

Laser cooling, spectroscopy and polarization of calcium

Outline

- Reminder: laser polarization of Mg⁺
- Laser polarization of Ca⁺
- Polarization measurements?
- Opportunities and synergies

Atomic structure of Mg⁺

• Alkaline earth element, singly charged: single valence electron structure

• Life is simple: there are closed two-level systems* with the $^2\mathsf{S}_{1/2}$ and $^2\mathsf{P}^0{}_{1/2}/^2\mathsf{P}^0{}_{3/2}$ states

Atomic structure of Ca⁺

• Alkaline earth element, singly charged: single valence electron structure

- Life is less simple: there are no closed two-level systems
	- Ion can de-excite into metastable D-states

Atomic structure of Ca⁺

• Alkaline earth element, singly charged: single valence electron structure

- Life is less simple: there are no closed two-level systems
- This does bring many opportunities…

Pro and con of calcium

- + Visible and IR wavelengths rather than UV
- + More accessible states means more options for spectroscopy
- + Visible-wavelength lines to metastable Dstates are interesting for metrology, quantum computing, …

- When all you want is polarization or cooling: at least two lasers required

Laser polarization of Mg

- Polarization of laser light relative to external field axis determines the selection rules for absorption.
- Circular light along the magnetic field axis: projection of angular momentum changes by +/-1
- Spontaneous emission can still occur with $\Delta m = 0$ => optical pumping into stretched states
- $(F, m_F) = (2,2)$ \Leftrightarrow $(I, m_I) = (3/2, 3/2)$ => nuclear polarization
- Note: only way to avoid dark states is to cover all HFSinduced transitions
	- Use multiple laser beams / sidebands
	- Have broadband laser

Laser polarization of Ca

m_F: -2 -1 0 1 2

AWARNER BROS. GARTOON

R

WARNER BROS INC. 1989

Imaged by Heritage Auctions, HA.com

Laser cooling

- Umbrella term for a variety of techniques to reduce the temperature of an ensemble of atoms with laser beams
- Doppler cooling: ion receives momentum kick along laser axis when absorbing a photon, emits isotopically; with reddetuned laser light this results in a net slow-down after many cycles
- Ions can be cooled to low harmonic oscillator quantum number
- Resolved sideband cooling: excitation on the red sidebar
to drive system to lowest HO state
 \Rightarrow ions as close to at rest as QM allows...
 $\frac{5}{9}$ 0.6
 $\frac{1}{9}$ 0.6
 $\frac{1}{9}$ 0.4
 $\frac{1}{9}$ 0.4
 $\frac{1}{9}$ 0.2
 $\frac{1}{9}$ 0 to drive system to lowest HO state
	- => ions as close to at rest as QM allows…

Single-ion imaging

Dedicated ion traps can collect 1000s of photons/s/ion

Careful imaging enables resolving individual ions (separation: order micrometer)

Polarization measurement from fluorescence

- Use the probe laser light to inform on degree of polarization
- Demonstrated with the K mot in TRIUMF but poor S/B with less than $\sim 10^4$ atoms in the trap
	- Collimation lens: 20 cm from trap center = 1:1000 geometric coverage – can we do better?

In progress: More direct probe of ⁴¹K population $\vec{\tau}$ with TRINAT

 $5P_{1/2}$

405 nm

 σ

770 nm

Our ³⁷K probe is in situ and nondestructive, but as a 1-parameter fit could use confirmation.

• $4S_{1/2} \rightarrow 5P_{1/2}$ has 1.1 Mhz FWHM, so resolves m_F levels split by our 2 Gauss Bz holding field

• Destructive and alters P but still provides useful info

Optical Pumping

Slide by John Behr (yesterday)

 $5/6$

 $F=2$

 $F = 1$

 $m=-2$

532 nm

 $F=2$

 $F=1$

 $F=2$

 $F=1$

 $4S_{1/2}$

2

Polarization measurement from fluorescence

- Use the probe laser light to inform on degree of polarization
- Demonstrated with the K mot in TRIUMF but poor S/B with less than $\sim 10^4$ atoms in the trap
	- Collimation lens: 20 cm from trap center = 1:1000 geometric coverage – can we do better?
- Laser ionization?
	- Challenging for Mg⁺.

Polarization measurements

have one of RIDE removed during tests of polarization?

> Insert moveable mirror to guide light to detector?

Opportunities and synergies

Starting point…

- Polarization of Ca is a bit more involved than Mg
- Measurements of polarization require a cw laser system
- Ideally, also laser cooling
- => Ideally, work is performed 'offline' to explore
- In Leuven, I have initiated the construction of a trapped-ion lab for precision optical spectroscopy

Opportunity 1: sympathetic cooling of RIBs

- Co-trapping an ion of interest into a lattice/cloud of laser-cooled ions
- Coulomb interaction cools down the non-lasercoolable ions
- Naturally, this dramatically improves the emittance of the ions once extracted from the trap.
- Potential application in ultra-high precision mass measurements
	- Translates to improved TOF resolution

19

• Translates to well-localized ion clouds for phase-imaging ion cyclotron techniques

Opportunity 2: IS spectroscopy of single ions

- Once trapped and 'locked-in' the cooling cycle, a single ion can emit \sim 10⁸ photons per second!
- Spectroscopy can be done with single ions
	- Attractive prospect for exotic isotope studies…

Single ion quantum jumps:

Opportunity 2: IS spectroscopy of single ions

- Once trapped and 'locked-in' the cooling cycle, a single ion can emit \sim 10⁸ photons per second!
- Spectroscopy can be done with single ions
	- Attractive prospect for exotic isotope studies…
- Charge radii of magic calcium isotopes are of considerable interest for testing state-of-theart nuclear theories
	- Extend measurements far beyond current possibilities?

Opportunity 2: IS spectroscopy of single ions

- Isotope shift measurements of the quadrupole clock transitions to mHz levels
- Test for physics beyond the standard model?

shift, generating the slope. From a maximum likelihood fit to a linear relation, we obtain an isotope shift at null magnetic field of $\delta \nu_{88,86}^{S,D} = 570264063.435(9)(5)(8)$ Hz (total)(statistical)(systematic), which corresponds to a relative uncertainty of 1.6×10^{-11} . Our uncertainty is a $\sim 10^{-17}$ fraction of the optical transition frequency. We also measure a differ-

T. Manovitz et al, PRL 123, 203001 (2019)**KU LEUVEN**

Opportunity 3: moment measurements with single ions

Opportunity 3: moment measurements with single ions

- Direct g-factor measurements in strong external magnetic fields $H = hA\mathbf{I} \cdot \mathbf{J} - (\mu_{\mathbf{I}} + \mu_{\mathbf{I}}) \cdot \mathbf{B},$
- Nuclear g-factor contribution typically 2000 times smaller frequency of $f = 3199941076.920(46)$ Hz from which we determine $\mu_I/\mu_N = -1.315350(9)(1)$
- Ratio of g-factor and magnetic moment: information on the *magnetization* radius (complimentary to *charge* radius)
	- Can also be probed from ratio of hyperfine constants, which clearly this method is also capable of determining
- Higher-order electromagnetic moments

$$
\Omega\left({}^{137}\text{Ba}_{\text{D}_{5/2}}^{+}\right) = 0.0496(37) \ (\mu_{\text{N}} \times \text{b}),
$$

In conclusion…

- Laser polarization of Ca will be an additional step in complexity compared to Mg… But not by too much.
- Polarization measurements in MORA require some additional thinking.
	- How to measure fluorescence (efficiently)?
	- Simultaneous with correlation measurement?
	- Laser-cooling required to resolve zeeman substates. Narrowband laser systems required.
		- => Development and investment required
- Synergy with other interesting research avenues exists
	- Laser spectroscopy, enhanced mass spectrometry, …
- Development work in Leuven may provide an interesting route (pending funding)

