

Laser cooling, spectroscopy and polarization of calcium

Outline

- Reminder: laser polarization of Mg⁺
- Laser polarization of Ca⁺
- Polarization measurements?
- Opportunities and synergies

Atomic structure of Mg⁺

• Alkaline earth element, singly charged: single valence electron structure

	Structure	Energy
Ground state	2p ⁶ 3s ² S _{1/2}	0 eV
Excited p-state	2p ⁶ 3p ² P ⁰ _{1/2}	4.422 eV
	2p ⁶ 3p ² P ⁰ _{3/2}	4.433 eV
Excited D-state	2p ⁶ 3d ² D _{5/2}	8.864 eV
	2p63d 2D3/2	8.864 eV

- Life is simple: there are closed two-level systems* with the $^2S_{1/2}$ and $^2P^0_{1/2}/\,^2P^0_{3/2}$ states

Atomic structure of Ca⁺

• Alkaline earth element, singly charged: single valence electron structure

	Structure	Energy
Ground state	3p ⁶ 4s ² S _{1/2}	0 eV
Excited p-state	3p ⁶ 4p ² P ⁰ _{1/2}	3.123 eV
	3p ⁶ 4p ² P ⁰ _{3/2}	3.151 eV
Excited D-state	3p ⁶ 4d ² D _{3/2}	1.692 eV
	3p ⁶ 4d ² D _{5/2}	1.700 eV

- Life is less simple: there are no closed two-level systems
 - Ion can de-excite into metastable D-states

Atomic structure of Ca⁺

• Alkaline earth element, singly charged: single valence electron structure

	Structure	Energy
Ground state	3p ⁶ 4s ² S _{1/2}	0 eV
Excited p-state	3p ⁶ 4p ² P ⁰ _{1/2}	3.123 eV
	3p ⁶ 4p ² P ⁰ _{3/2}	3.151 eV
Excited D-state	3p ⁶ 4d ² D _{3/2}	1.692 eV
	3p ⁶ 4d ² D _{5/2}	1.700 eV

- Life is less simple: there are no closed two-level systems
- This does bring many opportunities...

Pro and con of calcium

- + Visible and IR wavelengths rather than UV
- + More accessible states means more options for spectroscopy
- + Visible-wavelength lines to metastable Dstates are interesting for metrology, quantum computing, ...

- When all you want is polarization or cooling: at least two lasers required

Laser polarization of Mg

- Polarization of laser light relative to external field axis determines the selection rules for absorption.
- Circular light along the magnetic field axis: projection of angular momentum changes by +/-1
- Spontaneous emission can still occur with Δm = 0
 => optical pumping into stretched states
- (F, m_F) = (2,2) ⇔ (I, m_I) = (3/2, 3/2)
 => nuclear polarization
- Note: only way to avoid dark states is to cover all HFSinduced transitions
 - Use multiple laser beams / sidebands
 - Have broadband laser

Laser polarization of Ca

m_F: -2 -1 0 1 2

A WARNER BROS. GARTOON

IN N

WARNER BROS. INC. 1989

Imaged by Heritage Auctions, HA.com

Laser cooling

- Umbrella term for a variety of techniques to reduce the temperature of an ensemble of atoms with laser beams
- Doppler cooling: ion receives momentum kick along laser axis when absorbing a photon, emits isotopically; with reddetuned laser light this results in a net slow-down after many cycles
- Ions can be cooled to low harmonic oscillator quantum number
- Resolved sideband cooling: excitation on the red sidebar to drive system to lowest HO state
 => ions as close to at rest as QM allows...

Single-ion imaging

Dedicated ion traps can collect 1000s of photons/s/ion

Careful imaging enables resolving individual ions (separation: order micrometer)

Polarization measurement from fluorescence

- Use the probe laser light to inform on degree of polarization
- Demonstrated with the K mot in TRIUMF but poor S/B with less than ~ 10⁴ atoms in the trap
 - Collimation lens: 20 cm from trap center = 1:1000 geometric coverage – can we do better?

f with TRIMAT $\beta \nu \gamma f$ Isospin-hindered fIn progress: More direct probe of ⁴¹K population

> Our ³⁷K probe is in situ and nondestructive, but as a 1-parameter fit could use confirmation.

• $4S_{1/2} \rightarrow 5P_{1/2}$ has 1.1 Mhz FWHM, so resolves m_F levels split by our 2 Gauss Bz holding field

Destructive and alters P but still provides useful info

Optical Pumping

Slide by John Behr (yesterday)

4S_{1/2}

2

F=2

F=1

m=-2

532 nm

405 nm

σ

770 nm

F=2

F=1

F=2

F=1

Polarization measurement from fluorescence

- Use the probe laser light to inform on degree of polarization
- Demonstrated with the K mot in TRIUMF but poor S/B with less than ~ 10⁴ atoms in the trap
 - Collimation lens: 20 cm from trap center = 1:1000 geometric coverage – can we do better?
- Laser ionization?
 - Challenging for Mg⁺.

Polarization measurements

have one of RIDE removed during tests of polarization?

> Insert moveable mirror to guide light to detector?

Opportunities and synergies

Starting point...

- Polarization of Ca is a bit more involved than Mg
- Measurements of polarization require a cw laser system
- Ideally, also laser cooling
- => Ideally, work is performed 'offline' to explore
- In Leuven, I have initiated the construction of a trapped-ion lab for precision optical spectroscopy

Opportunity 1: sympathetic cooling of RIBs

- Co-trapping an ion of interest into a lattice/cloud of laser-cooled ions
- Coulomb interaction cools down the non-lasercoolable ions
- Naturally, this dramatically improves the emittance of the ions once extracted from the trap.
- Potential application in ultra-high precision mass measurements
 - Translates to improved TOF resolution
 - Translates to well-localized ion clouds for phase-imaging ion cyclotron techniques

KU LEUVEN

Opportunity 2: IS spectroscopy of single ions

- Once trapped and 'locked-in' the cooling cycle, a single ion can emit ~10⁸ photons per second!
- Spectroscopy can be done with single ions
 - Attractive prospect for exotic isotope studies...

Single ion quantum jumps:

Opportunity 2: IS spectroscopy of single ions

- Once trapped and 'locked-in' the cooling cycle, a single ion can emit ~10⁸ photons per second!
- Spectroscopy can be done with single ions
 - Attractive prospect for exotic isotope studies...
- Charge radii of magic calcium isotopes are of considerable interest for testing state-of-theart nuclear theories
 - Extend measurements far beyond current possibilities?

Opportunity 2: IS spectroscopy of single ions

- Isotope shift measurements of the quadrupole clock transitions to mHz levels
- Test for physics beyond the standard model?

shift, generating the slope. From a maximum likelihood fit to a linear relation, we obtain an isotope shift at null magnetic field of $\delta v_{88,86}^{S,D} = 570\,264\,063.435(9)(5)(8)$ Hz (total)(statistical)(systematic), which corresponds to a relative uncertainty of 1.6×10^{-11} . Our uncertainty is a ~ 10^{-17} fraction of the optical transition frequency. We also measure a differ-

T. Manovitz et al, PRL 123, 203001 (2019) **KU LEUVEN**

Opportunity 3: moment measurements with single ions

- Direct g-factor measurements in strong external magnetic fields $H = hAI \cdot J - (\mu_I + \mu_I) \cdot B$,
- Nuclear g-factor contribution typically 2000 times smaller

Opportunity 3: moment measurements with single ions

- Direct g-factor measurements in strong external magnetic fields $H = hAI \cdot J - (\mu_I + \mu_I) \cdot B$,
- Nuclear g-factor contribution typically 2000 times smaller frequency of $f = 3\,199\,941\,076.920(46)$ Hz from which we determine $\mu_I/\mu_N = -1.315\,350(9)(1)$
- Ratio of g-factor and magnetic moment: information on the *magnetization* radius (complimentary to *charge* radius)
 - Can also be probed from ratio of hyperfine constants, which clearly this method is also capable of determining
- Higher-order electromagnetic moments

$$\Omega\left({}^{137}\mathrm{Ba}^{+}_{\mathrm{D}_{5/2}}\right) = 0.0496(37) \ (\mu_{\mathrm{N}} \times \mathrm{b}),$$

In conclusion...

- Laser polarization of Ca will be an additional step in complexity compared to Mg... But not by too much.
- Polarization measurements in MORA require some additional thinking.
 - How to measure fluorescence (efficiently)?
 - Simultaneous with correlation measurement?
 - Laser-cooling required to resolve zeeman substates. Narrowband laser systems required.
 - => Development and investment required
- Synergy with other interesting research avenues exists
 - Laser spectroscopy, enhanced mass spectrometry, ...
- Development work in Leuven may provide an interesting route (pending funding)

