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QML Is composite
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Objectives of QML

* Applying Machine Learning technigues on quantum computers
- Try to reduce computational complexity of ML operations

- Increase the powerfulness of the ML
- Take advantage of the incredible properties of the guantum space (Hilbert space)

 In HEP Field

- Event classification

— Multi-dimensional space exploration

Prediction accuracy

0.9

0.8

=
=i

.6

_Random guessing

: i, ey
3 —u — s — s — i el

5

10 15 20 25 an
n (system size)

—a— Best Classical ML (N=100)
Best Classical ML (N=600)

—— Proj. Quantum kernel (N=100)
n— Proj. Quantum kernel (N=600)

- Quantum kernel (N=100)
Quantum kernel (N=600)

From https://ai.googleblog.com/2021/06/quantum-machine-learning-and-power-of.html



* Machine learning
* Qubit mechanics
* Quantum computers

 Quantum machine
learning

* QML In action with
Pennylane

- OML @ LLR




Machine Learning




Problematics

x[0]=0.326785 y[0]=0.640017
x[1]=0.484787 y[1]=0.877112
x[2]=0.728836 y[2]=1.350927
x[3]=0.190499 y[3]=0.321072
x[4]=0.717005 y[4]=1.384066
x[5]=0.648116 y[5]=1.216906
x[6]=0.488057 y[6]=1.062203
x[7]=0.917032 y[7]=1.697487
x[8]=0.274938 y[8]=0.460703
x[9]=0.197535 y[9]=0.404545
x[10]=0.122173 y[10]=0.277121
x[11]=0.852632 y[11]=1.682158
x[12]=0.991762 y[12]=1.930109
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* Supervised learning : n pairs of (X,y) samples are given

* What Is the most probable y value for non-given
x=0.356 ?



Black line = best fit line

Modelization

* Simple linear regression
 y=f(a,x)=a.x

* X IS the Input

* a Is the parameter (to deterrﬁine)

* f Is the model - a priori choice

* y IS the estimated result

* vy Is the true value (know as ground truth)

* L(y,y) Is the loss function. For example |y — V|
* How to evaluate a ?



Estimator

* For simple models, we
can compute estimators N
fth ¢ N Dimo Yi/ T
of the parameters a(z;,v;) =

T
* Example : estimator for a

* \We expect the estimator >>>np.mean (y/x)

to be asymptotically 1.987
unbilased >>>0.356*1.987
lim a(x1,...,Tn,Y1,---,Yn) = a 0.707

n—-+oo



Bias and model choice

* If the model Is not
adapted, the error
(bias) becomes
Important

* Model : y=ax+b

* Model Is not
expressive enough

* Example error=|y-y| ™~



General form of models

* X IS extended to vector X
* a IS extended to vector ©
* vy IS extended to vector Y
 Y=f(X,0)

» Loss function L(Y,Y)

* No estimators for finding ©

10



How to choose a good
model ?

 What mathematical form ?
* How many parameters ?
e |s there universal models ?

* Is It possible to have good estimators
for all my parameters ?
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MNIST is a handwritten digit dataset used as a benchmark % %
since 90’s. The problem (to associate the picture with a digit) is | 3| &)
difficult . 2| 4] [é]
Method Error Rate Authors
Linear Classifier 12 Lecun et al.
2-layer NN, 300 hidden units 4.7 LeCun et al.
KNN 0.63 Belongie et al.
Virtual SVM, deg-9 poly, 2-pixel jittered 0.56 DeCoste and Scholkopf
6-layer NN 784-2500-2000-1500-1000- 0.35 Ciresan et al.
500-10 [elastic distortions]
Convolutional NN, 1-20-P-40-P-150-10 0.23 Ciresan et al.
[elastic distortions]
Human brain 0.2 Ciresan et al.
Random multi-model Deep Learning 0.18 Kowsari et al.
Branching/Merging CNN 0.13 Byerly et al.

Homogeneous Vector Capsule

From http://yann.lecun.com/exdb/mnist/
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Kernel Methods

* Adapted to non linearly separable data

* Adding features to the original data, i.e. creating a new
representation of the data in a space with more dimensions

* Applying a linear classifier (i.e. separating hyperplane)
* Unclear universality
 Example @(a,b)=(a,b,a2+b?) :

20 7
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Support Vector Machine (SVM)

 Enrich data with kernel features

- Polynomial kernel
K(X,y)=(XT.y+1)

- Gaussian Kernel &
K(x,y)=exp(- | x-y||2/20?) ® : °
* Find the support vectors e

- the points of each class closer to
the other class )
* Find the hyperplane maximizing . 7
the distance to the support %>
vectors (hard-margin)

From https://en.wikipedia.org/wiki/Support-vector _machine

14



From real to formal neuron

Cell body

1. Depolarization 2. Repolarization

’ 0+
Telodendria / 5. phase phase
/¥ /1
-40-
Threshold
-604 T J -----------------------

Membrane potential (mV)

-804 Resting potential

3. Undershoot
0 1 2 3 4
Time (msec)

\/ o —Axon hillock | Synaptic terminals s s
J‘ =1

4 - —= W
/ E Golgi apparatus w !
Endoplasmic . = a(x)
reticulum ”\'/ g- _"' W2
. 8 . = X L 0=ax
Mitochondrion |, ) ™Dendrite + w3 pY > olx) = 0/1

_/I output

\
l \ -
/ % Dendritic branches

Wn

15
From https://en.wikipedia.org/wiki/Neuron  Warren McCulloch & Walter Pitts 1943



Multi-layer Perceptron

Hidden Layers Output Layer

DO /
i ol
A

)

* Neural neurons

* Organized by layers

* Different size of layers

* Full connectivity
between layers

* Input layer

* Output layer

* Hidden layers

16



Multi-layer perceptron formalism

» mono-layer (matricial form) Y = o(W' X + B)
* multi-layer
Y =oc(Wio(Ws ...oc0W X +B,)+ -+ By) + B;)

* Depth of deep learning is the number of o
applications

W.and B. are the parameters (Weights and Biases)

X are the inputs
* No general form — universal approximator

No estimator for parameters
* How to evaluate the optimal parameters ? Y



Gradient Descent

* « Following the slope method »
e Calculating the gradient vector with respectto 0 =< 6,

OL(X,0) OL(X,0) OL(X.0) _
R

VL(X,0) =<

00,

O =06 —-aVL(X,0)

a : step size
Pregisio VS nce
vvvvv all learning too big learning rate:
;E ;'F-Edﬁ lots of missed the minimum

18
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Gradient Descent & Convexity

convex function non-convex function

Li & al, « VfUaIizing the loss landscape
of neural nets, 2018, 1712.09913

* Result depends on the starting point
- require convexity (unigue minima) 19
* Practical solution : multiple random starts



What kind of function can | train ?

* Any continuous
multivariate function on
R (Hornik et ak 1989) -

universal approximator il »
10 - 7

* Extended to R™*n (Sun 05 -

and Cheney 1992) 00 A
-05 1 /
. i \

* Extension to N Ao~ va
classification problems o e v \
(Cybenko 1989) — vV | |

0.0 0.2 04 0.6 08 10

universal classifiers

e Caution : the theorem
gives no clue about
learnability

20



Qubit Mechanics




Quantum computing

* Using quantum object to perform

computations

e Qubit

- Two pure states g=|0> or g=|1>

— Superposition principle
g=al0> + b|1> with a and b complex

numbers IS also a va
— Normalization |a|2+|b

Quantum
Computation

* Base object : quantum bit or qubit BELEIEE

. Information

!/ MICHAEL A. NIELSEN
ll/ and ISAAC L. CHUANG

id qubit
2:1

22



Bloch Sphere
representation

AZ

Pure state |0)

Hadamard states
|+>=1/V2 (|0> + |1>)
|-> =12 (|0> - |1>)

23
Pure state |1)



Qubit Measurement

* The internal state (a,b) of a qubit a|0>+b|1>
cannot be measured o

* When measured we obtain randomly O or 1 only
* Born rule: we obtain 0 with |a|2 probability

and 1 with |b|2 probability
* The measurement is a projection on the z axis

* Destructive operation: the qubit value is fixed to
the measured value (wave function collapse)

 Effective measurement procedure
- perform 1000 setups and measures

- calculate the empirical probability (approx. |a|?)

24



Measurement examples

* Pure state [0>
— 0 with 100 %
-1 with 0 % e

* Pure state |1>
- 0 with 0 % [
- 1 with 100 % v
* Hadamard state |+> e +>
-0 with 50 % (1/V2)2 = 1/2 = 50% /
- 1 with 50 %
* Any other state
-0 with |al? 1>
-1 with |b]?
— without respect to phase (all points on the red circle give the same measures;

-
-
-




T.(0,0)={aaa...a)

One qubit operator

* A gubit can evolve but need to preserve
Its normalization (to stay on the sphere)

e Operators are unitary 2x2 complex
matrices

mi] ms| |m1 mo| |1 O

[m§ mfj [mg mJ - [O 1]

e Can be decomposed in a rotation basis
with one parameter @

* Four different representations

| cosp  —ising
Rx(¢) = —ising  cos¢ ]

~ |cosp —sing
Ry(¢) = sing  cos¢ ]

e 0 cosS® — 18INQ 0
kz(¢) = 0 ei(b] - [ 0 cos® + 1sing

26




The Hadamard operator

o [n] B

42

* Create an equiprobable mix
of |0> and |[1> from a pure
state

* H(|0>)=1/V2 (JO>+|1>)=|+>
e H(|1>)=1/V/2 (|0>-|1>)=|->

 Which are both measured
|0> or |1> with probability
1/2
1

® . — 1 1 27
Matrix form m = 7 L _J




Composed states

* Composed of multiple states
* Tensor product or Kronecker product for vectors

» No Bloch representation {a} < {C} _ {ac ad}

* |n state notation b d bc  bd

- al00>+b|01>+c|10> + d|11>
* Mesurement
— obtain 0,0 with probability [al? ...

* Some states (entangled) cannot be obtained by
Kronecker product

* Operators can be also obtained also by Kronecker
product but not all of them (entanglement)

28



The CNOT operator

g e |0)

e Stands for « controlled not » a1 [|0)

o

* Apply on two qubits, the control and the target

* If control Is |1>, flip the target, else do nothing

 Effect on two qubit states

00> -
01> -
10> -
11> -

00>
01>
11>
10>

10 0 0
01 0 0
CNOT=19 0 0 1
00 1 0

circuit.cx(greg_qgl[0],greg_qgll])

29



Minimal set of operators

It has been proven that all guantum state
of any system can be obtained by a
combination of rotations and binary CNOT

operator depletions and representations

slate 1ERH slate
- P S z =|0)
’ a e 1 2 & . —
c la) - & | |la)=rlq) RE=e e —
19 i |. il ’ // ::',H \'\
= A ohy
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Obtaining entanglement
with CNOT and Hadamard

* Apply Hadamard operator on control . [jg) . g
qubit, target qubit stays |0> and then . B é |
apply CNOT . A

« |00> B 1/¥/2 (J0O>+|10>) CNOT vy

1/v/2 (|00>+]11>)
* When measured, obtain always 0,0 ¢ ? #

or 1,1 with probability 1/2

* Still work when the qubits are very far Qpserved Affected

away (quantum non locality) "here' "over there'

i i Tested over 1200km in
* EPR paradox: information goes faster <ielite Q’ased experiment

than light 2020 Yin & al

31



Quantum Parallelism

* Compute multiple values at the same time

* X IS In |[+> state 10)-+1)

 Uf computes y+f(x) o [4)

* Result is 1/v2 (|0, f(0)>+]|1, f(1)>)

* Read x and then f(x) until all value of x has been
seen
- If M(x)=0 M(Uf(x))=f(0)
— if M(x)=1 M(Uf(x))=f(2)

* Extendable to any size of x

32



Grover Algorithm (1996)

* Search a name in a phone book by knowing a number
(extendable to any kind of search with oracle)

e Solves the task of function inversion

* Classic computing is O(n)

* Based on quantum parallelism plus specific initialization
called amplitude amplification

* Quantum complexity O(vn) (almost optimal)

llllllll y
N:“I
Do

x=0

;o

Oracle

A8_88088 -

~st M)+ 2, D |b)
b=0,bm

N=-1

Amplification™> 4 ..l.-.'.
N=1

(2A+ %) M)+ (24-2) S |b)
b=0,b2m

Repeat O (VM) times

33



Shor Algorithm (1994)

* Prime factor decomposition of arbitrary size N
* Complexity O((log N)3) in time O(log N) in space

* End of traditional cryptography (RSA) based on
nardness of factorization

* Induced a lot of interest for quantum computing

|0> —_— H s & & /74=

: : gl :

0> = H @ i Q 2n /_A=

0> — H r oinie /7&;:

1> /,f"??, Uag() o) Uazl e Ua22'n-—l [ 3




Programming languages

* Qiskit (IBM) python framework

* Cirg (Google) python framework

* Opengasm for guantum assembler
* Q# Microsoft

* Silg ETH Zurich

* Pennylane (differentiable for QML) ..



Quantum computers
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Plenty of implementations

* A lot of physical

Processes are

gubits

le moins avancé

spins
energy levels
photons

Josephson
currents

A bit of the action

In the race to build a quantum computer, companies are pursuing many types of quantum bits, or qubits, each with its own strengths and weaknesses.

Current

Capacitors

Inductor

+«— Microwaves

Superconducting loops
A resistance-free current
oscillates back and forth around
a circuit loop. Aninjected
microwave signal excites the
current into super-

position states.

Longevity (seconds)
0.00005

Logic success rate
99.4%

Laser

Electron

Trapped ions

Electrically charged atoms, or
ions, have quantum energies
that depend on the location of
electrons. Tuned lasers cool
and trap the ions, and put them
in superposition states.

>1000

Microwaves

Silicon quantum dots
These “artificial atoms” are
made by adding an electron to
asmall piece of pure silicon.
Microwaves control the
electron’s quantum state.

Time

Topological qubits
Quasiparticles can be seenin
the behavior of electrons
channeled through semi-
conductor structures.Their
braided paths can encode
quantum information.

Electron

Vacancyal

Laser

Diamond vacancies

A nitrogen atom and a vacancy
add an electron to a diamond
lattice. Its quantum spin state,
along with those of nearby
carbon nuclei, can be
controlled with light.

10

Number entangled

9

Company support

Google, IBM, Quantum Circuits

@ Pros
Fast working. Build on existing
semiconductor industry.

© Cons

Collapse easily and must be
kept cold

ionQ

Very stable. Highest achieved
gate fidelities.

Slow operation. Many lasers
are needed.

Intel

Stable. Build on existing
semiconductor industry.

Only a few entangled. Must be
kept cold.

Microsoft, Bell Labs

Greatly reduce errors.

Existence not yet confirmed.

Quantum Diamond Technologies

Can operate at room
temperature.

Difficult to entangle.

Note: Longevity is the record coherence time for a single qubit superposition state, logic success rate is the highest reported gate fidelity for logic operations on two qubits, and number entangled
is the maximum number of qubits entangled and capable of performing two-qubit operations.

le plus avancé

C Error correction D/E

A Basic function

VFIL=E
538 cS
3oz ¢
= O

3 Q c
» o W
QO

d

s]o

(O RUN)
|0 =
>3 0
»n || 9
bm?
(=
[
=
o
3

topologique

CMOSs

oz [
D c =
2 oll2
Sol||S
oL =
= i)
O
8 &
Q
=
o
=
photons

ollg @
O —
5|78
o|| 2

=] g

@ g

» 3
NV Centers

suowsuel|-qg

> T |m (SR EEY
as|c W) -]
Q_ ]
3 o|* = | | =
g2 S
Qo o:rJ: 7]
2] 3
|
w
supraconducteurs

ions piégés

37



Trapped lons

 Linear Paul trap

AV . A A A
T R . T . S S A

* Atoms are ionized by U —
removing 1 valence electron 03 00004 E@

¥ A A A A A, ——
e S TV e T

* Positive endcap -

* Oscillating electro-magnetic
field on bars

* The oscillation garantees the
stability

38




lons

* Typically alkaline earth atoms
(Be+, Mg+, Ca+, Sr+) or
ytterbium Yb+

* Produced by an « oven »

* lonized by a laser
* Energy eveIS Readout / R

transition
- Ground state |0>

Qubit
- Short lived excited state |s> transition
strongly coupled by a transition to /
the ground state o) —1

39

- Long lived excited state |1>



Laser qubit operations

Coulomb
repulsion

Trap potential

Trap electrodes

 Lasers are used to change the ion level
* Measurement by fluorescence

40

e Constraints: advanced vacuum, focused lasers



probability

Implementing rotation

* Rabi precession implements rotation
* Change the mix between pure states
* Induced by photon interaction (laser)

Rabi oscillation at resonance

1 T o T 7 T
III,.IX -__\ \_ x_\ P[ | 1 }} r
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I|III
IIII III
o \ Vo
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Entanglement

 NO direct interaction between ions

* Entanglement is based on state transfer
to common motion of the ions

* phonon with two states

* Swap state between individual ion and
phonon

* Cirac-Zoller CNOT implementation

._) ._) ion 1 |5>.‘D)— — control qubit

SWAP SWAP1
center of mass mode at W0  motion |[}> - /T\ - |D)"bLl5" qubit
ion 2 |5>‘D> .y, target qubit
CNOT
breathing mode at V3wg 42

Rainer Blatt & David Wineland, Entangled states of trapped atomic ions, Nature 2008



lonQ Aria

11 qubits fully tested (up to 160 in
future)

* Linear arrangement
* Available on Amazon cloud (AWS)
* lonQ (Maryland)

@ IONQ



Future implementation

* lons are inside a chip in a dedicated spot
* lons can migrate to be entangled with others ions
* Magnetic field simplify the rotations (microwaves instead of lasers)

Readout zone

= [Gate one

Lekitsch & al, Blueprint for a microwave trapped ion quantum computer, 2017 4



Superconducting loops

Superconductor
» Josephson current . s /\/W I N
Pair
* Appear spontaneously between two / Cooper
supraconducter separated by a thin NANANN/ \/V\/\ A
. . . Pait
Isolating barrier (tunnel effect) Superconductor

* Phase encoding gubit (2 states only
because very cold)

* Rotations controlled by conducted
microwaves

Bias Current Josephson
Mty i

Sensor

Input _:ug
* Measurement done by a magnetometer coi -

Inside the circuit

Modulation and

E_.
= __ Feedback Signals

SQUID loop

 Constraints : SuperCOHdUCting From https://www.oezratty.net/wordpress/2018/
temperature Very IOW decoherence t|me comprendre-informatique-quantique-qubits/

 Actors: IBM, Google, Intel, D-Wave 45



Multi-qubits operations

* Only Conditional phase (CP) Is avallable
on superconducting systems

(etV/2 0 0 0

0 e /2 0 0

CP(v) = 0 0 o—i7/2 0
0 0 0 /2

* CNOT Is iImplementable from CP and
rotations

CNOT12 = 6i57r/4R$2 (7T/2)RZ2 (W/Q)ng (W/Q)Rzg (W)Rzl(ﬂ'/z)
x OP(7/2)Rya(7/2)Ro2(37/2) Rya(1/2) *°



CP implementation

 Use a « Transmon », transmission line shunted
plasma oscillation qubit

* Superconducting charge qubit (reduced noise
sensibility)

* Controlled by microwaves

47




IBM Rochester

* 53 superconducting qubits

* Limited connectivity

* Avallable through dedicated |
cloud (IBM Q)

53 Qubit Rochester Device

30 _31_.32 _233 __34__35_36_37 __38

42W 3% 4, W, 4647484950 48

Quantum chip i ina magnettc
shield

Dilution fridge setup: oufside view Dilution fridge setup: inside view




Google Sycamore

« 54 superconducting qubits "5 pPr

g

* 4 neighbours connectivity

 Available through Amazon cloud

X, X, X X, X




Transpilling
* Operation transforming code to operative
sequence
* No compilation stricto sensu
 Affectation of qubits

* Operation are encoded and timed as
effector actions (laser pulse, microwave
pulse...)

* Low level gates are rotations and
dedicated entanglement operators 0



NISQ Era (1)

* Noisy Intermediate Scale Quantum

* Low number of qubits (from 1 to 100),
low connectivity

IBM’s 10 Quantum Device Lineup

53 Qubit Rochester Device

51

From https://www.ibm.com/blogs/research/2019/09/quantum-computation-center/



Algorithm rewriting for
topology

Logical Algorithm A Intermediate Algorithm A’
by P
" T — 1 0 b —¢ Ib3 bs
2 L/ l X bE y, Tb:;. T blf’ﬁ bl
L N, bs ar R —T_ b
W b4 D bs
_|_
i
o e @ Resulting Physical Algorithm A”
Topology Graph G by

b4 x}




NISQ Era (2)

| '.;-.n.k.'."'-
a_
\

» Noisy computers e~

— spin-spin relaxation (decoherence)

- T2=5.105s at worst (superconducting), best
understood as number of operations (~1000)

- spin-lattice relaxation (thermodynamic
equilibrium) T1

53



NISQ Limitations

* The topology induces an increase of gate
number (swapping)

* The emulation of the standard gate by
hardware dedicated gates

* The noise and decoherence limit the depth
of the circuits

* The number of qubits Is very low

- Only very simple circuits can be
Implemented now

54



Quantum machine learning




Problematics

* Implementing neural-network-like model
and gradient descent on quantum
computer

* Reconciling two computing models

- Estimating
* y=M(x,0)
* y=U(x, 8)with U unitary

- Training
*loop:06=0—-a.0dL(y,M(x,08))/086
*9=0(x,0,y)

56



Variational Hybrid QC Algo.

Hybrid - algorithm
QPU process CPU process
0>q . S —»| readout pmcessin@
1 ]
0 — —— E Y
> = i (evalu ati 011]
0) ga="| B . stop
: N 1terion
PP 55 e - O e
A . NOY
(Dptimizatiﬂn)
[
-

* Only a small part is handled by the quantum computer (adapted to
NISQ)

* The quantum part encodes the problem in qubit formalism (Ansatz)

57
McClean & Al, The theory of variational hybrid quantum-classical algorithms, 2015



QNN First generation

* Farhi & Neven (Google),
Classification with Quantum Neural
Networks on Near Term Processors, 2018

* Schuld, Bocharov, Svore & Wiebe,
Circuit-centric quantum classifiers, 2018

* Declination of the Variational hybrid
computation to Machine Learning

* First successful iImplementations

58



Classification with QNN (1)

* Farhi & Neven (Google), 2018
* One of the first « QNN » implementation

* Adapted to both classical or guantum
INputs z

* Designed for binary classification : binary
label 1(z) (no label noise)

* Based on variational hybrid computation
and gradient descent

59



Classification with QNN (2)

* Based on qubit data encoding |y> is the input plus one
ancillary qubit

« A sequence of binary unitary parametrized operators U.

* Measurement of the ancillary bit (the answer)
converted from probability |al? to {-1,1}

; {f.(o])_\ /_ :\ /:
3 N\
) :K s N :: :
|1> n+1 :/ C(."}_(U;f} /74:

60



Classification with QNN (3)

* The operator part is evaluated by the quantum
circuit (mean of M measurement)

<z, 1|UT(0)Y, 1 U0)]z,1 >
* The loss function is evaluated on the classical part
LO,2)=1—1(2) < z,1|U(0)Y, 1 1U(8)]2,1 >

* Learning by gradient descent, calculated by
nulmerical differentiation

df _(flzte)—flz—¢) -
——(z) = » -O(€”)

— oObtained by 2L*M gquantum circuit evaluation «



Classification with QNN (4)

* Tested on binary parity and majority

« U.(0) are designed specifically for
these problems

* Tested on downsampled MNIST digits

e All tests are conclusive, the network
learns

* Nice proof of concept
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Standard scheme

* The scheme used Iin Farhi and Schuld
has been extensively used everywhere

FORMAL

CIRCUIT

GRAPHICAL

STEP 1 STEP 2 STEP 3 STEP 4
! ! 2
z = o) || =@ =Usplx) = || 2@ || 7Y
lf
nonlin. map unitary transform. (k)
10)- ~ [ p(1) |
. S U
0
measure- post-
state prep. model circuit ment PTOCESS.

¥o
o

LN
PK

feat. map

linear layer

=)

nonlinear
layer

.‘2

(v

thre-
sholding
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Basis encoding

* The data are digitized and then encoded In
a seguence of qubit

* |1> or |0> are obtained by initialization at |
0> state and rotation Ry(11)
* Example
- x1=5=0b101
- Xx2=6=0b110
- encoded by |101110>

* very qubit consuming and time consuming



Quantum associative memory

* the data are encoded a a
superposition to reduce the number
of qubits

Input
Input Classical Binary @ Basis encoded
variable Data Number Quantum Data SILAM Eeoced Wive
X1 10 1010 | 1010> g ; .
X2 15 1111 11111> ﬁllﬂlﬂ}+ﬁt1111} +E|1Dﬂ-[.'l::-

X3 8 1000 | 1000>

65



Amplitude encoding

 encode the data as the coefficients of a
superposition of states

12.5 11.15
R e ) ]l o—
19.12 19.12

110> + ——]11>
19.12

* Use very few qubits :log2(n)

* Very time consuming exp(n) not compatible
with NISQ "



Angle encoding

* Each data Is encoded as an angle on
a single qubit by applying Ry(x,) on |0>

 X. has to be normalized (over )

 The best trade-off between time and
gubits (n) : used almost everywhere

* Could be densified using the phase
(dense angle encoding) — n/2 qubits
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Processing

* As measure is often done on only one qubit, some kind of
entanglement has to be implemented

* TTN and MERA are good candidates for regular
architecture

* TTN Is very economical in parameters

(¥1)
b s

U,

U,

Us|

(a) TTN classifier

* MERA Is a bit more effic

Ut
U5 U:
- vl
Ur Ul
e iUl
El7 U; ------
LUl

e

Wi
&
,-_'¢_;f:
)
(vl

‘)

e

(Y1)

;j‘ﬁ,z,z'}.
- [
'\jd,:_a/r I'
(Ya)—
b 4

— P2

nt (more parameters)

./.. \
| |
N y

1"(; '.3/“ '
N Da

Fi b

(Ppr
g

.\idi 8)

U, U] ==

f — - = w;

U, o= - U.I __ ’r

B | i - — -y
D, | Uy LUl D} iDyi 4

! L M) - S5 - ol

Us| | | e -

s & =

Us U &

£ e

(b) MERA classifier

Grant & al, Hierarchical quantum classifiers, 2018, 1804.03680
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Processing limit

* Whatever is the nature of the parametrized
circuit, it can expressed as a single global
unitary circuit

* A unitary circuit Is linear In its inputs

* Thus this kind of encoding / processing
scheme is linear In Its outputs

* Data are plunged into a bigger space (Hilbert
space) and discriminated by a linear classifier

* This Is kernel method, not QNN
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Every ONN Is kernel
method ?

* Article from Maria Schuld « Quantum machine
learning models are kernel methods » 2021

* Encoding is the kernel

* In my opinion, only the scheme induces kernel
methods, not the quantum nature

1 4

. JLc-;(:'ifi Gg
101 G,(0)]] K

10) - G — G.(0) A

. R measure-
encoding Processig ment 70




QNN for HEP

* Plenty of articles using this design for HEP
analysis

- Quantum Machine Learning in High Energy Physics,
Guan & al, 2020, 2005.08582 (survey)

- Performance of particle tracking using a quantum
graph neural network, Tuysuz & al, 2021, 2012.01379

- A quantum algorithm for the classification of
supersymmetric top quark events, Bargassa & al,
2021, 2106.00051

- Dual-parametrized quantum circuit GAN model in HEP,
Chang & al, 2021, 2103.15470

— 71



QNN first generation
drawbacks

e Limited to kernel methods

* No Integrated non-linearity in the
guantum part

* Size of entries limited by number of
qgubits

* Numerical problems on differentiation



QNN second generation

* Based on 2 new techniques
- Re-uploading
- Shift-rule differentiation



The re-uploading technique

* Published in 2019 by Perez-Salinas & al « Data re-
uploading for a universal quantum classifier »

* Input Is taken as parameter of every operators instead

of input of a global operator

* Non linerarity appears

* Save a lot of qubits

0y HU(z,6,) HU (. Ba) |- -

I —

—

=

“—

ClL Optimizer

——— L(6: f.o. 1)

“—

L) = UO" +w o™y UO" + w0 2M)
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Re-uploader as universal
approximator

* Published in 2021 by Perez-Salinas & al
« One qubit as a universal approximant »

* A single qubit can approximate any bounded
function by using the input x multiple time as
operator parameter

* Heavy tests give satisfying results on non
linearity like tanh and RelLU

* Give a hope for implementing real QNN on
guantum circults .



Improve the differentiation

* The numerical differentiation on noisy device
IS almost intractable (too small shift)

df _ (flx+e) - flx—¢) 2
2 (2) = e +0(€7)

* A property of some quantum operator has
been discovered called « parameter shift

rule » 06 * Mitarai & al, Quantum
— =GO +s)— GO —s) circuit learning, 2018
00 e Schuld & al, Evaluating
_ o analytic gradients on
* s is not small (it is a fixed value) quantum hardware, 2018

 The derivative Is exact

* The other operators are decomposable in
sequence of shift-rule operators
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Shift rule example

* Let’s consider f(x)=sin(x) and its derivative
COS(X)

* We know as a property of sin and cos
sin(a + b) — sin(a — b) = 2cos(a)sin(b)

* Thus df sin(x + s) — sin(x — s)
VS% = cos(x) = 2sin(s)

* \We can choose any s, for example 11/2
df  sin(x+m/2) — sin(x —7/2)
dr 2

* Cos can be evaluated exactly by two

evaluations of sin
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Global use of parameter
shift rule

* Can be extended to any unitary
operator

* G.E. Crooks, Gradients of
parameterized quantum gates
using the parameter-shift rule and
gate decomposition, 2019

* Implemented in Pennylane



Hybrid computation

gradients
| C hybrid computation

The shift-rule differentiation can be integrated
In the derivation tree of classical machine
learning (for example Pytorch) by chain rule =



QML In action with




Pennylane

* Pennylane iIs a python library implementing
hybrid differentiable quantum computation

* Compatible with PyTorch
* Developed by ® XANADU

* A company from Toronto developping
photonic hardware www.xanadu.ai

¢ Ava.llable On plp #pip install pennylane

* Open-source and well-documented
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Test on synthetic data

* multinomial distributions
(100 points each)

* Classification from
coordinates [0,1]x[0,1]
to label {0,1} o e

» Data are linearly "
separable

* Classifiable by a linear
model with 2
parameters
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Re-uploading circuit

* Using re-uploading to solve the problem with 4
parameters

* Uploading two times x1 and x2 with RY operator

* Uploading the 4 parameters with RX operator

def circuit(params,xl,xZ):
gml .RX (params[0] ,wires=0)

agml.RY (x1,wires=0)
gml.RX (params[1l],wires=0)
gml .RY (x2,wires=0)

Y (
X (
Y (
gml.RX (params[2],wires=0)
Y (
X (
Y (

aqml .RY (x1,wires=0)
agml .RX (params [3],wires=0)
agml.RY (x2,wires=0)

return qml expval (gml.Pauliz (0)) 83




Model form

M (21,22, p1,p2) =< 01X, Y, X1, Y, 2,0 X0 Vi1 X1 [0 >

M (1, x2,p1,p2) =
(xl)COS(pl)
— sin (1) sin (x2) cos (p1)
— sin (py) sin (p2) cos (x2)

+ cos (x1) cos (x2) cos (p1) cos (p2)

COS

* The number of terms grows exponentially with the number of
operators

* Only 2 operators here because the 4 operator expression does
not fit in the slide !

* With re-uploading cos" and sin" appears providing non-linearity ,



Result of learning

Grid search

0.9 +

uuuuuu _loss.txt" 0.8 4
0.7 1
] < . .-
GE‘ 7 . s - ‘ a -i
- L] . e *
= 0.5 4 - -{ = . *"'.+.+
0.4

0.3 4

1 1 1 1 1 1 1 M — —

0.2

0.1 4 ;

* Very low MSE reached
 The circuit has learned a non linear curve
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More complicated example

* Concentric circles
* Solvable with 40 parameters and re-uploading

14 4
i
I_:-u i} l-l -I. a4 | 3 '.':u 2 |'-.:. & na 14
vl i : ol W 10 . gL i
a8 08 4 S ; L by St
¥ i - . 4 ol )
f e g T ’ 3 _"'.,.'. ' '»L -.
5 . 61 G A Credit
| s oaREdRc i | Andrea
* 0441 & el '_ I ok 3 .': [ ; b .
S Py iR it Sartirana
, " o sy i ¥
i, i Lo i ) '_: by ;
s 7 ~-.'.I.‘..“-' Vs
! : oo 4 i
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Running on IBM-Q

* Some quantum computers are free
of use on IBM-Q (1 to 5 qubits)

* An account Is required

https://quantum-computing.ibm.com/

* Obtain the API token - .qiskitrc file
* Using Armonk : mono-qubit free QC
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https://quantum-computing.ibm.com/

Results on IBM-Q

* No classification error on the 10 tests
* Very slow : 3 minutes for 10 tests (no derivatives) on a high disponibility phase

* Error Management
— Gate precision error : irreducible with mono-qubit

— Systematic error : should be handled by training the system directly on armonk but very
VERY long training time - untractable now

QNN result

0.8 - No classification error

0.7 1 On L2 distance

0.6 1 Result on simul=0.176
-~ 5 g Result on armonk= 0.113

039 . Error : 35 %

B Result on simul= 0.736

Result on armonk= 0.586
&2 Error : 20 % 88
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Laboratoire
Leprince-Ringuet

© PHOTOTHEQUE IN2P3 / CNRS
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QC21 IN2P3 Master Project

e Computing project supported by IN2P3

* Goal: explore the possible applications of guantum
computing for HEP

 Scientific Resp. Denis Lacroix (IJCLab)
e Technical Resp. Bogdan Vulpescu (LPC)

e 3 themes

- Simulation of complex guantum system (Denis Lacroix)

- Prepare the Quantum Computing Revolution (Bogdan IN 2P 3
Vulpescu)

— Quantum Machine Learning (Frédéric Magniette)

Instrrur NaTional pE PaysiQue NUCLEAIRE
ET DE PHYSIQUE DES PARTICULES

* Access to Cloud quantum computers (AWS & IBMQ)
* Website https://gc.pages.in2p3.fr/web/
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QML@ LU

eprince-Ringuet

* LLR Is an active member of QC2l|
* 6 members of QC21 @ LLR

* F. Magniette head of the QML thematics
(previously A. Sartirana)
* Interests In QML
- QNN classifiers
- Re-uploading techniques
- Classical / guantum ML model convergence



QML @ M1

Laboratoire
Leprince-Ringuet

e Definition of benchmarks 2 coords -

«

binary classification (F. Magniette)

10 TR 1.0 p 7 1.0 " 1.0 .
; - ; .
0.8 08 A 0.8 s 0.8 0.8
0.6 0.6 & 0.6 0.6 0.6
Lo > B > >
04 04 04 04 04
3
02 02 g 02 02 02
0.0 0.0 % 0.0 3 0.0 0.0
-0.50 -0.25 000 025 050 075 100 125 150 -050 -025 075 100 125 150 -050 -025 000 025 050 075 100 125 150 =0:50° «=025 I0i00! 02514050 01 H00: 25 200 -050 -025 000 025 050 075 1.00 125

» Simulation of re-uploading learning
circuits on benchmarks & particle
physics data (A. Sartirana, F. Magniette)

92




QML @

* P210O project TutoQML In
collaboration with Denis Lacroix
(IJCLab)

— 2 year post-doc Yann Beaujeault-
Taudiere (since 1st December
2021)

- Methodological study of QML
models expressivity on synthetic
and real data

- Theoretical work on QC/DNN
models identification

Laboratoire
Leprince-Ringuet
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Any guestion ?

1959, Louis Leprince-Ringuet talking about QML at College de France...
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