

Laser spectroscopy at the IGISOL facility

Iain Moore

Department of Physics, University of Jyväskylä, Finland

and the second distances in

Outline

- Nuclear fingerprints on the atomic spectra
- All shapes and sizes deformation around N~60
- Silver complementarity with laser- and mass measurements
- Proton-rich studies between ⁴⁰Ca and ⁵⁶Ni
- Nuclear structure studies below ¹⁰⁰Sn
- Summary

Nuclear fingerprint on atomic spectra

JYU. Since 1863.

Isotope shifts of electronic transitions

Atomic Number (Z)

What can the nuclear charge radii tell us?

From a simple droplet model approach:

Note: the sign of the deformation cannot be obtained!

 $\delta < r^2 > {}^{50,A}$ (fm²)

How common is quadrupole deformation?

One might even ask how "uncommon" spherical nuclei are?

Status of the ``optical´´ nuclear landscape

IGISOL-4 facility layout

Collinear beams laser spectroscopy

General schematic of the collinear fast-beams technique

Resonance ionization spectroscopy

A selective and efficient spectroscopic method. Combine with mass separator (+ Penning trap!). Shorter lifetimes achieveable. Lower resolution wrt collinear method.

Charge radii and the region around N~60

JYU. Since 1863.

I.D. Moore, MORA Workshop, 4 May 2022

Silver isotopes: masses and optical spectroscopy

- Neutron-rich isotopes of elements of Pd, Ag, In etc are rich in isomerism
- Collinear laser spectroscopy performed on n-rich Ag isotopes in mass range A = 113 121
- JYFLTRAP Penning trap has probed Ag isotopes from A = 113 to 125
- Excitation energies of ^{119m,120m,122m,123m,124m}Ag measured for the first time
- eg, ¹¹⁶Ag, 3 states in literature
 - mass and laser spectroscopy done together (back-to-back beam times)
 - masses, excitation energies, electromagnetic moments, charge radii and spins!
- DFT calculations (Dobaczewski *et al*) exploring spin-orbit strength and time-odd mean fields

de Groote and Nesterenko, to be submitted (2022)

Rich in isomerism

On the other hand: ^{118,120}Ag, 2 states in literature

10 , mm -10 -20 -10 0 -20 X, mm

²⁰ - ¹¹⁸Ag⁺

0.4 0.3 0.2 0.1 0.0 ^{118m3}Ag ^{118m2}Ag 10 20 Photon cou 1.00 0.75 0.50 0.25 0.00 -16000 -15500 -15000 -14500 -14000 -13500 -13000 -12500 -12000

0.7

0.6 0.5

^{118m1}Ag

number of

detected ions

max

- 3 states in ^{118,120}Ag found with laser
- Only two seen with PI-ICR •
 - too short lived?
 - too close-lying in energy?
- Requires future measurements - RAPTOR

Trap-assisted β -decay spectroscopy of isomeric states in neutron-rich Ag (M. Stryjczyk)

Proton-rich nuclei in the f7/2 shell

Why is this region interesting?

Kinky shell closures...

- Charge radii display many microscopic phenomena one of these are so-called ``kinks'' seen at the shell closures
- Finer effects can also be probed via laser spectroscopy, eg an odd-even staggering between isotopes

A. Koszorus et al., to be submitted to Spectrochimica Acta (2022)

Penning trap-assisted in-source RIS

~15 years of developments

- GSI work (Kirchner) Ag has excellent extraction from graphite
- In collaboration with ECR team, a new inductively-heated cavity source
- Tested online, confirming ~1% total efficiency for Ag
- Three-step resonance laser ionization and spectroscopy

M. Reponen et al., Rev. Sci. Instrum 86 (2015) 123501

Penning trap-assisted in-source RIS

Trap-assisted spectroscopy + laser selectivity

• Information on isomeric yield ratios

Penning trap-assisted in-source RIS

Evolution of charge radii near ¹⁰⁰Sn

Article | Open Access | Published: 28 July 2021

Evidence of a sudden increase in the nuclear size of proton-rich silver-96

M. Reponen 🖾, R. P. de Groote, [...]I. D. Moore

Nature Communications 12, Article number: 4596 (2021) Cite this article

- New measurements cross N=50 shell closure in the region of ¹⁰⁰Sn
- UNEDF functionals predict a rather smooth behaviour; Fayans EDF better reproduces local variations
- None of the models reproduces the pronounced increase in crossing *N*=50
- Fayans functional also applied to recent Pd charge radii data; exploration of the strength of pairing correlations

PHYSICAL REVIEW LETTERS 128, 152501 (2022)

Impact of Nuclear Deformation and Pairing on the Charge Radii of Palladium Isotopes

S. Geldhof⁰, ^{1,2,*} M. Kortelainen, ^{1,7} O. Beliuskina,¹ P. Campbell,³ L. Caceres⁰,⁴ L. Cañete,¹ B. Cheal⁰,⁵ K. Chrysalidis,⁶ C. S. Devlin,⁵ R. P. de Groote⁰, ¹ A. de Roubin⁰, ¹ T. Eronen,¹ Z. Ge⁰,¹ W. Gins,¹ A. Koszorus,⁵ S. Kujanpää⁰,¹ D. Nesterenko⁰,¹ A. Ortiz-Cortes,^{1,4} I. Pohjalainen⁰,^{1,7} I. D. Moore⁰, ¹ A. Raggio⁰,¹ M. Reponen⁰,¹ J. Romero⁰,^{1,5} and F. Sommero⁸

Future hot cavity measurement campaigns

- Ca beam intensity 40-50 pnA (average)
- Charge radius of ⁹⁵Ag extracted
- Magnetic dipole moments for ^{95,96}Ag
- Mass measurements of ^{95,96,96m}Ag
- Tentative signs for (7⁺) isomer in ⁹⁴Ag (0.001/s)
- April 2022 200 pnA Ca beam demonstrated!

- LISE++ simulations and Gemini++ cross sections
- Assume 0.5% efficiency after mass separation, 10% transmission RFQ and trap
- Laser ionization efficiency ~10%
- ⁴⁰Ca or ⁵⁸Ni primary beam, 50 pnA
- Similar statistics as for ⁹⁶Ag (0.005 ions/s) in <12h

Proposal accepted for mass measurements of ⁹⁴Ag (14 days) Two day test beam time for Pd in 2 weeks UNIVERSITY OF JYVÄSKYLÄ

- We have a wide programme of optical spectroscopy, both collinear and ``insource´´ motivated primarily by nuclear structure physics
- Programme to explore neutron-deficient actinide isotopes exploration of octupole-deformed region (not discussed)
- RAPTOR under commissioning low-energy CRIS platform
- Cs atom trap magnetic octupole moments; BEC
- MARA-LEB will focus on in-gas jet RIS towards the N=Z line complementary to S3-LEB at GANIL
- The lab tour later this morning will give you an opportunity to explore the facility and the laser systems available.

- + Jorge Romero (dual-doctoral student MARA/MARA-LEB)
- + Andrea Raggio (Marie Curie PhD, actinides)
- + Wirunchana Rattanasakuldilok (PhD student atom trap)
- + Arthur Jaries (PhD FAIR cooler + trap)
- + Juoni Ruotsalainen (PhD trap)
- + Nikas Stylianos (postdoc astrophysics)
- + Marek Stryjczyk (postdoc decay spectroscopy)
- + Maxime Mougeot (postdoc from summer 2022)

Thanks to this excellent team!