd(7/2⁺)

EC spectrum of 111 In(9/2⁺ \rightarrow 5/2⁻) compared to 163 Ho and 159 Dy

- EC spectrum shape investigated with atomic Dirac-HF many-body calculations
- Presence of a L2 resonance near the end point (3 eV)
- Increases significantly the counting rate in the ROI

Q = 2.0(10) keV

Need more precise excitation energy measurement !

Z. Ge et al., arXiv:2201.12573v1

Summary of the measured Q-values of potential candidates

List of measured promising low Q-value decay candidates for neutrino mass determination

	Parent	T1/2	Daughter	E * (keV)	decay type	Q* (keV)	Decay	Q ₀ (keV)	dQ ₀ (keV)
	146Pm(3–)	5.53(5) y	146Nd(2+)	1470.63(6)	1st FNU	1.3(4.2)	EC	1472.000	4.000
	149Gd(7/2-)	9.28(10) dy	149Eu(5/2+)	1312(4)	1st FNU	2(6.4)	EC	1314.100	4.000
	155Tb(3/2+)	5.32(6) dy	155Gd{3/2+}	815.731(3)	Allowed{?}	4.2 (10.1)	EC	820.000	10.000
	159Dy(3/2-)	144.4(2) dy	159Tb(5/2-)	363.5449(14)	Allowed	1.7(1.2)	EC	365.200	1.200
Z. Ge, T. Eronen et al., Phys. Rev. Lett. 127, 272301		159Tb(11/2+)	362.050(40)	3rd FU	3.2(1.2)	EC	365.200	1.200	
	161Ho(5/2-)	18.479(4) hr	161Dy{7/2+}	858.502(7)	1st FNU	1.0(2.2)	EC	858.500	2.200
			161Dy{3/2-}	858.7919(18)	Allowed	-0.3(2.2)	EC	858.500	2.200
	72As(2–)	26.0(1)h	72Ge{1}	4358.7(3)	Allowed{?}	-2.8(4.0)	EC	4356.000	4.000
Z. Ge, T. Eroner	n et al., PHYSICAL REV	TEW C 103, 065502 (2021) 72Ge(3–)	3325.01(3)	Allowed	8.9(4.0)	β+	4356.000	4.000
			72Ge(2+)	3327(3)	1st FNU	6.9 (5.0)	β+	4356.000	4.000
			72Ge{1+}	3338.0(3)	1st FNU{?}	-4.1(4.0)	β+	4356.000	4.000
			72Ge{2-}	3341.76(4)	Allowed{?}	-7.9 (4.0)	β+	4356.000	4.000
	159Gd(3/2-)	26.24(9) h	159Tb{1/2+}	971	1st FNU{?}	0.0(1.8)	β-	970.900	0.800
	77As(3/2–)	38.79(5) h	77Se(5/2+)	680.1035(17)	1st FNU	3.1(1.7)	β-	683.200	1.700
	76As(2–)	26.24(9) h	76Se{2-}	2968.4(7)	Allowed{?}	-7.8(1.1)	β-	2960.600	0.900
	153Tb(5/2+)	2.34(1)dy	153Gd(5/2-)	548.7645(18)	1st FNU	-1.2(4.0)	β+	1569.000	4.000
			153Gd{5/2}	551.092(19)	Allowed{?}	-3.5(4.0)	β+	1569.000	4.000
	111In(9/2+)	3dy	111Cd(3/2+)	864.8(3)	2nd FU	-6.6(3.0)	EC	860.2	3.4
Submitte	d		111Cd(3/2+)	864.8(3)	2nd FU	-4.6(3.0)	EC	860.2	3.4
			111Cd(3/2+)	855.6(1.0)	2nd FU	4.6(3.2)	EC	860.2	3.4
			111Cd(7/2+)	853.94(7)	Allowed	6.3(3.0)	EC	860.2	3.4
	131I(7/2 +)	8dy	131Xe{9/2+}	971.22(13)	Allowed{?}	-0.42(0.61)	β-	970.80	0.60
			131Xe(7/2+)	973.11(14)	Allowed	-2.31(0.62)	β-	970.80	0.60
	155Eu(5/2+)	5yr	155Gd(9/2-)	251.7056(10)	1st FU	0.1(1.8)	β-	252.00	2.40

Courtesy of Z. Ge

Q₀ from: *M. Wang et al.*, *Chinese Physics C* 45, 030003 (2021)

E* from: National nuclear data center, Available at https://www.nndc.bnl.gov

Thanks a lot for your attention

Binding energy

$$M_{Nuclei} = N \times M_{Neutron} + Z \times M_{Proton} - B(N,Z)/c^2$$

 $E = mc^2 \rightarrow$ The binding energy corresponds to the missing mass

Measuring B(N, Z)

- > $\delta M/M = 10^{-7} 10^{-9}$ (For $A = 100 \ u \rightarrow 100 \ GeV$)
- > Nuclear deformation $\rightarrow \delta M/M = 10^{-7} \rightarrow 10 \text{ keV}$
- > Neutrino physic $\rightarrow \delta M/M = 10^{-9} \rightarrow 100 \text{ eV}$

lon traps

Ion manipulation

- Cooling
- Bunching
- Accumulation
- Mass purification

The ECHo experiment

Electron capture of ¹⁶³Ho with $Q_{EC} = 2.8$ keV

163Ho source is enclosed in large array of magnetic calorimeters

- \rightarrow Deposition of energy
- → Temperature increased
- → Change the magnetization of a paramagnetic temperature sensor
- \rightarrow Change the magnetic flux of a voltage convertor
- \rightarrow The output voltage signal is proportional to the deposited energy

The KATRIN experiment

- β decay via the mass of the electron antineutrino
 - \rightarrow A slight distortion of the β decay spectrum relates directly to the electron-neutrino mass
- KATRIN [1] experiment
 - → ${}^{3}H(1/2^{+}) \xrightarrow{\beta^{-}}{3}He(1/2^{+})$ → Allowed decay → Q = 18.5920(3) keV
- Low $Q \rightarrow$ higher sensitivity

Tritium β decay electron spectrum

[1] C. Weinheimer, Prog. Part. Nucl. Phys. 48, 141 (2002)

$$135Cs(7/2^+) \xrightarrow{\beta^-} 135Ba(11/2^-)$$
But : The transition is poorly known!
• Not yet proven that it is energetically possible : $Q_{11/2^-} < 0$?
• Decay never observed directly
To determine $Q_{11/2^-}$ we need:
• The excitation energy $E_{11/2^-} = 268.218(20) \ keV$
• The ground-state-to-ground-state Q-value Q_{ff}
• $Q_{ff} = 268.9(1.1) \ keV$ [1]

$$Q_{11/2^-} = 0.5(12) \ keV$$
?

$$Z_{g.s.} \xrightarrow{1.33 \ My} 11/2^- 28.11 \ h \ 0.268}$$

 $Q_{ff} = 268.9(1.1) \ keV \rightarrow Q_{11/2^-} = 0.5(1.2) \ keV$

New measurement of Q_{ff} with Penning traps!!

[1] M. Wang et al., Chin. Phys. C 41, 030003 (2017)

PI-ICR measurements

- Pure sample of ¹³⁵Cs sent in the measurement trap
- Every few rounds, switched between ¹³⁵Cs from IGISOL and ¹³⁵Ba from the off-line spark source
- Measurement of the GS-to-GS
 Q-value performed with
 - > TOF-ICR Ramsey technique
 - PI-ICR technique

