Microwaves for nuclear spectroscopy Motivation

Search for chirality flipping currents beyond the LHC?

Challenging goal: Measure beta spectra with accuracies 10⁻³ or better

Microwaves for nuclear spectroscopy Traditional techniques

Beta spectroscopy, developed over many decades

- Calorimetry (Silicon semiconductors, Scintillators)
- Magnetic spectroscopy

Uncertainties typically at 1% Maybe can improve to 0.1%, but beyond? Any other possibilities?

Microwaves for nuclear spectroscopy Basic idea of Cyclotron Radiation Emission Spectroscopy (CRES)

 β undergoes cyclotron motion in *B* field. radiation frequency \rightarrow beta energy

$$\omega_{radiation} = \omega_{cyclotron} = \frac{qB}{E}$$
 e- energy

Microwaves for nuclear spectroscopy

Difficulty: power \approx femtoWatt

Power \approx femtoWatt To detect small signals \rightarrow use waveguides

Example: TE_{11} -mode \vec{E} lines

Radiation amplitude proportional to

$$\int d^3x \, \vec{E}_{11} \cdot \vec{J}$$

$$\omega_{radiation} = \omega_{cyclotron} = \frac{qB}{E}$$

Microwaves for nuclear spectroscopy

Proposal and 1st implementation: Project 8 collaboration

He6-CRES – Collaboration

W. Byron¹, W. DeGraw¹, M. Fertl², A. Garcia¹, B. Graner¹, H. Harrington¹, L. Hayen³, X. Huyan⁴, D. McClain⁵, D. Melconian⁵, P. Mueller⁶, N. Oblath⁴, R.G.H. Robertson¹, G. Rybka¹, G. Savard⁷, D. Stancil³, D. Storm¹, H.E. Swanson¹, R.J. Taylor³, B.A. Vandeevender⁴, F. Wietfeldt⁷, A. Young³

External collaborators' commitments

Mainz: general advice (0.1 senior faculty.) **NCSU:** RF calculations, magnetic trap, electric sweeper, analysis strategy (0.1x2 senior faculty, 0.1 senior pdra, 0.5 student.) **ANL:** develop ion source + advice with ion trap + advice with magnet (0.1x2 senior faculty.) **Texas A&M:** develop ion trap, help with beta monitors (0.1 senior faculty, 0.2 senior pdra, 0.5 student.) **PNNL:** help with RF, production of 83Kr, help with analysis (0.1x2 senior staff, 0.1 posdoc.) **Tulane:** participation in experiment, help with simulations, and some hardware (0.1 senior faculty.)

He6-CRES – Collaboration

W. Byron¹, W. DeGraw¹, M. Fertl², A. Garcia¹, B. Graner¹, H. Harrington¹, L. Hayen³, X. Huyan⁴, D. McClain⁵, D. Melconian⁵, P. Mueller⁶, N. Oblath⁴, R.G.H. Robertson¹, G. Rybka¹, G. Savard⁷, D. Stancil³, D. Storm¹, H.E. Swanson¹, R.J. Taylor³, B.A. Vandeevender⁴, F. Wietfeldt⁷, A. Young³

External collaborators' commitments Mainz: general advice (0.1 senior faculty.) **NCSU:** RF calculations, magnetic trap, electric sweeper, analysis strategy (0.1x2 senior faculty, 0.1 senior pdra, 0.5 student.) **ANL:** develop ion source + advice with ion trap + advice with magnet (0.1x2 senior faculty.) **Texas A&M:** develop ion trap, help with beta monitors (0.1 senior faculty, 0.2 senior pdra, 0.5 student.) **PNNL:** help with RF, production of 83Kr, help with analysis (0.1x2 senior staff, 0.1 posdoc.) **Tulane:** participation in experiment, help with simulations, and some hardware (0.1 senior faculty.)

He6-CRES – Technique Basics

The e- cyclotron motion excites RF waves with

$$\omega_c = \frac{q_B}{E/c^2} \rightarrow E$$

He6-CRES – Technique Basics

CENPA Center for Experimental Nuclear Physics and Astrophysics

- Measures beta energy at creation, before complicated energy-loss mechanisms.
- No background from room photon or e scattering.
- 6He/19Ne in gaseous form works well with the technique.
- Counts needed not a big demand on running time.
- High resolution: allows debugging of systematic uncertainties.

Y = (K + m)/m

He6-CRES – Technique Basics

⁶He-CRES: how to confirm a real signal? Check on signature by measuring ¹⁴O and ¹⁹Ne:

Both ¹⁴O and ¹⁹Ne can be produced in similar quantities as ⁶He at CENPA.

¹⁹Ne source already working.

¹⁴O as CO (T_{freeze} = 68 K) Previous work at Louvain and TRIUMF.

He6-CRES – Experimental Setup

Assembly

He6-CRES – FN Tandem at Seattle

Presently: ⁶He via ⁷Li(d,³He) $t_{1/2} \approx 0.8$ s ¹⁹Ne via ¹⁹F(p,n) $t_{1/2} \approx 17$ s

He6-CRES – First ⁸³Kr Conv. e's detection

Garcia- University of Washington

He6-CRES – ¹⁹Ne

Events from ¹⁹Ne:

- First CRES measurements at *E* >30 keV;
- First CRES measurement of positrons.

He6-CRES – Next 3 years goals

¹University of Washington,

W. Byron¹, W. DeGraw¹, M. Fertl², A. Garcia¹, B. Graner¹, H. Harrington¹, L. Hayen³, X. Huyan⁴, D. McClain⁵, D. Melconian⁵, P. Mueller⁶, N. Oblath⁴, R.G.H. Robertson¹, G. Rybka¹, G. Savard⁷, D. Stancil³, D. Storm¹, H.E. Swanson¹, R.J. Taylor³, B.A. Vandeevender⁴, F. Wietfeldt⁷, A. Young³

² Johannes Gutenberg University Mainz,		
³ North Carolina State University, ⁴ Pacific Northwest National Laboratory	He6-CRES phases	
⁵ Texas A&M University,		
⁶ Argonne National Lab,	Phase I: proof of principle	
⁷ Tulane University	Observe ⁸³ Kr lines	
	Understand RF issues and spectra	Novt 2 voors
	Study power distribution	
	Detect of cvcl. radiation from ⁶ He and ¹⁹ Ne	Finish Phase I
	,	Get started Phase II
	Phase II: first measurement ($b < 10^{-3}$)	$(b \approx 10^{-2} \text{ first goal})$
	⁶ He and ¹⁹ Ne measurements.	Prepare proposal Phase III
	Develop ¹⁴ O source.	
	Phase III: ultimate measurement ($h < 10^{-4}$)	
	140 measurements	
	Uniedsurennents.	
	ion-trap for no limitation from geometric effect.	

He6-CRES – Beta Monitor

To connect spectra at different *B* fields, use Beta Monitor

SiPM readout for scintillators Insensitive to B field.

CENPA

Center for Experimental Nuclear Physics and Astrophysics

SiPM board, based on MuSun design

He6-CRES: Waterfall plot slopes

Need careful studies of systematic effects.

Example: compare ¹⁹Ne to ⁸³Kr.

Finite freq./time resolution and large difference in df/dt \rightarrow variation of response versus beta energy.

Sparce spectogram with track reconstruction

He6-CRES: Waterfall plot slopes Something unexpected

We designed our experiment to look in the frequency range where betas would only be radiating into lowest TE₁₁ propagating mode.

He6-CRES: Waterfall plot slopes Something unexpected

Spectrogram

Slide prepared by Heather Harrington

He6-CRES: Waterfall plot slopes Slopes show resonance-like structures

Slide prepared by Heather Harrington

He6-CRES: Waterfall plot slopes

PHYSICAL REVIEW LETTERS

Inhibited Spontaneous Emission

Daniel Kleppner

FIG. 1. (a) Mode density in a perfectly conducting cylindrical waveguide. Frequency is in units of the lowest cutoff frequency of the waveguide, $\nu_0 = 0.29c/a$, where a is the radius. For clarity, the singularities have been truncated. The smooth curve represents the mode density in free space. (b) Ratio of waveguide mode density to free-space mode density. The heavy

We now understand that the E_{nm} . J coupling has higher harmonics that need to be considered.

Kleppner had actually anticipated such behavior: PRL **47**, 233 (1981)

At cutoff, the guides behave like cavities, which show up as resonances in the waterfall plot slopes.

He6-CRES: Doppler effect

As betas move axially in the magnetic trap, the signals show up with Doppler shifts. The axial frequency is approx. cyclotron freq./500

Decay cell

He6-CRES: Doppler effect

CENPA Center for Experimental Nuclear Physics and Astrophysics

As betas move axially in the magnetic trap, the signals show up with Doppler shifts. The axial frequency is approx. cyclotron freq./500

Consequence: side bands \rightarrow power in main band weaker \rightarrow worse SNR

Up until recently our plan was to do product of the signals from two ends

Decay cell

Slide prepared by Drew Byron

Garcia- University of Washington

He6-CRES: Doppler effect

CENPA Center for Experimental Nuclear Physics and Astrophysics

As betas move axially in the magnetic trap, the signals show up with Doppler shifts. The axial frequency is approx. cyclotron freq./500

Consequence: side bands \rightarrow power in main band weaker \rightarrow worse SNR

Up until recently our plan was to do product of the signals from two ends

Decay cell

He6-CRES: trap emptying

Without trap slewing: ×10 (ZH) Sparse Spectrogram 120 2 1200 1000 800 MEz 600 400 200 Time In Run C (s) 0.0 0.2 0.4 0.6 Time (s)

Decay cell mag. trap coils (*T*= 120 K λ/4 Kapton windows des

Decay cell

Slide prepared by Drew Byron

With trap slewing:

He6-CRES: trap emptying & identifying events

Sparse Spectrogram with Track and Event Overlay

He6-CRES: trap emptying & identifying events

Sparse Spectrogram with Track and Event Overlay

He6-CRES: trap emptying & identifying events

Sparse Spectrogram with Track and Event Overlay

He6-CRES – Scattering with residual gas

Scattering: leads to non-trivial response function

Center for Experimental Nuclear Physics and Astrophysics

He6-CRES: Status & Summary

CENPA Center for Experimental Nuclear Physics and Astrophysics

CRES: potentially powerful technique for beta spectroscopy

But small SNR \rightarrow have to work to avoid systematic distortions. DAQ: challenging, get about 1 Gbyte/s.

By now have observed CRES events from ⁸³Kr, ⁶He and ¹⁹Ne

Next: systematically take data from ⁶He and ¹⁹Ne and analyze ratio (less sensitive to issues related to events with small SNR)