INESS@WISARD: THE FIRST BETA SPECTRUM SHAPE MEASUREMENT AT WISARD

MORA WORKSHOP SIMON VANLANGENDONCK 5 May 2022

KU LEUVEN

Beta spectrum shape measurements

Project idea

First results

Set-up Measurements Analysis of experimental spectra

BETA DECAY PRECISION EXPERIMENTS

Beta correlation coefficients

- *a*_{βν}
- *A*_β
- *B*_v

Ft-values

- Superallowed Fermi decays
- Mirror beta decay

Shape of the beta energy spectrum

Aim for a precision $\le 10^{-3}$

SPECTRUM SHAPE

Pure Gamow-Teller decay

 $^{114}_{50}$ Sn

SPECTRUM SHAPE

Measure the beta-spectrum shape of ¹¹⁴In

• Pure Gamow-Teller decay

Look for QCD influence on the decay

• Weak-Magnetism (b_{WM})

Look for BSM physics

• Fierz interference term

Ft values of mirror *β* transitions and weak magnetism induced current in allowed nuclear *β* decay N. Severijns *et al.*, 2022 *arXiv* 2109.08895 Influence of the recoil-order and radiative correction on the beta decay correlation coefficients in mirror decays S. Vanlangendonck *et al.* 2022 arXiv:2203.16936 Kinematic sensitivity to the Fierz term of *β*-decay differential spectra M. Gonález-Alonso and O. Naviliat-Cuncic, 2018

PROBING NEW PHYSICS WITH THE SPECTRUM SHAPE

What signal are we looking for?

Weak-Magnetism (b_{WM}) :

 $w_{SM}(E) \approx w_{SM,0} (1 - \frac{2}{3} \frac{E_0}{Mc} b_{WM} + \frac{4}{3} \frac{E}{Mc} b_{WM} - \frac{2}{3} \frac{1}{Mc} \frac{1}{E} b_{WM})$ Fierz interference term: Absorbed in normalisation Dominant term $w(E) = w_{SM} (1 + b_F \frac{m_e}{E})$

PROJECT IDEA

Introduction

Beta spectrum shape measurements

Project idea WISArD

First results

Set-up Measurements Analysis of experimental spectra

PRECISION SPECTRUM MEASUREMENT

Goal:

Measure as precise as possible the energy distribution of the electron emerging from beta decay

Several difficulties:

INTEGRATION TIME

Why WISArD?

Due to the magnetic field:

- Full solid angle
- Limiting the influence of backscattering

 E_1

Start

 E_2

 E_3

4 Silicon detectors on each plane

1 plastic scintillator

INESS@WISARD

2 plastic scintillators (polystyrene)

+ SiPM – Hamamatsu S13360-6050CS

FIRST RESULTS

Introduction

Beta spectrum shape measurements

Project idea WISArD

First results

Set-up Measurements Analysis of experimental spectra

EXPERIMENTAL CAMPAIGN

Characterization of the set-up

- ²⁰⁷Bi
- ¹³⁷Cs
- ⁹⁰Sr
- Background
- + actual measurements
 - 114 In A = 1 & 5 kBq

DIFFERENT ACTIVITY

EXPERIMENTAL RESULTS

<u>5</u>⁺ 96.75(24)% IT *E*₀=190.3 keV 1+ 99.50(15)% β⁻

EXPERIMENTAL RESULTS

2+

 0^{+}

 $^{114}_{50}$ Sn

SINGLE PIXEL?

Use 190keV IT in ${}^{114m}_{49}$ In spectrum

 \rightarrow 18-19 peaks

With 5-6 additional missed peaks due to threshold

23 – 25 peaks observed

Events in-between peaks attributed delayed cross-talk and after-pulsing (AP) More discharges = more AP

On the characterisation of SiPMs from pulse-height spectra V. Chmill et al. 2017

EXPERIMENTAL RESULTS

2+

MC routine to generate a high statistics spectrum and rescale according to the expected (or fitted) pile-up rate Example for ⁹⁰Sr:

Poisson distribution

COSMIC MUONS

 μ^{-}

BACKGROUND

Pile-up:

Channels [a.u.]

GEANT

Calibration: $a_0 + a_1 x (+a_2 x^2)$ Resolution: $(\sigma_0 +)\sigma_1\sqrt{E} + \sigma_2 E^2$ A

Conditions: *a*₀, *σ*₀<<

Toward a measurement of weak magnetism in 6He decay X. Huyan et al., 2016

FIT SPECTRA

A SIMULATION TOOLKI

 P_{pile}, P_{back}

A

Toward a measurement of weak magnetism in 6He decay X. Huyan et al., 2016

Toward a measurement of weak magnetism in 6He decay X. Huyan et al., 2016

30

The same is true when using a quadratic calibration

FIT SPECTRA

31

THEORETICAL DESCRIPTION SPECTRUM SHAPE

$^{114}_{49}$ In $^{90}_{38}$ Sr + $^{90}_{39}$ Y	Category Phase space	Effect	Formula $pW(W_0 - W)^2$	Magnitude Unity or larger	
50 57	Electrostatic	Fermi function	F_{0}	Unity of larger	
	Licetrostatic	Finite size nucleus	L_0		\smile
	Radiative corr.		$\frac{-6}{R}$		First forbidden unique decay
	Recoil-order	Shape factor	C		add: $a^2 + \lambda_2 n^2$
		Isovector correction	C_I		
	Atomic	Atomic exchange	X	$10^{-1} - 10^{-2}$	
		Atomic mismatch	r		
		Atomic screening	S		
		Shake-up & Shake-off	included in r		
	Higher order	Diffuse nucl. surface	U		
		Nuclear deformation	$D_{FS} \ \& \ D_C$		
		Recoil Coulomb corr.	Q	$10^{-3} - 10^{-4}$	
		Recoiling nucleus	R_N		
		Molecular screening	ΔS_{Mol}		
		Molecular decay	Case by case		
		Bound state β decay	Γ_b/Γ_c	$< 1 \times 10^{-4}$	
		Neutrino mass	negligible		

High precision analytical description of the allowed β spectrum shape L. Hayen *et al.* 2018 Reviews of Modern Physics Reliability of usual assumptions in the calculation of β and v spectra X. Mougeot 2015 Physical Review C

 $ar{
u}_e$.

е –

p

n

GEANT

Toward a measurement of weak magnetism in 6He decay X. Huyan et al., 2016

FIT SPECTRA

FIT RESIDUALS

(EXPERIMENTAL) OUTLOOK

Use full theoretical description of ${}^{114m}_{49}$ In spectra to obtain b_{WM}

Investigate experimental improvements:

Replace mylar source foil: 2 μ m (aluminized) \rightarrow 500 nm (non-aluminized) Detectors:

- SiPM matrix
- Si(Li) detectors

Other interesting isotopes?

THANK YOU FOR YOUR ATTENTION!

simon.vanlangendonck@kuleuven.be Instituut voor Kern- en Stralingsfysica, KU Leuven

Please feel free to ask questions or provide your feedback!

