🕇 with TRINAT

βvγŤ

Isospin-hindered

$\circledast {\mathcal T}$ with TRIUMF's Neutral Atom Trap for β decay

- $\vec{p_{\nu}} \cdot \vec{p_{\beta}} \times \vec{p_{\gamma}}$ in ³⁷ or ³⁸mK $\beta \nu \gamma$ decay Low-E, Weakly coupled strongly interacting \mathcal{X}
- $D \hat{I} \cdot \frac{\vec{p_{\beta}}}{E_{\beta}} \times \frac{\vec{p_{\nu}}}{E_{\beta}}$ in isospin-hindered ^{45,47}K decay sensitive to isospin-breaking \mathcal{X} in final nucleus
- Technical: optical pumping of $^{37}{\rm K}$ 99.1±0.01% + Thin mirrors, improved $\sigma^+...$
- AB, Arecoil in 37K decay

OTRIUMF

A. Gorelov J.A. Behr J. McNeil F. Klose (UG)

Support: NSERC, NRC through contribution agreement with TRIUMF, US DOE

Optical Pumping

🕇 with TRINAT

CALC WITH 3-momentum *T* **correlation: Our example**

Isospin-hindered 7

When t
$$\rightarrow$$
 -t :
 $\vec{r} \rightarrow \vec{r}$ $\vec{p} \sim \frac{d\vec{r}}{dt} \rightarrow$ - \vec{p}

Buy t

$$\vec{p}_{\nu} \cdot \vec{p}_{\beta} \times \vec{p}_{\gamma} = -\vec{p}_{\text{recoil}} \cdot \vec{p}_{\beta} \times \vec{p}_{\gamma}$$

$$\stackrel{t \to -t}{\longrightarrow} \vec{p}_{\text{recoil}} \cdot \vec{p}_{\beta} \times \vec{p}_{\gamma}$$
BGO -> GAGG
BGO -> GAGG
BGO -> GAGG

- We can test symmetry of apparatus with coincident pairs
- \bullet Not exact: outgoing particles interact \rightarrow 'final-state' fake ${\cal I}$

֎ 3-momentum 𝒯 correlations in 2nd, 3rd generations

Burt

with TRINAT

- Medium and high-energy TRV 3-momentum correlations:
 - $K^- \rightarrow \pi^0 e^- \bar{\nu}_e \gamma$ INR Moscow 2007, $A_{TRV} = -0.015 \pm 0.021$ Three progressively better calculations of the final-state effects were done (Khriplovich+Rudenko 1012.0147 Phys Atomic Nuclei 2011)

Isospin-hindered 7

- 3-momentum correlations (no γ) at LHCb and BABAR, 0 \pm 0.003 (Martinelli arXiv 1411.4140)
- General formalism for triple product momentum asymmetries Bevan 1408.3813
- T in $\pi^{\pm} \rightarrow e^{\pm} \nu e^{+} e^{-}$ Proposed but never done [Flagg Phys Rev **178** 2387 (1969)]

Ours would be unique measurement in 1st generation of particles

T with TRINAT

BUY T

Motivation \mathcal{T} in $\beta \nu \gamma$ decay

• Once *P* was found to be maximally broken, many spin-dependent T-odd observables were proposed and measured to be $\lesssim 10^{-3}$ like $D\hat{I} \cdot \frac{\vec{p_{\beta}}}{F_{\alpha}} \times \frac{\vec{p_{\nu}}}{F_{\alpha}} R\vec{\sigma}_{\beta} \cdot \hat{I} \times \frac{\vec{p}_{\beta}}{F_{\alpha}}$

• In contrast, our type of \mathscr{T} needs 3 independent momenta. E.g. proposed \mathscr{T} in $\pi^{\pm} \rightarrow e^{\pm}\nu e^{+}e^{-}$ [Flagg Phys Rev 178 2387 (1969)] was never done:

• Our exp. would be unique to 1st generation of particles

Harvey Hill Hill PRL 99 261601 (2007); EFT with SM interactions combined in the nucleon: goal was extra γ production by medium-energy ν 's OCD Weak E&M $\mathcal{L} = \frac{-4c_5}{m_{\rm nucleon}^2} \frac{eG_F V_{ud}}{\sqrt{2}} \epsilon^{\sigma\mu\nu\rho} \bar{p} \gamma_{\sigma} n \bar{\psi}_{eL} \gamma_{\mu} \psi_{\nu L} F_{\nu\rho}$ Gardner, He PRD 2013: looked for contributions to radiative n decay. Noticed QCD antisymmetry led to a scalar triple product of momenta \bigcirc : $|\mathcal{M}_{c5}|^2 \propto rac{lm(c_5 g_V)}{M^2} rac{E_e}{p_e \cdot k} (ec{p_e} imes ec{k_\gamma}) \cdot ec{p_
u}$ Needs non-SM QCD-like physics.

scale $M \sim 10$'s of MeV

Gardner further considered explicit models with new particles weakly coupled to SM, strongly interacting among themselves

[⊗] Gardner's interaction needs Vector current $\Rightarrow \beta^+$ emitter

Isospin-hindered 7

• β^- decays with vector current:

Burt

n, ³H, (not easy)

'isospin-forbidden Fermi' amplitudes with $log(ft) \sim 5-6$ (e.g. ³⁵S) But isobaric analogs usually lie high in excitation for β^-

E.g. ²⁴Na 4⁺ \rightarrow ²⁴Mg 4⁺, *log*(*ft*) = 6 (famous for the analog transition from ²⁴Al), feeds 2 subsequent γ s so does not help.

 $^{92}\text{Rb}~0^- \rightarrow 0\text{+}$ is 'first-forbidden G-T' which does not have the vector current,

nor does first-forbidden unique $^{42}\text{K}\ 2^- \rightarrow 0^+$

Other first-forbidden can have vector current contributions times some other operator (93 Rb) but these have a lot of γ s

• The interference with SM term requires this vector current to produce the Gardner-He term.

βvy f

Isospin-hindered 7

xtras

Other constraints

• Direct constraint from $n \rightarrow p \ \beta \nu \gamma$ branch $\propto |c_5|^2$ Bales PRL 2016: $3.4 \pm 0.2 \times 10^{-3}$ (theory 3.1×10^{-3}) $\Rightarrow \frac{\text{Im}(c_5)}{M^2} \leq 8MeV^{-2} \Rightarrow {}^{37}\text{K} \ TRV$ asym can be ~ 1

🕇 with TRINAT

WTRIUMF More general 2-loop: EDMs and \mathcal{T} radiative β decay No spin involved, so again different physics at lowest order, but

Isospin-hindered t

Buy t

Ng, Vos private comm.: $(lm(c_5))$ interaction + s.m. β decay \rightarrow n EDM at 2 loops 'Naive Dimensional Analysis': $d_n \sim rac{Im(c_5)G_Fe}{M^2} rac{G_F m_n^5}{(16\pi^2)^2} \sim rac{10^{-22}e - cm}{M^2} [{
m MeV^{-2}}]^{**}$ $d_n[\exp] < 3 \times 10^{-26}$ e-cm (Baker 2006 PRL)

null n EDM $\Rightarrow \frac{Im(c_5)}{M^2} < 3 \times 10^{-4} [MeV^{-2}] \rightarrow 10^{-3}$ asym ** We could still reach this sensitivity and measure this physics directly [Some $\gamma \beta \nu$ interactions make at 1 loop a neutron EDM] ** Loop integral momenta must stay below EFT scale *M*, so if $M \sim 100$ MeV, using $m_{nucleon}^5$ likely overestimates by orders of magnitude

7/33

ullet Classical bremsstrahlung \propto 1/ E_γ

• Any time-reversal violating interaction involves β , ν and γ and produces a 4-body phase space $\propto E_{\gamma}(Q - E_{\gamma})^3$ Bernard PLB 593 105 (2004)

Sim suggests sensitivity to $\sim 5\%$ of classical 0 1 2 3 4 bremsstrahlung rate E_{LYSO} [MeV] We are concentrating on $E_{\gamma} > 511$ keV and the 'opposite' β^+

Optical Pumping

$\beta \nu \gamma f$ Isospin-hindered fTRiumf Neutral Atom trap at ISAC

TRIUMF

 37 K TiC target 70 μ A $8x10^7/s$ 1750°C protons main TRIUMF cyclotron 'world's largest' 18 m 500 MeV H $^-$ (0.5 Tesla)

🕇 with TRINAT

βvγŤ

Isospin-hindered 7

$^{\otimes \text{TRIUMF}}$ *T* in isospin-hindered $^{45}_{19}$ K β⁻ decay

Enhancements to some sources of *TRV* for observables "*D*" and " E_1 ": Barroso and Blin-Stoyle PLB 1973 One E_1 measurement: ⁵⁶Co Calaprice, Freedman 1977 This is pre-proposal. Our goal: find an enhanced D measurement case for

TRlumf Neutral Atom Trap (TRINAT):

Enhancement of \mathcal{T} in isospin-hindered β^- decay Barroso and Blin-Stoyle, PL 45B 178 (1973):

Isospin-hindered t

 $\frac{J_{1}^{T}T_{1}T_{3}-1}{J_{1}}$ IA> T operation **Observables:** $D\hat{I}\cdot \frac{\vec{p}_{\beta}}{F_{\alpha}}\times \frac{\vec{p}_{\nu}}{F_{\alpha}}$ IP) J, T, T3 $E_1 (\hat{\mathbf{I}} \cdot \hat{\mathbf{k}}_{\gamma}) (\hat{\mathbf{I}} \cdot \hat{\mathbf{p}}_{\beta} \times \hat{\mathbf{k}}_{\gamma})$ *D*, E_1 are both \propto J, T-1, Ts1 'antianalog' ---- $\boldsymbol{K} = \frac{\boldsymbol{I}\boldsymbol{M}(\boldsymbol{G}_{\boldsymbol{V}}\boldsymbol{G}_{\boldsymbol{A}}^{*}\boldsymbol{M}_{\boldsymbol{V}}\boldsymbol{M}_{\boldsymbol{A}}^{*})}{|\boldsymbol{G}_{\boldsymbol{V}}|^{2}|\boldsymbol{M}_{\boldsymbol{V}}|^{2}+|\boldsymbol{G}_{\boldsymbol{A}}|^{2}|\boldsymbol{M}_{\boldsymbol{A}}|^{2}}$ - 1G) $K = rac{y}{(1+y^2)} \sin(lpha_V - lpha_A)$ with $y = \frac{g_V |M_V|}{g_A |M_A|}$

Buy t

 \mathbf{T} with TRINAT

In this system, $\tan \alpha_{\rm V} = -{\rm i} \; \frac{\langle F | V_{\vec{f}} | A \rangle}{\langle F | V_{\rm Coul} | A \rangle}$ So for TRV physics mixing $|F\rangle$ with $|A\rangle$, then $V_{T'}$ is only competing with V_{Coul} , not V_{strong} , enhancing α_V by $\sim 10^3 \odot$ $M_{\rm A}$ can't be too small (want $y \approx 0.1$) or $\alpha_{\mathbf{A}}$ can cancel Simplest I.M.: $M_V \sim \sqrt{2T} \frac{\langle F|V_{coul}|A \rangle}{\Delta E_{FA}} \Rightarrow K \sim \frac{\langle F|V_f|A \rangle}{\Delta E_{FA}} \frac{\sqrt{2T}}{M_A}$ independent of $\langle F|V_{coul}|A \rangle \odot$? so we should choose good $\frac{Y}{1+y^2}$ so α_V remains the figure of merit \odot

Buy t

Isospin-hindered

xtras

RIUMF Parity even, N-N isospin-breaking \mathcal{T} : complementary to EDM's or \mathcal{T} neutron resonance experiments?

Volume 45B, number 3

The following simple phenomenological form is assumed for the *T*-violating potential [e.g., 19]

$$V_{\text{t.v.}} = G_{\text{t.v.}} \frac{1}{2} [f(\mathbf{r})\hat{\mathbf{r}} \cdot \mathbf{p} + \text{h.c.}]$$

$$\times [1 + a \sigma^{(1)} \cdot \sigma^{(2)})(\tau_3^{(1)} + \tau_3^{(2)}) \tag{11}$$

+ $(b + c \sigma^{(1)} \cdot \sigma^{(2)}) \tau_3^{(1)} \tau_3^{(2)}]$

• When GT is weak, 2nd-class induced semileptonic *T* tensor d_{II} can disproportionately interfere (Kim+Primakoff PR 180 1502 (1969); J. Mortara Ph.D. thesis 1992) Isospin-hindered 7

Asymmetry of the 45° γ detectors with nuclear alignment

FIG. 3. A schematic representation of the detector geometry showing the three NaI γ detectors in the horizontal plane of crystal at angles of $-45^{\circ}+45^{\circ}$, and 180° to the *c* axis of the cobalt crystal. The β detector is located below the crystal.

Calaprice, Freedman, (Princeton); Osgood, Thomlinson (BNL) PRC 15 381 (1977)

$$\textit{E}_{1} = -0.01 \pm 0.02$$

log(ft) = 8.7 (E_{β} spectrum, no β - γ correlation \Rightarrow still allowed!)

y = -0.13 \pm 0.02 just right Markey and Boehm PRC 26 287R (1982)

 V_{Coul} = 2.9 keV, $V_{TRV}=54\pm110\mathrm{eV}$

(J.L. Mortara Ph.D. thesis 1992 UCB $E_1 = -0.001 \pm 0.006$)

JB can't find theory papers citing these results \odot

t with TRINAT

$\textcircled{A dozen measurements of } M_V, \langle F | V_{coul} | A \rangle$

Physics community has pushed to find good \mathcal{T} cases Mostly β - γ circular polarization correlation

Atkinson NPA114 143 (1968): .25 Mann PR 137 B1 (1965); |^vW^v6/[^]W[^]6| **as** Behrens ZfP 201 153 (1967) Hints of a correlation between $|M_V|$ and $|M_A|$ for these 'antianalog' configurations: $|M_V|/|M_A|$ not changing much as .10 $|M_A|$ falls ⁵⁷Fe V_{Coul} = 54±10 keV, ≥.05 ⁵⁶Co V_{Coul} = 2.9±0.5 keV

.00

Ŕ

$\beta \nu \gamma J$

C408

GAGG

Isospin-hindered

• $A_{\text{recoil}} \propto A_{\beta} + B_{\nu}$ $A_{\text{recoil}} \stackrel{p_{\text{recoil}} \gg m_{\beta}}{=} 5/8(A_{\beta} + B_{\nu})$ (Depends on recoil energy via predicted kinematics) S. Treiman Phys Rev 1958 • So $A_{\text{recoil}} = 0$ for pure Gamow-Teller $A_{\text{recoil}} = 2\sqrt{\frac{J}{2}}G_{\nu}M_{\nu}/G_{A}M_{A}$

linear in
$$M_V/M_A$$

 \bullet Recoil- γ coincidences to select the antianalog

Determination of y with uncertainty \sim 0.02 or better should be possible

eta asymmetry to determine 1/2,3/2,5/2+

(see Pitcairn PRC 79 015501 (2009) We measured $A_{T}=0.015(29)(19)$ for G-T decay of $^{80}{\rm Rb}$)

RIVER TRINAT and D

Have considered D in ${}^{37}K \rightarrow {}^{37}Ar + \beta^+ + \nu$ 5x10⁻⁴ statistical uncertainty per week of counting is possible.

Hard to compete with *n* and with ¹⁹Ne on the G_V/G_A interference physics (constrained by Ng-Tulin PRD 2012) We can get better statistics in ⁴⁵K, an isospin-hindered case: β^- decay always makes a charged recoil for efficient detection.

Uncertainty Projection: Losing by 10x in sensitivity by $1/M_A$, given $E_1 = -0.01 \pm 0.02$ in ⁵⁶Co, and winning by isospin sqrt(7/2), we can get a limit on K by this effect 4x better per week of counting.

How that translates into $\sin(\alpha_V)$ and $V_{\mathcal{T}}$ depends on V_{Coul} (2.9 keV in ⁵⁶Co).

ytras

WTRIUMF D in atom trap: Features, Systematics

Isospin-hindered

Bun

- Collect recoils going into 4 pi with electric field of 1 kV/cm
- Full reconstruction of recoil and beta momenta
- Point source: we know where it is (by sampling photoionization) and it doesn't move when we flip the polarization • Any stray polarization along wrong axis is deadly, a lowest-order fake D: Measure with singles asymmetry for recoils and β 's

ytras

f with TRINAT

BUYT

RIUMF ⁴⁷K vs. ⁴⁵K

y (Fermi/GT ratio) must be measured

80% branch 1/2 $^+ \rightarrow 1/2^+$

Likely more reliable calculation of final-state D_{EM} is possible Shorter $t_{1/2} \rightarrow$ less background

from untrapped atoms

10x Faster G-T (s.p. s1/2 5x faster GT than

d3/2)

may be problematic

$\beta \nu \gamma f$

Isospin-hindered 7

®TRIUMF Final-state (false) D

Holstein PRC 5 1529 (1972) • Assumes weak magnetism *b* and induced tensor *d* are single-particle values, not suppressed like $M_A \Rightarrow$ Should be an upper limit • Needs a calculation, but

should be OK

For ⁵⁶Co final-state E_1 =0.0002 (Calaprice 1977)

 $\begin{array}{ccc}
\not \text{ with TRINAT} & \beta \nu \gamma \not f & \text{Isospin-hindered } f \\
\hline
& & & & \\
\end{array}$ Usospin-hindered $\begin{array}{c}
 & 45 \\
 & 19 \\
 & K \\
 & 19 \\
\end{array}$ K decay

Implementing Barroso and Blin-Stoyle PLB 1973 with TRINAT,

We would measure $D\, {\hat {f J}} \cdot rac{ec{p_eta}}{{E_eta}} imes rac{ec{p_
u}}{{E_eta}}$

Project $5x10^{-4}$ statistics per week, 4x better precision on observable *K* than ⁵⁶Co Calaprice and Freedman

Extracting V_{TRV} needs M_V/M_{GT} to extract V_{coul} , which we would do by the recoil asymmetry wrt spin

Complementary to other *TRV*: *P* even, Isovector/tensor N-N *TRV* (evades Ng-Tulin 2012); er Semilentenia 2nd class d. *TPV*

or Semileptonic 2nd-class d_{II} TRV

Optical Pumping

RIUMF Precision measurement of the nuclear polarization of

Isospin-hindered

laser-cooled, optically pumped ³⁷K

Bur T

- Motivation: spin-polarized β decay
- Direct Optical pumping

Our polarization method also provides a continuous probe

Complication: Coherent population trapping. Easy to kill.

• Measurement of ³⁷K polarization

New J. Phys. 18 (2016) 073028

B Fenker^{1,27}, J A Behr³, D Melconian^{1,22}, R M A Anderson³, M Aholm^{3,4}, D Ashery³, R S Behling^{1,6}, I Cohen³, I Craiciu³, J M Donlou², C Farfan³, D Friesen³, A Gorelov³, J McNeil³, M Mehlman^{1,2}, H Norton³, K Olchanski³, S Smale³, O Thériaul⁴, A N Vantyghem³ and C L Warner³

- 1 Cyclotron Institute, Texas A&M University, 3366 TAMU, College Station, TX 77843-3366, USA
- ² Department of Physics and Astronomy, Texas A&M University, 4242 TAMU, College Station, TX 77842-4242, USA
- 3 TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
- ⁴ Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- ⁵ School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
- ⁶ Department of Chemistry, Texas A&M University, 3012 TAMU, College Station, TX 77842-3012, USA

Our first use: ³⁷K A_{β} Fenker PRL 120 062502 (2018)

• ion + shakeoff e^- for A_{recoil}

 $(oldsymbol{A}_eta-oldsymbol{B}_
u)oldsymbol{P}-oldsymbol{a}_{eta
u}+2oldsymbol{c}/3$ = 1 or 0, indep of $\frac{M_{GT}}{M}$

observable, but we may push upgrades of singles A_{β} and A_{recoil}

The neutron community checks this combination of observables for consistency Mostovoi+Frank Pis'ma Zh, Eksp. Teor. Fiz. 24 45 (1976)

M. Anholm M.Sc. UBC 2011

Cur8: 120us

X!:2.80ms AX1:357.1H Isospin-hindered t

Direct Optical Pumping, *I*=3/2

Buy t

t with TRINAT

 Biased F=2 4P_{1/2} random walk F=1 • σ^{\pm} light $\Gamma = 6 \text{ MHz}$ $\sigma +$ $4S_{1/2} \rightarrow 4P_{1/2}$ $\Delta m = +1$ transition The same light creates the polarization F=2 and probes it F=1 nondestructively m = -2 - 1 02

• optimize with ⁴¹K, almost same hyperfine splitting as 37 K

 $\vec{F} = \vec{J}_{atom} + \vec{I}_{nucleus}$ H_{hyperfine} = - $\vec{\mu_N} \cdot \vec{B_e} = A \vec{I} \cdot \vec{J}$ Spin flips: $\sigma^+ \rightarrow \sigma^-$; small frequency shift (-2 MHz) to compensate Zeeman shift

27/33

m=-2 -1 0 1 2

Same centroid *P* 2 ways: Rate eqs for populations $\frac{dN_i}{dt} = -R_{ji}N_i + R_{ij}N_j + \lambda N_j$ Optical Bloch Eqs include B_{\perp} rigorously $\frac{d\rho}{dt} = \frac{1}{lh}[H, \rho] + \lambda$

Tail \sim few % of peak \Rightarrow We need tail/peak to \sim 10% accuracy to extract *P* to \sim 0.1%

We can't <u>quite</u> extract *P* by inspection:

• Nuclear polarization is different in F = 2, $m_F = 1$ vs. F = 1, $m_F = 1$

 $\Delta F = 0$ for Larmor precession We measure S_3 and float B_{\perp} (S₃=-0.9958(8), -0.9984(13), +0.9893(14), +0.9994(5))

Fenker PRL 2018 Suppl Mat

28/33

with TRIMAT In progress: More direct probe of ⁴¹K population

Optical Pumping

xtras

532 nm F=2 $5P_{1/2}$ F=1 405 nm F=2 4P_{1/2} **F**=1 ounts σ^{\dagger} 770 nm F=2 F=1 m=-2 -1

Our ³⁷K probe is in situ and nondestructive, but as a 1-parameter fit could use confirmation.

• $4S_{1/2} \rightarrow 5P_{1/2}$ has 1.1 Mhz FWHM, so resolves m_F levels split by our 2 Gauss Bz holding field

• Destructive and alters P but still provides useful info

with TRINAT

• Combine 769.9nm D1 and 766.49 D2 with angle-tuned 780 nm laser-line filter

- \bullet Flip spin state with liquid crystal variable retarder \rightarrow twisted nematic l.c.
- Relieve stress-induced birefringence with PCTFE (Neoflon) viewport seals
- RF injection to generate the two ν 's
- \rightarrow fiber-coupled EOM

ytras

✓ with TRINAT	βνητ		Isospin-hindered 🗡			Optical Pumping xtras
	riza	tion	Imp	rove	ements 💵	EXAS ANM
SYST $ imes$ 10 ⁻⁴	ΔP		ΔT		Fixes	0.25 mm SiC-backed mirrors \rightarrow pellicles for less β^+ scattering
Initial T	σ^- 3	σ^+ 3	σ [_] 10	σ^+ 8	Measure it	Stern Family of National Photocolor
Global fit v. ave	2	2	7	6	More 355nm	/onin Au +
S ₃ ^{out} Uncertainty	1	2	11	5	Better: TnLC	4μ Kapton
Cloud temp	2	0.5	3	2		5A hatness
Binning	1	1	4	3	More 355nm	
B _z Uncertainty	0.5	3	2	7		
Initial P	0.1	0.1	0.4	0.4		
Require $\mathcal{I}_+ = \mathcal{I}$	0.1	0.1	0.1	0.2		 PCTFE viewport seals
Total SYSTEMATIC	5	5	17	14		• Lower-frequency AC-MOT
STATISTICS	7	6	21	17	More 355nm	Double OP power: fight
B. Fenker New J. Phys 18 073028 2016 Larmor precession						
$P(\sigma^+) = +0.9913(8)$ $T(\sigma^+) = -0.9770(22)$ • Uncertainty $\propto (1 - P)$						
$P(\sigma^{-}) = -0.9912(9)$ $T(\sigma^{-}) = -0.9761(27)$ so the better we make P, the						

smaller its uncertainty

Isospin-hindered 🕇

\circledast ${\mathcal T}$ with TRIUMF's Neutral Atom Trap for β decay

Buy t

- $\vec{p_{\nu}} \cdot \vec{p_{\beta}} \times \vec{p_{\gamma}}$ in ³⁷ or ³⁸mK $\beta \nu \gamma$ decay Low-E, Weakly coupled strongly interacting \mathcal{X}
- $D \hat{I} \cdot \frac{\vec{p_{\beta}}}{E_{\beta}} \times \frac{\vec{p_{\nu}}}{E_{\beta}}$ in isospin-hindered ^{45,47}K decay sensitive to isospin-breaking \mathcal{X} in final nucleus
- Technical: optical pumping of $^{37}{\rm K}$ 99.1±0.01% + Thin mirrors, improved $\sigma^+...$
- A3, Arecoil in 37K decay

OTRIUMF

A. Gorelov J.A. Behr J. McNeil

M. Ozen (UG)

 \mathbf{e}^{\dagger}

Optical Pumping

with TRINAT $\beta \nu \gamma f$ Isospin-hindered f Optical Pumping

³⁷K: isobaric mirror decays minimize nuclear uncertainties

 $\mathcal{F}t$ (Shidling PRC 2014) \Rightarrow $\rho = C_A M_{GT} / C_V M_F =$ 0.5768 \pm 0.0021

 \Rightarrow $A_{\beta}[theory] =$ -0.5706±0.0007 main uncertainty is experimental branching ratio $CVC \Rightarrow most important$ corrections: $\mu \Rightarrow \mathbf{b}_{WM}$ (small for $\pi d_{3/2}$) Induced tensor $d_1 \approx 0$ for isobaric mirror $Q \Rightarrow$ largest 2nd-order recoil + Coulomb + finite-size \Rightarrow $\Delta A_{\beta} \approx -0.0028 (E_{\beta}/E_0)$ Holstein RMP 1975 Deduced V_{ud} from exp A_{β} agrees with Hayen Severiins arXiv 1906.09870 using Behrens and Bühring

Shell model for isospin mixing \Rightarrow 0.0004 uncertainty DFT for isospin mixing has improved functional for A~37 Using weighted average for δ_C would \Rightarrow 0.0004 \rightarrow 0.0005 This could use modern theory

ytras

7 with TRINAT

Many elements can now be laser trapped

Atoms with simple transitions (allowing \sim 10,000 photon momentum transfers to cool) are easiest

But many are now possible, if you add enough lasers, depending on what efficiency one can accept

Molecules like SrF, CaF, YO have been laser-cooled

35/33

Isospin-hindered 🗡

©TRIUMF TRINAT lab: "tabletop experiment"

36/33

with TRINAT

Isospin-hindered J

TRIUMF Polarization fit to all ³⁷K data

• The small unpumped population is pretty well polarized

