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QML is composite

Neural networks

qubit mechanics
Quantum computer

Quantum circuit programming

OptimizationKernel Methods

Programming Linear algebra



Objectives of QML
● Applying Machine Learning techniques on quantum computers

– Try to reduce computational complexity of ML operations
– Increase the powerfulness of the ML
– Take advantage of the incredible properties of the quantum space (Hilbert space)

● In HEP Field
– Event classification
– Multi-dimensional space exploration

From https://ai.googleblog.com/2021/06/quantum-machine-learning-and-power-of.html
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● Machine learning
● Qubit mechanics
● Quantum computers
● Quantum machine 

learning
● QML in action with 

Pennylane
● QML @ LLR
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Machine Learning
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Problematics

● Supervised learning : n pairs of (x,y) samples are given
● What is the most probable y value for non-given 

x=0.356 ?

x[0]=0.326785 y[0]=0.640017
x[1]=0.484787 y[1]=0.877112
x[2]=0.728836 y[2]=1.350927
x[3]=0.190499 y[3]=0.321072
x[4]=0.717005 y[4]=1.384066
x[5]=0.648116 y[5]=1.216906
x[6]=0.488057 y[6]=1.062203
x[7]=0.917032 y[7]=1.697487
x[8]=0.274938 y[8]=0.460703
x[9]=0.197535 y[9]=0.404545
x[10]=0.122173 y[10]=0.277121
x[11]=0.852632 y[11]=1.682158
x[12]=0.991762 y[12]=1.930109
...
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Modelization
● Simple linear regression
● ŷ=f(a,x)=a.x
● x is the input
● a is the parameter (to determine)
● f is the model → a priori choice
● ŷ is the estimated result
● y is the true value (know as ground truth)
● L(y,ŷ) is the loss function. For example | y – ŷ |
● How to evaluate a ?
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Estimator
● For simple models, we 

can compute estimators 
of the parameters

● Example : estimator for a
● We expect the estimator 

to be asymptotically 
unbiased

>>>np.mean(y/x)

1.987

>>>0.356*1.987

0.707
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Bias and model choice
● If the model is not 

adapted, the error 
(bias) becomes 
important

● Model : y=ax+b
● Model is not 

expressive enough
● Example error=|y-ŷ|
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General form of models

● x is extended to vector X
● a is extended to vector Θ
● y is extended to vector Y
● Ŷ=f(X,Θ)
● Loss function L(Ŷ,Y)
● No estimators for finding Θ
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How to choose a good 
model ?

● What mathematical form ?
● How many parameters ?
● Is there universal models ?
● Is it possible to have good estimators 

for all my parameters ?
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Plenty of models

Method Error Rate Authors Year

Linear Classifier 12 Lecun et al. 1998

2-layer NN, 300 hidden units 4.7 LeCun et al. 1998

KNN 0.63 Belongie et al. 2002

Virtual SVM, deg-9 poly, 2-pixel jittered 0.56 DeCoste and Scholkopf 2002

6-layer NN 784-2500-2000-1500-1000-
500-10 [elastic distortions]

0.35 Ciresan et al. 2010

Convolutional NN, 1-20-P-40-P-150-10 
[elastic distortions]

0.23 Ciresan et al. 2012

Human brain 0.2 Ciresan et al.

Random multi-model Deep Learning 0.18 Kowsari et al. 2018

Branching/Merging CNN
Homogeneous Vector Capsule

0.13 Byerly et al. 2020

MNIST is a handwritten digit dataset used as a benchmark 
since 90’s. The problem (to associate the picture with a digit) is 
difficult . 

From http://yann.lecun.com/exdb/mnist/
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Kernel Methods
● Adapted to non linearly separable data
● Adding features to the original data, i.e. creating a new 

representation of the data in a space with more dimensions
● Applying a linear classifier (i.e. separating hyperplane)
● Unclear universality
● Example φ(a,b)=(a,b,a2+b2) : 

from http://borisburkov.net/2021-08-03-1/
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Support Vector Machine (SVM)

● Enrich data with kernel features
– Polynomial kernel 

K(x,y)=(xT.y+1)d

– Gaussian Kernel 

K(x,y)=exp(-║x-y║2/2σ2)
● Find the support vectors

– the points of each class closer to 
the other class

● Find the hyperplane maximizing 
the distance to the support 
vectors (hard-margin) 

From https://en.wikipedia.org/wiki/Support-vector_machine
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From real to formal neuron

0/1

Warren McCulloch & Walter Pitts 1943From https://en.wikipedia.org/wiki/Neuron
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Multi-layer Perceptron

● Neural neurons
● Organized by layers
● Different size of layers
● Full connectivity 

between layers
● Input layer
● Output layer
● Hidden layers
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Multi-layer perceptron formalism

● mono-layer (matricial form)  
● multi-layer 

● Depth of deep learning is the number of σ 
applications

● Wi and Bi  are the parameters (Weights and Biases)

● X are the inputs
● No general form → universal approximator
● No estimator for parameters
● How to evaluate the optimal parameters ?
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Gradient Descent
● « Following the slope method »  
● Calculating the gradient vector with respect to

α : step size

Precision        vs      performance
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Gradient Descent & Convexity

● Result depends on the starting point
 → require convexity (unique minima)

● Practical solution : multiple random starts

Li & al, « Visualizing the loss landscape 
of neural nets, 2018, 1712.09913
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What kind of function can I train ?
● Any continuous 

multivariate function on 
R (Hornik et ak 1989) → 
universal approximator

● Extended to R^n (Sun 
and Cheney 1992)

● Extension to 
classification problems 
(Cybenko 1989) → 
universal classifiers

● Caution : the theorem 
gives no clue about 
learnability
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Qubit Mechanics
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Quantum computing
● Using quantum object to perform 

computations
● Base object : quantum bit or qubit
● Qubit

– Two pure states q=|0> or q=|1>
– Superposition principle                

q=a|0> + b|1> with a and b complex 
numbers is also a valid qubit

– Normalization |a|2+|b|2=1 
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Bloch Sphere 
representation
Pure state 

Pure state 

Hadamard states 
|+> = 1/√2 (|0> + |1>)
|->  = 1/√2 (|0>  - |1>)

|-> 
|+> 
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● The internal state (a,b) of a qubit a|0>+b|1> 
cannot be measured

● When measured we obtain randomly 0 or 1 only
● Born rule: we obtain 0 with |a|2 probability 

and 1 with |b|2 probability
● The measurement is a projection on the z axis
● Destructive operation: the qubit value is fixed to 

the measured value (wave function collapse)
● Effective measurement procedure

– perform 1000 setups and measures

– calculate the empirical probability (approx. |a|2 )

Qubit Measurement
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Measurement examples
● Pure state |0>    

– 0 with 100 % 
– 1 with 0 %

● Pure state |1>    
– 0 with 0 % 
– 1 with 100 %

● Hadamard state |+> 
– 0 with 50 %  (1/√2)2 = 1/2 = 50%
– 1 with 50 %

● Any other state 
– 0 with  |a|2 
– 1 with  |b|2

– without respect to phase (all points on the red circle give the same measures) 

|0>

|1>

|+>
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One qubit operator
● A qubit can evolve but need to preserve 

its normalization (to stay on the sphere)

● Operators are unitary 2x2 complex 
matrices 

● Can be decomposed in a rotation basis 
with one parameter Φ

● Four different representations
qreg_q = QuantumRegister(1, 'q')
creg_c = ClassicalRegister(1, 'c')
circuit = QuantumCircuit(qreg_q, creg_c)

circuit.reset(qreg_q[0])
circuit.rx(pi/4, qreg_q[0])
circuit.ry(pi/2, qreg_q[0])
circuit.measure(qreg_q[0], creg_c[0])

X axis

Z axis

Y axis
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The Hadamard operator
● Create an equiprobable mix 

of |0> and |1> from a pure 
state

● H(|0>)=1/√2 (|0>+|1>)=|+>
● H(|1>)=1/√2 (|0>-|1>)=|->
● Which are both measured    

|0> or |1> with probability 
1/2

● Matrix form
circuit.h(qreg_q[0])
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Composed states
● Composed of multiple states
● Tensor product or Kronecker product for vectors
● No Bloch representation
● In state notation 

– a|00>+b|01>+c|10> + d|11>

● Mesurement
– obtain 0,0 with probability |a|2 ...

● Some states (entangled) cannot be obtained by 
Kronecker product

● Operators can be also obtained also by Kronecker 
product but not all of them (entanglement)
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The CNOT operator
● Stands for « controlled not »
● Apply on two qubits, the control and the target
● If control is |1>, flip the target, else do nothing
● Effect on two qubit states

– |00> → |00>
– |01> → |01>
– |10> → |11>
– |11> → |10>

circuit.cx(qreg_q[0],qreg_q[1])
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Minimal set of operators
It has been proven that all quantum state 
of any system can be obtained by a 
combination of rotations and binary CNOT
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Obtaining entanglement 
with CNOT and Hadamard

● Apply Hadamard operator on control 
qubit, target qubit stays |0> and then 
apply CNOT

● |00> → 1/√2 (|00>+|10>)  →         
1/√2 (|00>+|11>)

● When measured, obtain always 0,0 
or 1,1 with probability 1/2

● Still work when the qubits are very far 
away (quantum non locality)

● EPR paradox: information goes faster 
than light

Tested over 1200km in 
satellite based experiment
2020 Yin & al

H CNOT
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Quantum Parallelism 
● Compute multiple values at the same time
● x is in |+> state
● Uf computes y+f(x)

● Result is 1/√2 (|0, f(0)>+|1, f(1)>) 
● Read x and then f(x) until all value of x has been 

seen
– If M(x)=0 M(Uf(x))=f(0)
– if M(x)=1 M(Uf(x))=f(1)

● Extendable to any size of x
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Grover Algorithm (1996)
● Search a name in a phone book by knowing a number 

(extendable to any kind of search with oracle)
● Solves the task of function inversion
● Classic computing is O(n)
● Based on quantum parallelism plus specific initialization 

called amplitude amplification
● Quantum complexity O(√n) (almost optimal) 
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Shor Algorithm (1994)
● Prime factor decomposition of arbitrary size N
● Complexity O((log N)³) in time O(log N) in space
● End of traditional cryptography (RSA) based on 

hardness of factorization
● Induced a lot of interest for quantum computing 
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Programming languages

● Qiskit (IBM) python framework
● Cirq (Google) python framework
● Openqasm for quantum assembler 
● Q# Microsoft
● Silq ETH Zurich
● Pennylane (differentiable for QML)
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Quantum computers
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Plenty of implementations
● A lot of physical 

processes are 
qubits
– spins
– energy levels
– photons
– Josephson 

currents
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Trapped ions
● Linear Paul trap
● Atoms are ionized by 

removing 1 valence electron
● Positive endcap
● Oscillating electro-magnetic 

field on bars
● The oscillation garantees the 

stability
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Ions
● Typically alkaline earth atoms 

(Be+, Mg+, Ca+, Sr+) or 
ytterbium Yb+

● Produced by an « oven »
● Ionized by a laser
● Energy levels

– Ground state |0> 
– Short lived excited state |s> 

strongly coupled by a transition to 
the ground state 

– Long lived excited state |1>
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Laser qubit operations

● Lasers are used to change the ion level
● Measurement by fluorescence
● Constraints: advanced vacuum, focused lasers
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Implementing rotation
● Rabi precession implements rotation
● Change the mix between pure states
● Induced by photon interaction (laser)

|0>

|+>

|1>

|->
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Entanglement
● No direct interaction between ions
● Entanglement is based on state transfer 

to common motion of the ions
● phonon with two states
● Swap state between individual ion and 

phonon
● Cirac-Zoller CNOT implementation

Rainer Blatt & David Wineland, Entangled states of trapped atomic ions, Nature 2008
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IonQ Aria
● 11 qubits fully tested (up to 160 in 

future)
● Linear arrangement
● Available on Amazon cloud (AWS)
● IonQ (Maryland)
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Future implementation
● Ions are inside a chip in a dedicated spot
● Ions can migrate to be entangled with others ions
● Magnetic field simplify the rotations (microwaves instead of lasers)

Lekitsch & al, Blueprint for a microwave trapped ion quantum computer, 2017
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Superconducting loops
● Josephson current
● Appear spontaneously between two 

supraconducter separated by a thin 
isolating barrier (tunnel effect)

● Phase encoding qubit (2 states only 
because very cold)

● Rotations controlled by conducted 
microwaves

● Measurement done by a magnetometer 
inside the circuit

● Constraints : superconducting 
temperature, very low decoherence time

● Actors: IBM, Google, Intel, D-Wave

From https://www.oezratty.net/wordpress/2018/
comprendre-informatique-quantique-qubits/
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Multi-qubits operations
● Only Conditional phase (CP) is available 

on superconducting systems

● CNOT is implementable from CP and 
rotations
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CP implementation
● Use a « Transmon », transmission line shunted 

plasma oscillation qubit
● Superconducting charge qubit (reduced noise 

sensibility)
● Controlled by microwaves
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IBM Rochester
● 53 superconducting qubits
● Limited connectivity
● Available through dedicated 

cloud (IBM-Q)
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Google Sycamore
● 54 superconducting qubits
● 4 neighbours connectivity
● Available through Amazon cloud 

(AWS)
●
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Transpilling
● Operation transforming code to operative 

sequence
● No compilation stricto sensu
● Affectation of qubits
● Operation are encoded and timed as 

effector actions (laser pulse, microwave 
pulse…)

● Low level gates are rotations and 
dedicated entanglement operators
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NISQ Era (1)
● Noisy Intermediate Scale Quantum 
● Low number of qubits (from 1 to 100), 

low connectivity

From https://www.ibm.com/blogs/research/2019/09/quantum-computation-center/
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Algorithm rewriting for 
topology
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NISQ Era (2)

● Noisy computers 
– spin-spin relaxation (decoherence) 
– T2=5.10-5s at worst (superconducting), best 

understood as number of operations (~1000)
– spin-lattice relaxation (thermodynamic 

equilibrium) T1
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NISQ Limitations
● The topology induces an increase of gate 

number (swapping)
● The emulation of the standard gate by 

hardware dedicated gates
● The noise and decoherence limit the depth 

of the circuits
● The number of qubits is very low

     → Only very simple circuits can be 
implemented now
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Quantum machine learning
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Problematics
● Implementing neural-network-like model 

and gradient descent on quantum 
computer

● Reconciling two computing models
– Estimating

● ŷ = M( x , θ )
● ŷ = U( x , θ ) with U unitary

– Training
● loop : θ = θ – α . ∂L( y , M( x , θ ) ) / ∂θ 
● θ = O( x , θ , y )
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Variational Hybrid QC Algo.

● Only a small part is handled by the quantum computer (adapted to 
NISQ)

● The quantum part encodes the problem in qubit formalism (Ansatz)

McClean & Al, The theory of variational hybrid quantum-classical algorithms, 2015
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QNN First generation
● Farhi & Neven (Google),          

Classification with Quantum Neural 
Networks on Near Term Processors, 2018

● Schuld, Bocharov, Svore & Wiebe, 
Circuit-centric quantum classifiers, 2018

● Declination of the Variational hybrid 
computation to Machine Learning

● First successful implementations
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Classification with QNN (1)
● Farhi & Neven (Google), 2018
● One of the first « QNN » implementation
● Adapted to both classical or quantum 

inputs z
● Designed for binary classification : binary 

label l(z) (no label noise)
● Based on variational hybrid computation 

and gradient descent  
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Classification with QNN (2)
● Based on qubit data encoding |ψ> is the input plus one 

ancillary qubit

● A sequence of binary unitary parametrized operators U i

● Measurement of the ancillary bit (the answer) 
converted from probability |a|2 to {-1,1}
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Classification with QNN (3)
● The operator part is evaluated by the quantum 

circuit (mean of M measurement)

● The loss function is evaluated on the classical part

● Learning by gradient descent, calculated by 
nulmerical differentiation

→ obtained by 2L*M quantum circuit evaluation  
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Classification with QNN (4)
● Tested on binary parity and majority
● Ui(θ) are designed specifically for 

these problems
● Tested on downsampled MNIST digits
● All tests are conclusive, the network 

learns
● Nice proof of concept
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Standard scheme
● The scheme used in Farhi and Schuld 

has been extensively used everywhere

From Schuld & al 2018
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Basis encoding
● The data are digitized and then encoded in 

a sequence of qubit
● |1> or |0> are obtained by initialization at |

0> state and rotation Ry(π) 
● Example

– x1=5=0b101 
– x2=6=0b110 
– encoded by |101110> 

● very qubit consuming and time consuming
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Quantum associative memory
● the data are encoded a a 

superposition to reduce the number 
of qubits
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Amplitude encoding
● encode the data as the coefficients of a 

superposition of states

● Use very few qubits :log2(n)
● Very time consuming exp(n) not compatible 

with NISQ
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Angle encoding
● Each data is encoded as an angle on 

a single qubit by applying Ry(xi) on |0>

● xi has to be normalized (over π) 

● The best trade-off between time and 
qubits (n) : used almost everywhere

● Could be densified using the phase 
(dense angle encoding) → n/2 qubits
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Processing
● As measure is often done on only one qubit, some kind of 

entanglement has to be implemented
● TTN and MERA are good candidates for regular 

architecture
● TTN is very economical in parameters
● MERA is a bit more efficient (more parameters)

Grant & al, Hierarchical quantum classifiers, 2018, 1804.03680
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Processing limit
● Whatever is the nature of the parametrized 

circuit, it can expressed as a single global 
unitary circuit

● A unitary circuit is linear in its inputs
● Thus this kind of encoding / processing 

scheme is linear in its outputs
● Data are plunged into a bigger space (Hilbert 

space) and discriminated by a linear classifier
● This is kernel method, not QNN 
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Every QNN is kernel 
method ?

● Article from Maria Schuld  « Quantum machine 
learning models are kernel methods » 2021

● Encoding is the kernel
● In my opinion, only the scheme induces kernel 

methods, not the quantum nature
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QNN for HEP
● Plenty of articles using this design for HEP 

analysis
– Quantum Machine Learning in High Energy Physics, 

Guan & al, 2020, 2005.08582 (survey)
– Performance of particle tracking using a quantum 

graph neural network, Tüysüz & al, 2021, 2012.01379
– A quantum algorithm for the classification of 

supersymmetric top quark events, Bargassa & al, 
2021, 2106.00051

– Dual-parametrized quantum circuit GAN model in HEP, 
Chang & al, 2021, 2103.15470

– ….
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QNN first generation 
drawbacks

● Limited to kernel methods
● No integrated non-linearity in the 

quantum part
● Size of entries limited by number of 

qubits
● Numerical problems on differentiation
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QNN second generation

● Based on 2 new techniques
– Re-uploading
– Shift-rule differentiation
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The re-uploading technique
● Published in 2019 by Perez-Salinas & al « Data re-

uploading for a universal quantum classifier »
● input is taken as parameter of every operators instead 

of input of a global operator
● Non linerarity appears
● Save a lot of qubits
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Re-uploader as universal 
approximator

● Published in 2021 by Perez-Salinas & al 
« One qubit as a universal approximant »

● A single qubit can approximate any bounded 
function by using the input x multiple time as 
operator parameter

● Heavy tests give satisfying results on non 
linearity like tanh and ReLU

● Give a hope for implementing real QNN on 
quantum circuits
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Improve the differentiation
● The numerical differentiation on noisy device 

is almost intractable (too small shift)

● A property of some quantum operator has 
been discovered called « parameter shift 
rule »

● s is not small (it is a fixed value)
● The derivative is exact
● The other operators are decomposable in 

sequence of shift-rule operators

● Mitarai & al, Quantum 
circuit learning, 2018

● Schuld & al, Evaluating 
analytic gradients on 
quantum hardware, 2018
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Shift rule example
● Let’s consider f(x)=sin(x) and its derivative 

cos(x)
● We know as a property of sin and cos

● Thus

● We can choose any s, for example π/2

● Cos can be evaluated exactly by two 
evaluations of sin 
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Global use of parameter 
shift rule

● Can be extended to any unitary 
operator

● G.E. Crooks, Gradients of 
parameterized quantum gates 
using the parameter-shift rule and 
gate decomposition, 2019

● Implemented in Pennylane
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Hybrid computation 
gradients

The shift-rule differentiation can be integrated 
in the derivation tree of classical machine 
learning (for example Pytorch) by chain rule
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QML in action with
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Pennylane
● Pennylane is a python library implementing 

hybrid differentiable quantum computation
● Compatible with PyTorch
● Developed by 
● A company from Toronto developping 

photonic hardware
● Available on pip
● Open-source and well-documented

www.xanadu.ai

#pip install pennylane
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Test on synthetic data
● multinomial distributions 

(100 points each)
● Classification from 

coordinates [0,1]x[0,1] 
to label {0,1}

● Data are linearly 
separable 

● Classifiable by a linear 
model with 2 
parameters
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Re-uploading circuit
● Using re-uploading to solve the problem with 4 

parameters
● Uploading two times x1 and x2 with RY operator
● Uploading the 4 parameters with RX operator

def circuit(params,x1,x2):
    qml.RX(params[0],wires=0)
    qml.RY(x1,wires=0)
    qml.RX(params[1],wires=0)
    qml.RY(x2,wires=0)
    qml.RX(params[2],wires=0)
    qml.RY(x1,wires=0)
    qml.RX(params[3],wires=0)
    qml.RY(x2,wires=0)
    return qml.expval(qml.PauliZ(0))
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Model form

● The number of terms grows exponentially with the number of 
operators

● Only 2 operators here because the 4 operator expression does 
not fit in the slide !

● With re-uploading cosn and sinn appears providing non-linearity
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Result of learning

● Very low MSE reached 
● The circuit has learned a non linear curve
● Early stopping at 50 epochs  
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More complicated example
● Concentric circles
● Solvable with 40 parameters and re-uploading

Credit
Andrea 
Sartirana
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Running on IBM-Q
● Some quantum computers are free 

of use on IBM-Q (1 to 5 qubits)
● An account is required

● Obtain the API token → .qiskitrc file
● Using Armonk : mono-qubit free QC

https://quantum-computing.ibm.com/

https://quantum-computing.ibm.com/
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Results on IBM-Q
● No classification error on the 10 tests
● Very slow : 3 minutes for 10 tests (no derivatives) on a high disponibility phase
● Error Management

– Gate precision error : irreducible with mono-qubit
– Systematic error : should be handled by training the system directly on armonk but very 

VERY long training time → untractable now

No classification error

On L2 distance

Result on simul= 0.176
Result on armonk= 0.113
Error : 35 %

Result on simul= 0.736
Result on armonk= 0.586
Error : 20 %
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QML @   
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QC2I IN2P3 Master Project
● Computing project supported by IN2P3
● Goal: explore the possible applications of quantum 

computing for HEP
● Scientific Resp. Denis Lacroix (IJCLab)
● Technical Resp. Bogdan Vulpescu (LPC)
● 3 themes

– Simulation of complex quantum system (Denis Lacroix)
– Prepare the Quantum Computing Revolution (Bogdan 

Vulpescu)
– Quantum Machine Learning (Frédéric Magniette)

● Access to Cloud quantum computers (AWS & IBMQ)
● Website https://qc.pages.in2p3.fr/web/  

https://qc.pages.in2p3.fr/web/
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QML @ 
● LLR is an active member of QC2I
● 6 members of QC2I @ LLR
● F. Magniette head of the QML thematics 

(previously A. Sartirana)
● Interests in QML

– QNN classifiers
– Re-uploading techniques
– Classical / quantum ML model convergence
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● Definition of benchmarks 2 coords → 
binary classification (F. Magniette)

● Simulation of re-uploading learning 
circuits on benchmarks & particle 
physics data (A. Sartirana, F. Magniette)

QML @ 
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● P2IO project TutoQML in 
collaboration with Denis Lacroix 
(IJCLab)
– 2 year post-doc Yann Beaujeault-

Taudiere (since 1st December 
2021)

– Methodological study of QML 
models expressivity on synthetic 
and real data

– Theoretical work on QC/DNN 
models identification  

QML @ 
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Any question ?

1959, Louis Leprince-Ringuet talking about QML at College de France...
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