Quantum Machine Learning

The Next Big Thing

LUR Frédéric Magniette Leprince-Ringuet

QML is composite

Objectives of QML

- Applying Machine Learning techniques on quantum computers
- Try to reduce computational complexity of ML operations
- Increase the powerfulness of the ML
- Take advantage of the incredible properties of the quantum space (Hilbert space)
- In HEP Field
- Event classification
- Multi-dimensional space exploration

From https://ai.googleblog.com/2021/06/quantum-machine-learning-and-power-of.html

- Machine learning
- Qubit mechanics
- Quantum computers
- Quantum machine learning
- QML in action with Pennylane
-QML @ LLR

Machine Learning

Problematics

$$
\begin{aligned}
& \mathrm{x}[0]=0.326785 \mathrm{y}[0]=0.640017 \\
& \mathrm{x}[1]=0.484787 \mathrm{y}[1]=0.877112 \\
& \mathrm{x}[2]=0.728836 \mathrm{y}[2]=1.350927 \\
& \mathrm{x}[3]=0.190499 \mathrm{y}[3]=0.321072 \\
& \mathrm{x}[4]=0.717005 \mathrm{y}[4]=1.384066 \\
& \mathrm{x}[5]=0.648116 \mathrm{y}[5]=1.216906 \\
& \mathrm{x}[6]=0.488057 \mathrm{y}[6]=1.062203 \\
& \mathrm{x}[7]=0.917032 \mathrm{y}[7]=1.697487 \\
& \mathrm{x}[8]=0.274938 \mathrm{y}[8]=0.460703 \\
& \mathrm{x}[9]=0.197535 \mathrm{y}[9]=0.404545 \\
& \mathrm{x}[10]=0.122173 \mathrm{y}[10]=0.277121 \\
& \mathrm{x}[11]=0.852632 \mathrm{y}[11]=1.682158 \\
& \mathrm{x}[12]=0.991762 \mathrm{y}[12]=1.930109
\end{aligned}
$$

- Supervised learning : n pairs of (x, y) samples are given
- What is the most probable y value for non-given $\mathrm{x}=0.356$?

Modelization

- Simple linear regression
- $\hat{y}=f(a, x)=a . x$
- x is the input
- a is the parameter (to determine)
- f is the model \rightarrow a priori choice
- \hat{y} is the estimated result
- y is the true value (know as ground truth)
- $L(y, y)$ is the loss function. For example $|y-\hat{y}|$
- How to evaluate a?

Estimator

- For simple models, we can compute estimators of the parameters

$$
\hat{a}\left(x_{i}, y_{i}\right)=\frac{\sum_{i=0}^{n} y_{i} / x_{i}}{n}
$$

- Example : estimator for a
- We expect the estimator to be asymptotically unbiased
$\lim _{n \rightarrow+\infty} \hat{a}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)=a$

Bias and model choice

- If the model is not adapted, the error (bias) becomes important
- Model : y=ax+b
- Model is not expressive enough
- Example error=|y-y|

General form of models

- x is extended to vector X
- a is extended to vector Θ
- y is extended to vector Y
- $\hat{Y}=f(X, \Theta)$
- Loss function $L(\hat{Y}, Y)$

- No estimators for finding Θ

How to choose a good model?

- What mathematical form?
- How many parameters ?
- Is there universal models?
- Is it possible to have good estimators for all my parameters ?

Plenty of models

MNIST is a handwritten digit dataset used as a benchmark since 90's. The problem (to associate the picture with a digit) is difficult.

Method	Error Rate	Authors	Year
Linear Classifier	12	Lecun et al.	1998
2-layer NN, 300 hidden units	4.7	LeCun et al.	1998
KNN	0.63	Belongie et al.	2002
Virtual SVM, deg-9 poly, 2-pixel jittered 6-layer NN 784-2500-2000-1500-1000- 500-10 [elastic distortions]	0.56	DeCoste and Scholkopf	2002
Convolutional NN, 1-20-P-40-P-150-10 [elastic distortions]	0.23	Ciresan et al.	2010
Human brain	0.2	Ciresan et al.	2012
Random multi-model Deep Learning Branching/Merging CNN Homogeneous Vector Capsule	0.18	Kowsari et al.	2018

From http://yann.lecun.com/exdb/mnist/

Kernel Methods

- Adapted to non linearly separable data
- Adding features to the original data, i.e. creating a new representation of the data in a space with more dimensions
- Applying a linear classifier (i.e. separating hyperplane)
- Unclear universality
- Example $\varphi(a, b)=\left(a, b, a^{2}+b^{2}\right)$:

Support Vector Machine (SVM)

- Enrich data with kernel features
- Polynomial kernel

$$
K(x, y)=\left(x^{\top} \cdot y+1\right)^{d}
$$

- Gaussian Kernel

$$
K(x, y)=\exp \left(-\|x-y\|^{2 / 2} / 2 \sigma^{2}\right)
$$

- Find the support vectors
- the points of each class closer to the other class
- Find the hyperplane maximizing
 the distance to the support vectors (hard-margin)

From real to formal neuron

From https://en.wikipedia.org/wiki/Neuron Warren McCulloch \& Walter Pitts 1943

Multi-layer Perceptron

Output Layer

- Neural neurons
- Organized by layers
- Different size of layers
- Full connectivity between layers
- Input layer
- Output layer
- Hidden layers

Multi-layer perceptron formalism

- mono-layer (matricial form) $\quad \hat{Y}=\sigma\left(W^{T} X+B\right)$
- multi-layer
$\hat{Y}=\sigma\left(W_{1}^{T} \sigma\left(W_{2}^{T} \ldots \sigma\left(W_{n}^{T} X+B_{n}\right)+\cdots+B_{2}\right)+B_{1}\right)$
- Depth of deep learning is the number of σ applications
- W_{i} and B_{i} are the parameters (Weights and Biases)
- X are the inputs
- No general form \rightarrow universal approximator
- No estimator for parameters
- How to evaluate the optimal parameters ?

Gradient Descent

- «Following the slope method»
- Calculating the gradient vector with respect to $\Theta=<\theta_{1}, \ldots, \theta_{n}>$

$$
\nabla L(X, \Theta)=<\frac{\partial L(X, \Theta)}{\partial \theta_{1}}, \frac{\partial L(X, \Theta)}{\partial \theta_{2}}, \ldots, \frac{\partial L(X, \Theta)}{\partial \theta_{n}}>
$$

$$
\Theta=\Theta-\alpha \nabla L(X, \Theta)
$$

$$
\alpha: \text { step size }
$$

very small learning
rate needs lots of
steps

Gradient Descent \& Convexity

non-convex function

Li \& al, « Visualizing the loss landscape of neural nets, 2018, 1712.09913

- Result depends on the starting point
\rightarrow require convexity (unique minima)
- Practical solution : multiple random starts

What kind of function can I train ?

- Any continuous multivariate function on R (Hornik et ak 1989) \rightarrow universal approximator
- Extended to R^n (Sun and Cheney 1992)
- Extension to classification problems (Cybenko 1989) \rightarrow universal classifiers

- Caution : the theorem gives no clue about learnability

Qubit Mechanics

Quantum computing

- Using quantum object to perform computations
- Base object : quantum bit or qubit
- Qubit
- Two pure states $q=\mid 0>$ or $q=\mid 1>$
- Superposition principle $\mathrm{q}=\mathrm{a}|0>+\mathrm{b}| 1>$ with a and b complex
 numbers is also a valid qubit
- Normalization $|a|^{2}+|b|^{2}=1$

Bloch Sphere representation

Qubit Measurement

- The internal state (a, b) of a qubit $a|0>+b| 1>$ cannot be measured

- When measured we obtain randomly 0 or 1 only
- Born rule: we obtain 0 with $|\mathrm{a}|^{2}$ probability and 1 with $|\mathrm{b}|^{2}$ probability
- The measurement is a projection on the z axis
- Destructive operation: the qubit value is fixed to the measured value (wave function collapse)
- Effective measurement procedure
- perform 1000 setups and measures
- calculate the empirical probability (approx. $|a|^{2}$)

Measurement examples

- Pure state |0>
- 0 with 100%
- 1 with 0%
- Pure state |1>
- 0 with 0 \%
- 1 with 100%
- Hadamard state |+>
-0 with $50 \%(1 / \sqrt{ } 2)^{2}=1 / 2=50 \%$
- 1 with 50 \%
- Any other state
-0 with $|a|^{2}$
-1 with |b| ${ }^{2}$
- without respect to phase (all points on the red circle give the same measuress)

One qubit operator

- A qubit can evolve but need to preserve its normalization (to stay on the sphere)
- Operators are unitary $2 x 2$ complex matrices

$$
\left[\begin{array}{ll}
m_{1}^{*} & m_{3}^{*} \\
m_{2}^{*} & m_{4}^{*}
\end{array}\right]\left[\begin{array}{ll}
m_{1} & m_{2} \\
m_{3} & m_{4}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

- Can be decomposed in a rotation basis
 with one parameter Φ
- Four different representations

$$
\begin{aligned}
& R x(\phi)=\left[\begin{array}{cc}
\cos \phi & -i \sin \phi \\
-i \sin \phi & \cos \phi
\end{array}\right] \\
& R y(\phi)=\left[\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right] \\
& R z(\phi)=\left[\begin{array}{cc}
e^{-i \phi} & 0 \\
0 & e^{i \phi}
\end{array}\right]=\left[\begin{array}{cc}
\cos \phi-i \sin \phi & 0 \\
0 & \cos \phi+i \sin \phi
\end{array}\right]
\end{aligned}
$$

The Hadamard operator

- Create an equiprobable mix
 of $\mid 0>$ and $\mid 1>$ from a pure state
- $\mathrm{H}(\mid 0>)=1 / \sqrt{ } 2(|0>+| 1>)=\mid+>$
- $\mathrm{H}(\mid 1>)=1 / \sqrt{ } 2(|0>-| 1>)=\mid->$
- Which are both measured |0> or |1> with probability

Composed states

- Composed of multiple states
- Tensor product or Kronecker product for vectors
- No Bloch representation
- In state notation

$$
\left[\begin{array}{l}
a \\
b
\end{array}\right] \otimes\left[\begin{array}{l}
c \\
d
\end{array}\right]=\left[\begin{array}{ll}
a c & a d \\
b c & b d
\end{array}\right]
$$

$-\mathrm{a}|00>+\mathrm{b}| 01>+\mathrm{c}|10>+\mathrm{d}| 11>$

- Mesurement
- obtain 0,0 with probability $|a|^{2}$...
- Some states (entangled) cannot be obtained by Kronecker product
- Operators can be also obtained also by Kronecker product but not all of them (entanglement)

The CNOT operator

- Stands for « controlled not »

- Apply on two qubits, the control and the target
- If control is |1>, flip the target, else do nothing
- Effect on two qubit states

$$
\begin{aligned}
& -|00\rangle \rightarrow|00\rangle \\
& -|01>\rightarrow| 01> \\
& -|10>\rightarrow| 11> \\
& -|11>\rightarrow| 10>
\end{aligned}
$$

$$
\text { CNOT }=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Minimal set of operators

It has been proven that all quantum state of any system can be obtained by a combination of rotations and binary CNOT

Obtaining entanglement with CNOT and Hadamard

- Apply Hadamard operator on control qubit, target qubit stays |0> and then apply CNOT
- $\mid 00>\xrightarrow{\mathrm{H}} 1 / \sqrt{ } 2(|00>+| 10>)^{\text {CNOT }} \xrightarrow{\text { T }}$ $1 / \sqrt{ } 2(|00>+| 11>)$
- When measured, obtain always 0,0 or 1,1 with probability $1 / 2$
- Still work when the qubits are very far Observed away (quantum non locality)
- EPR paradox: information goes faster than light

Quantum Parallelism

- Compute multiple values at the same time
- x is in |+> state
- Uf computes $y+f(x)$

- Result is $1 / \sqrt{ } 2(|0, f(0)>+| 1, f(1)>)$
- Read x and then $f(x)$ until all value of x has been seen
- If $M(x)=0 M(U f(x))=f(0)$
- if $M(x)=1 M(U f(x))=f(1)$
- Extendable to any size of x

Grover Algorithm (1996)

- Search a name in a phone book by knowing a number (extendable to any kind of search with oracle)
- Solves the task of function inversion
- Classic computing is $\mathrm{O}(\mathrm{n})$
- Based on quantum parallelism plus specific initialization called amplitude amplification
- Quantum complexity $\mathrm{O}(\sqrt{ } \mathrm{n})$ (almost optimal)

Shor Algorithm (1994)

- Prime factor decomposition of arbitrary size N
- Complexity $\mathrm{O}\left((\log N)^{3}\right)$ in time $\mathrm{O}(\log N)$ in space
- End of traditional cryptography (RSA) based on hardness of factorization
- Induced a lot of interest for quantum computing

Programming languages

- Qiskit (IBM) python framework
- Cirq (Google) python framework
- Openqasm for quantum assembler
- Q\# Microsoft
- Silq ETH Zurich
- Pennylane (differentiable for QML)

Quantum computers

Plenty of implementations

- A lot of physical processes are qubits
- spins
- energy levels
- photons
- Josephson currents

Trapped ions

- Linear Paul trap
- Atoms are ionized by removing 1 valence electron
- Positive endcap
- Oscillating electro-magnetic field on bars
- The oscillation garantees the stability

Ions

- Typically alkaline earth atoms (Be+, Mg+, Ca+, Sr+) or ytterbium Yb+
- Produced by an « oven »
- Ionized by a laser
- Energy levels
- Ground state |0>
- Short lived excited state |s> strongly coupled by a transition to the ground state

- Long lived excited state |1>

Laser qubit operations

- Lasers are used to change the ion level
- Measurement by fluorescence
- Constraints: advanced vacuum, focused lasers

Implementing rotation

- Rabi precession implements rotation
- Change the mix between pure states
- Induced by photon interaction (laser)

Entanglement

- No direct interaction between ions
- Entanglement is based on state transfer to common motion of the ions
- phonon with two states
- Swap state between individual ion and phonon

- Cirac-Zoller CNOT implementation

center of mass mode at ω_{0}

breathing mode at $\sqrt{3} \omega_{0}$
Rainer Blatt \& David Wineland, Entangled states of trapped atomic ions, Nature 2008

IonQ Aria

- 11 qubits fully tested (up to 160 in future)
- Linear arrangement
- Available on Amazon cloud (AWS)
- IonQ (Maryland)

Future implementation

- Ions are inside a chip in a dedicated spot
- Ions can migrate to be entangled with others ions
- Magnetic field simplify the rotations (microwaves instead of lasers)

Lekitsch \& al, Blueprint for a microwave trapped ion quantum computer, 2017

Superconducting loops

- Josephson current
- Appear spontaneously between two supraconducter separated by a thin isolating barrier (tunnel effect)

- Phase encoding qubit (2 states only because very cold)
- Rotations controlled by conducted microwaves
- Measurement done by a magnetometer inside the circuit
- Constraints : superconducting temperature, very low decoherence time

From https://www.oezratty.net/wordpress/2018/ comprendre-informatique-quantique-qubits/

- Actors: IBM, Google, Intel, D-Wave

Multi-qubits operations

- Only Conditional phase (CP) is available on superconducting systems

$$
C P(\gamma)=\left[\begin{array}{cccc}
e^{i \gamma / 2} & 0 & 0 & 0 \\
0 & e^{-i \gamma / 2} & 0 & 0 \\
0 & 0 & e^{-i \gamma / 2} & 0 \\
0 & 0 & 0 & e^{i \gamma / 2}
\end{array}\right]
$$

- CNOT is implementable from CP and rotations

$$
\begin{aligned}
\operatorname{CNOT}_{12}=e^{i 5 \pi / 4} R_{x 2}(\pi / 2) R_{z 2}(\pi / 2) & R_{x 2}(\pi / 2) R_{z 2}(\pi) R_{z 1}(\pi / 2) \\
& \times C P(\pi / 2) R_{x 2}(\pi / 2) R_{z 2}(3 \pi / 2) R_{x 2}(\pi / 2)
\end{aligned}
$$

CP implementation

- Use a < Transmon », transmission line shunted plasma oscillation qubit
- Superconducting charge qubit (reduced noise sensibility)
- Controlled by microwaves

IBM Rochester

- 53 superconducting qubits
- Limited connectivity
- Available through dedicated cloud (IBM-Q)

Google Sycamore

- 54 superconducting qubits
- 4 neighbours connectivity
- Available through Amazon cloud (AWS)

Transpilling

- Operation transforming code to operative sequence
- No compilation stricto sensu
- Affectation of qubits
- Operation are encoded and timed as effector actions (laser pulse, microwave pulse...)
- Low level gates are rotations and dedicated entanglement operators

NISQ Era (1)

- Noisy Intermediate Scale Quantum
- Low number of qubits (from 1 to 100), low connectivity

IBM's 10 Quantum Device Lineup

Johannesburg
Poughkeepsie

Almaden Boeblingen
Singapore

Ourense Valencia
Vigo Vigo

53 Qubit Rochester Device

Algorithm rewriting for topology

NISQ Era (2)

- Noisy computers

- spin-spin relaxation (decoherence)
- T2=5.10-5s at worst (superconducting), best understood as number of operations (~ 1000)
- spin-lattice relaxation (thermodynamic equilibrium) T1

NISQ Limitations

- The topology induces an increase of gate number (swapping)
- The emulation of the standard gate by hardware dedicated gates
- The noise and decoherence limit the depth of the circuits
- The number of qubits is very low \rightarrow Only very simple circuits can be implemented now

Quantum machine learning

Problematics

- Implementing neural-network-like model and gradient descent on quantum computer
- Reconciling two computing models
- Estimating
- $\hat{y}=M(x, \theta)$
- $\hat{y}=U(x, \theta)$ with U unitary
- Training
- loop : $\theta=\theta-\alpha \cdot \partial L(y, M(x, \theta)) / \partial \theta$
- $\theta=O(x, \theta, y)$

Variational Hybrid QC Algo.

Hybrid Quantum-Classical algorithm

- Only a small part is handled by the quantum computer (adapted to NISQ)
- The quantum part encodes the problem in qubit formalism (Ansatz)

McClean \& AI, The theory of variational hybrid quantum-classical algorithms, 2015

QNN First generation

- Farhi \& Neven (Google), Classification with Quantum Neural Networks on Near Term Processors, 2018
- Schuld, Bocharov, Svore \& Wiebe, Circuit-centric quantum classifiers, 2018
- Declination of the Variational hybrid computation to Machine Learning
- First successful implementations

Classification with QNN (1)

- Farhi \& Neven (Google), 2018
- One of the first « QNN » implementation
- Adapted to both classical or quantum inputs z
- Designed for binary classification : binary label l(z) (no label noise)
- Based on variational hybrid computation and gradient descent

Classification with QNN (2)

- Based on qubit data encoding $\mid \psi>$ is the input plus one ancillary qubit
- A sequence of binary unitary parametrized operators U_{i}
- Measurement of the ancillary bit (the answer) converted from probability $|a|^{2}$ to $\{-1,1\}$

Classification with QNN (3)

- The operator part is evaluated by the quantum circuit (mean of M measurement)

$$
<z, 1\left|U^{\dagger}(\theta) Y_{n+1} U(\theta)\right| z, 1>
$$

- The loss function is evaluated on the classical part

$$
L(\theta, z)=1-l(z)<z, 1\left|U^{\dagger}(\theta) Y_{n+1} U(\theta)\right| z, 1>
$$

- Learning by gradient descent, calculated by nulmerical differentiation

$$
\frac{d f}{d x}(x)=\frac{(f(x+\epsilon)-f(x-\epsilon))}{2 \epsilon}+O\left(\epsilon^{2}\right)
$$

\rightarrow obtained by $2 \mathrm{~L} * \mathrm{M}$ quantum circuit evaluation

Classification with QNN (4)

- Tested on binary parity and majority
- $U_{i}(\theta)$ are designed specifically for these problems
- Tested on downsampled MNIST digits
- All tests are conclusive, the network learns
- Nice proof of concept

Standard scheme

- The scheme used in Farhi and Schuld has been extensively used everywhere

Basis encoding

- The data are digitized and then encoded in a sequence of qubit
- |1> or |0> are obtained by initialization at | $0>$ state and rotation Ry(π)
- Example
- x1=5=0b101
- x2=6=0b110
- encoded by |101110>
- very qubit consuming and time consuming

Quantum associative memory

- the data are encoded a a superposition to reduce the number of qubits

Input variable	Input Classical Data	Binary Number	Basis encoded Quantum Data	QUAM encoded value
X1	10	1010	$\mid 1010>$	
X 2	15	1111	$\mid 1111>$	
X 3	8	1000	$\mid 1000>$	

Amplitude encoding

- encode the data as the coefficients of a superposition of states

- Use very few qubits : $\log 2(n)$
- Very time consuming $\exp (\mathrm{n})$ not compatible with NISQ

Angle encoding

- Each data is encoded as an angle on a single qubit by applying $\operatorname{Ry}\left(\mathrm{x}_{\mathrm{i}}\right)$ on |0>
- x_{i} has to be normalized (over π)
- The best trade-off between time and qubits (n) : used almost everywhere
- Could be densified using the phase (dense angle encoding) $\rightarrow \mathrm{n} / 2$ qubits

Processing

- As measure is often done on only one qubit, some kind of entanglement has to be implemented
- TTN and MERA are good candidates for regular architecture
- TTN is very economical in parameters
- MERA is a bit more efficient (more parameters)

Grant \& al, Hierarchical quantum classifiers, 2018, 1804.03680

Processing limit

- Whatever is the nature of the parametrized circuit, it can expressed as a single global unitary circuit
- A unitary circuit is linear in its inputs
- Thus this kind of encoding / processing scheme is linear in its outputs
- Data are plunged into a bigger space (Hilbert space) and discriminated by a linear classifier
- This is kernel method, not QNN

Every QNN is kernel method?

- Article from Maria Schuld «Quantum machine learning models are kernel methods » 2021
- Encoding is the kernel
- In my opinion, only the scheme induces kernel methods, not the quantum nature

QNN for HEP

- Plenty of articles using this design for HEP analysis
- Quantum Machine Learning in High Energy Physics, Guan \& al, 2020, 2005.08582 (survey)
- Performance of particle tracking using a quantum graph neural network, Tüysüz \& al, 2021, 2012.01379
- A quantum algorithm for the classification of supersymmetric top quark events, Bargassa \& al, 2021, 2106.00051
- Dual-parametrized quantum circuit GAN model in HEP, Chang \& al, 2021, 2103.15470

QNN first generation drawbacks

- Limited to kernel methods
- No integrated non-linearity in the quantum part
- Size of entries limited by number of qubits
- Numerical problems on differentiation

QNN second generation

- Based on 2 new techniques
- Re-uploading
- Shift-rule differentiation

The re-uploading technique

- Published in 2019 by Perez-Salinas \& al « Data reuploading for a universal quantum classifier »
- input is taken as parameter of every operators instead of input of a global operator
- Non linerarity appears
- Save a lot of qubits

Re-uploader as universal approximator

- Published in 2021 by Perez-Salinas \& al « One qubit as a universal approximant»
- A single qubit can approximate any bounded function by using the input x multiple time as operator parameter
- Heavy tests give satisfying results on non linearity like tanh and ReLU
- Give a hope for implementing real QNN on quantum circuits

Improve the differentiation

- The numerical differentiation on noisy device is almost intractable (too small shift)

$$
\frac{d f}{d x}(x)=\frac{(f(x+\epsilon)-f(x-\epsilon))}{2 \epsilon}+O\left(\epsilon^{2}\right)
$$

- A property of some quantum operator has been discovered called « parameter shift rule »

$$
\frac{\partial G}{\partial \theta}=G(\theta+s)-G(\theta-s)
$$

- s is not small (it is a fixed value)
- Mitarai \& al, Quantum circuit learning, 2018
- Schuld \& al, Evaluating analytic gradients on quantum hardware, 2018
- The derivative is exact
- The other operators are decomposable in sequence of shift-rule operators

Shift rule example

- Let's consider $f(x)=\sin (x)$ and its derivative $\cos (x)$
- We know as a property of sin and cos

$$
\sin (a+b)-\sin (a-b)=2 \cos (a) \sin (b)
$$

- Thus

$$
\forall s \frac{d f}{d x}=\cos (x)=\frac{\sin (x+s)-\sin (x-s)}{2 \sin (s)}
$$

- We can choose any s, for example $\pi / 2$

$$
\frac{d f}{d x}=\frac{\sin (x+\pi / 2)-\sin (x-\pi / 2)}{2}
$$

- Cos can be evaluated exactly by two evaluations of sin

Global use of parameter shift rule

- Can be extended to any unitary operator
- G.E. Crooks, Gradients of parameterized quantum gates using the parameter-shift rule and gate decomposition, 2019
- Implemented in Pennylane

Hybrid computation gradients

The shift-rule differentiation can be integrated in the derivation tree of classical machine learning (for example Pytorch) by chain rule

QML in action with

Pennylane

- Pennylane is a python library implementing hybrid differentiable quantum computation
- Compatible with PyTorch
- Developed by $X \wedge N \wedge D U$
- A company from Toronto developping photonic hardware www.xanadu.ai
- Available on pip
fipip install pennylane
- Open-source and well-documented

Test on synthetic data

- multinomial distributions (100 points each)
- Classification from coordinates $[0,1] \times[0,1]$ to label $\{0,1\}$
- Data are linearly separable
- Classifiable by a linear
 model with 2 parameters

Re-uploading circuit

- Using re-uploading to solve the problem with 4 parameters
- Uploading two times x1 and x2 with RY operator
- Uploading the 4 parameters with RX operator

```
def circuit(params,x1,x2):
    qml.RX(params[0],wires=0)
    qml.RY(x1,wires=0)
    qml.RX(params[1],wires=0)
    qml.RY(x2,wires=0)
    qml.RX(params[2],wires=0)
    qml.RY(x1,wires=0)
    qml.RX(params[3],wires=0)
    qml.RY(x2,wires=0)
    return qml.expval(qml.PauliZ(0))
```


Model form

$$
\begin{gathered}
M\left(x_{1}, x_{2}, p_{1}, p_{2}\right)=<0\left|X_{p 1}^{\dagger} Y_{x 1}^{\dagger} X_{p 2}^{\dagger} Y_{x 2}^{\dagger} Z Y_{x 2} X_{p 2} Y_{x 1} X_{p 1}\right| 0> \\
M\left(x_{1}, x_{2}, p_{1}, p_{2}\right)= \\
\cos \left(x_{1}\right) \cos \left(p_{1}\right) \\
-\sin \left(x_{1}\right) \sin \left(x_{2}\right) \cos \left(p_{1}\right) \\
-\sin \left(p_{1}\right) \sin \left(p_{2}\right) \cos \left(x_{2}\right) \\
+\cos \left(x_{1}\right) \cos \left(x_{2}\right) \cos \left(p_{1}\right) \cos \left(p_{2}\right)
\end{gathered}
$$

- The number of terms grows exponentially with the number of operators
- Only 2 operators here because the 4 operator expression does not fit in the slide!
- With re-uploading $\cos ^{n}$ and $\sin ^{n}$ appears providing non-linearity

Result of learning

Grid search

- Very low MSE reached
- The circuit has learned a non linear curve
- Early stopping at 50 epochs

More complicated example

- Concentric circles
- Solvable with 40 parameters and re-uploading

Running on IBM-Q

- Some quantum computers are free of use on IBM-Q (1 to 5 qubits)
- An account is required
https://quantum-computing.ibm.com/
- Obtain the API token \rightarrow.qiskitrc file
- Using Armonk : mono-qubit free QC

Results on IBM-Q

- No classification error on the 10 tests
- Very slow : 3 minutes for 10 tests (no derivatives) on a high disponibility phase
- Error Management
- Gate precision error : irreducible with mono-qubit
- Systematic error : should be handled by training the system directly on armonk but very VERY long training time \rightarrow untractable now

No classification error
On L2 distance
Result on simul= 0.176
Result on armonk= 0.113
Error : 35 \%
Result on simul= 0.736
Result on armonk= 0.586
Error : 20 \%

QML @

QC2I IN2P3 Master Project

- Computing project supported by IN2P3
- Goal: explore the possible applications of quantum computing for HEP
- Scientific Resp. Denis Lacroix (IJCLab)
- Technical Resp. Bogdan Vulpescu (LPC)
- 3 themes
- Simulation of complex quantum system (Denis Lacroix)
- Prepare the Quantum Computing Revolution (Bogdan Vulpescu)
- Quantum Machine Learning (Frédéric Magniette)

- Access to Cloud quantum computers (AWS \& IBMQ)
- Website https://qc.pages.in2p3.fr/web/

QML @
 Leprince-Ringuet

- LLR is an active member of QC2I
- 6 members of QC2I @ LLR
- F. Magniette head of the QML thematics (previously A. Sartirana)
- Interests in QML
- QNN classifiers
- Re-uploading techniques
- Classical / quantum ML model convergence

QML
 @
 Leprince-Ringuet

- Definition of benchmarks 2 coords \rightarrow binary classification (F. Magniette)

- Simulation of re-uploading learning circuits on benchmarks \& particle physics data (A. Sartirana, F. Magniette)

QML @
 Leprince-Ringuet

- P2IO project TutoQML in collaboration with Denis Lacroix (IJCLab)
- 2 year post-doc Yann BeaujeaultTaudiere (since 1st December 2021)
- Methodological study of QML models expressivity on synthetic
 and real data
- Theoretical work on QC/DNN models identification

Any question?

Quantum

Machine Learning

The Next
Big Thing?

1959, Louis Leprince-Ringuet talking about QML at College de France...

