IPHU-018 : Direct search for WIMP Dark Matter

Pascal Pralavorio CPPM – Aix-Marseille Université, CNRS/IN2P3 (pralavor@cppm.in2p3.fr)

hvsique de

entre de Physique Théorie

Marseille Université

DARKSIDE

1- Status of direct WIMP searches 2- DarkSide-20k experiment **3- IPhU Project : Status and prospects 4-** Conclusions

WIMP Dark Matter challenges

WIMP is one of the best motivated candidate

3 challenges matching the IPhU perimeter \rightarrow coordinated in this project

WIMP Search : Status and Future

Xenon-1T, LUX, Panda-X, LZ, Xenon-nT, Darwin / Darkside-50, DarkSide-20k, Argo

WIMP Search using LAr TPC

DarkSide-20k has high discovery potential both at low and high WIMP mass

DarkSide-20k (1/2)

Next generation Liquid Argon dual phase experiment ...

Dual phase combines scintillation signal (S1) and ionization signal (S2)

NR bkg irreducible \rightarrow mitigate it !

Deep Underground expt.

- ✓ Material selection + assay
- ✓ Neutron veto around the TPC

Note: 80% of electrons recombined with Ar⁺ $\rightarrow \gamma$

- many ionization el. (5xNR)

DarkSide-20k (2/2)

Income states in Grand Sasso underground lab (Italy)

- CPPM Team joined DarkSide-20k in 2020
- Design frozen in TDR in Dec. 2021 (construction starts in 22, data taking in end-25)

Will be the largest TPC ever build for Dark Matter searches !

IPhU018 project

□ Submitted Dec. 2020 \rightarrow accepted Apr. 2021 for 4 years

- 4 labs (inc. CPPM, LAM and CPT) \rightarrow 6 people. Organized 2 meetings in 2021
- One PhD has also been granted : Marie Van Uffelen (Oct. 2021 Oct. 2024)

IPhU science working group(s) i Astroparticle and HE Universe Quantum Field Theory and Quantu	T w	
Project title: Direct search fo	r WIMP dark matter	Reduct Calibrat
Project time frame: Start date: 01/01/2021	duration (months): 48	bkg s
Project coordination: Coordinator's name: Pascal Pralay Lab/team: CPPM/Matière Noire	orio email: pralavor@cppm.in2p3.fr tel: 04 91 82 72 69	Red Improve
List of other teams involved:		
Lab/team: CPPM/Matiere Noire	Team project leader. Fabrice Hubaut	
Lab/team: CPPM/Matiere Noire	Team project leader: Emmanuel Nezri	
Lab/team: CPPM/Matiere Noire Lab/team: LAM/GECO Lab/team: CPT/PP	Team project leader: Emmanuel Nezri Team project leader: Laurent Lellouch	

Two main goals

Reduce experimental syst.

Calibration + Optimal signal / bkg separation (using AI)

Reduce theory syst.

Improve knowledge on WIMP local density / WIMP speed / WIMP -- Argon atom interaction

Prepare at best the WIMP searches in DarkSide-20k using new close exp / theory connections provided by IPhU

IPhU Days (10-Feb 2022) Direct Search for WIMP Dark Matter

DS-20k Calibration (1/3)

CPPM responsible for the TPC calibration system

- Goal : circulate radioactive sources in a guide tube around the TPC (2 x 20m tubes)
- Establish the calibration program (using Geant4 simulation) → See Marie presentation

Included in DarkSide-20k TDR (released in Dec 2021)

DS-20k Calibration (2/3)

Contrib IPhU (Prix HT)

Build a mock-up at CPPM to validate the design

- Started in 2020. Successful cold test in July 2021 → See Marie presentation
- Then install equipment to run with the motors (send by Queen's University)

Set-up for the cold test (July 2021)

Set-up (as of January 2022)

Most of the mock-up equipped in 2021 thanks to IPhU !

DS-20k Calibration (3/3)

2022-23 mock-up tests at CPPM (and CERN)

- Develop monitoring of the motors (in sync. with Queen's University)
- Produce titanium pipes (to replace the stainless steel one) and 2 glove boxes
- Put in place gaseous nitrogen flushing in the tube to avoid ice
- → Warm tests at CPPM 07-09/2022
- -> Cold tests at <u>CPPM 12/2022 02/2023</u>
- → Long duration runs at <u>CERN 01-03/2023</u>

Amounts in €	Requested for 2022	Requested for 2023	
Equipment	6500	4500	
Computing	0	0	
Travel expenses	500	4500	
Colloquia	500	500	
Operating budget	500	500	
TOTAL	8000	10000	

Request a (very experienced) visitor from Queen's University

Laboratories involved (acronyms): CPPM and Queen's University (Toronto Canada)

Duration of stay (up to 3 months): 3 weeks Expected starting date: June 2022

Lab where the visitor will be administratively located (acronym): CPPM

Collaborators (name, first name – lab acronym - email - phone): Skensved Peter – QU - skensved@queensu.ca - +1 613-533-2676

Validate the guide tube design with mock-ups in 2022-23 (2024 will see installation in Gran Sasso)

Radon

Radon contamination

- Radon progeny plates-out on detector material surfaces exposed to air \rightarrow n bkg
 - ✓ Limit the exposure time by using hermetic plastic bags (transport + storage) $[\alpha 5, 8 \text{ MeV}]$
- Plateau Radon at CPPM participates to the radio purity assay program of DS-20k
- Visit of Oleksandra Veselska (CTU Prague): 2 months paid by IPhU
 - ✓ Titanium Zeolite could adsorb Radon \rightarrow could be used to purify Ar (publication in prep.)

Radonisation Chamber

Signal reconstruction

Optimize signal / background separation

Started by developing the algorithm to reconstruct / identify S1 and S2

Galatic Halo model

Impact on DarkSide-20k sensitivity

- Generate more realistic inputs than the "Standard Halo Model" (v_{esc}=544 km/s, v₀=220km/s, v_{Earth}=232km/s, ρ_{DM}=0.3 GeV/cm³) using semi-analytical approaches and cosmological hydrodynamics simulations of spiral galaxies
- Start from TDR DarkSide-20k expectations

Conclusions

Direct Search for WIMP Dark Matter project helped by IPhU

- New PhD student, Marie Van Uffelen, recruited in 2021
 - ✓ Did also her internship (*financed by IPhU*) at CPPM on DarkSide-20k
- Equip the DarkSide-20k calibration mock-up (power supplies, NI Racks, ...)
 - ✓ will be ready to start warm tests in July 2022
 - ✓ would benefit from a visitor (3 weeks) to prepare these tests
- Started work on signal reconstruction (optimize signal / background separation using AI)
- Generate synergy between LAM, CPPM and CPT (2 meetings in 2021)
 - ✓ Work on galactic modelling impact on DarkSide-20k sensitivity just started
 - ✓ Next meeting planned 31-03-2022

Name Pos			#PM ² 2022	#PM ² 2023		
	Position ¹	Laboratory			Nature of the contribution to the project	
F. Hubaut	DR	CPPM	3	3	Optimal algorithms for signal/background separation	
P. Pralavorio	DR	CPPM	3	3	Optimal algorithms for signal/background separation	
I. Wingerter-Seez	DR	CPPM	3	3	Calibration of DarkSide-20k	
J. Busto	PR	CPPM	1	1	Calibration of DarkSide-20k	
M. Van Uffelen	PhD	CPPM/LAM	12	12	DarkSide-20k calibration, S/B separation and phenomenology	
E. Nezri	CR	LAM	4	2	Improved modelling of the galactic halo	
L. Lellouch	DR	CPT	0	1	Fully-controlled QCD uncertainties on WIMP-nucleus cross-sections	
J. Lavalle	DR	LUPM	2	1	Improved modelling of the galactic halo	

DarkSide

Technology is now mature

- DarkSide-20k scales from G1 and G2 running expts
- Only one global collaboration (GADMC): 350 people, profit from best technologies
- Fundings from Canada (CFI), Italy (INFN), United States (DOE, NSF), UK (STFC)

Veto

Direct Search for WIMP Dark Matter

Electron / nuclear recoil

□ Super simplified scheme on interactions in the TPC (E=1keV – 1 MeV)

- > Few excitons → photons → S1
- Many ionization → electrons drifted in an electric field (~200V/cm) → electroluminescence in gaz pocket → S2

> ~No loss per heat (elastic collision)

- Many excitons → photons → S1
- ➤ Many ionization → electrons → electroluminescence in gaz pocket → S2
- Abundant loss per heat (quenching)

Key

Exciton Xe*

Heat (no signal)

Ion Xe+

DarkSide-20k TPC

□ Titanium vessel hosts the inner detector (TPC + veto)

- High degree of integration in the TPC : compact and simple
 - ✓ TPC walls also serve as overall mechanical structure, Faraday cage, grounding, ...
 - ✓ Minimize type and amount of passive material to lower the background (e.g. same acrylic used for TPC walls & SiPM support structure [20t with 2% Gd], anode and cathode plates [with Clevios for HV])
- TPC Ti vessel gap used for the veto : instrumented with SiPMs

IPhU Days (10-Feb 2022)

Direct Search for WIMP Dark Matter

DarkSide-20k PE

Photosensors

- Custom cryogenic SiPMs developed in collaboration with FBK (PDE ~45% at 420 nm Low dark count rate <20 cps, 3.5 ns time resolution). Production at LFoundry.
- PDU = SiPM packaging inc. electronics in LNGS (TPC) and UK (Veto) : SNR=8
- Installation outside the TPC (inner veto) and top/bottom inside the TPC (TPC)

Outer Veto : 8 arrays lowered from the proto-DUNE flanges (0.5% coverage, 1 pe/MeV)

DarkSide-20k proto

Prototyping

- Validate technological choices (e.g. integrated TPC)
- Test the cryogenic system for the TPC (at CERN)
- Measure on-site performance of the SiPM \rightarrow input for simulation

DarkSide-20k SiPM

Photosensors

- Custom cryogenic SiPMs developed in collaboration with FBK (Italy) : PDE ~45%, Low dark count rate <20 cps, 10 ns timing resolution
- PDU = SiPM packaging inc. electronics in LNGS (TPC) and UK (Veto)

Bright sides of DarkSide (1/4)

Optimized to be background free for high mass WIMP search

- Selection: 70 (30) cm away in z (r) from the TPC walls \rightarrow 20 t UAr, single scatter
- ER background suppression: purified argon (depleted in ³⁹Ar cosmogenic argon), S2/S1, S1 Pulse Shape Discrimination (PSD) <^{1 mBq/kg} β, T_{1/2}=269 year, ~1 Bq/kg R=10³

ER background <<0.1 event in 200 ton.year

Bright sides of DarkSide (2/4)

Optimized to be background free for high mass WIMP search

- Selection: 70 (30) cm away in z (r) from the TPC walls \rightarrow 20t Ar, single scatter
- ER background suppression: purified argon, S2/S1, S1 PSD → negligible
- NR background suppression: LNGS, material selection+cleaning+assay, neutron veto

Expect ~0.1 bkg event in 10 years of running (200 ton.year)*

* Note: expect ~3 irreducible evts from v NR

Bright sides of DarkSide (3/4)

Good discovery potential of high mass WIMP

DarkSide-20k and Xenon expts complementary for high mass WIMPs

Bright sides of DarkSide (4/4)

□ Bonus: very sensitive to low mass (1-5 GeV) WIMP

- S2-only APC, LPNHE leadership : ARIS measurements @ IPNO + analysis
 - Very good signal / background separation at low N_e
 - ✓ Good background description for $N_e \ge 7$

DarkSide-50 world leading sensitivity in 1-5 GeV WIMP (since 2018)