Direct search for Dark Matter with the DarkSide-20k experiment Marie van Uffelen - PhD student - 10/02/2022 - IPhU days

PhD supervisors: Fabrice Hubaut (CPPM), Emmanuel Nezri (LAM)

WIMPs & DarkSide-20k

• Strong discovery potential in the

- Next Argon experiment: DarkSide-20k

Technology providing the best limits at high WIMP mass

The TPC calibration set up

3.5 m

3.5 m

- Goal: position precisely (≈ cm precision level) photons and neutrons sources around the TPC -> achievable precision will be checked thanks to the mockup
- Photons and neutrons sources will be of different energy to calibrate the DS20k TPC response

Hardware work: mock up

- Goal = check the feasibility of the calibration system: if sources don't get stuck in the pipes, test the motors system ...
- Mock up = one U-shaped tube inserted inside a tank
- July 2021: the tank is thermally insulated -> tests at cold (LN_2)
- July test's goal = test the hermeticity of the tank, measure the volume of LN₂ needed to fill the tank, measure the constraints applied on the tubes when cooling down
- Since then, the motors have been added -> new interesting tests to come (2022)

Work on this during my internship See back-up for more details

The TPC calibration set up inside g4ds

- 2017: first DS20k design proposal
- 2019: new design of DS20k, complex veto, design called « plan A »

Dec. 2021: TDR froze the geometry of DS20k -> redo all the simulations made for plan A

Geometry of the detector as it is implemented in g4ds, a GEANT4based software applied for the DarkSide20k experiment

Expected signals in the TPC

- Electronic recoil
- Comes from electrons and photons (residual background)
- Slow S1 / high yield of S2

NR signal

- Nuclear recoil
- Comes from neutrons (residual background) and WIMPs (signal)
- Fast S1 / few S2

Single Sca

dual nal)

Simulation of the response to photon sources exposure (\mathbf{ER})

- ER : expected to be mainly background (photons, electrons)

g4ds : Use of five monochromatic sources of photons: ⁵⁷Co, ¹³³Ba, ²²Na, ¹³⁷Cs, ⁶⁰Co From 122 to 1173 keV

Most important signal to reconstruct for the calibration: pure ER single scatters

DS20k resolution = 0.0023 + 0.334/sqrt(E)

Spectrum normalized to 10 000 pure ER SS events

Pure ER SS

From these spectra: computation of the rates of interesting events inside the TPC per decay of the source located in the tubes

Simulation of the response to photon sources exposure

From these spectra: computation of the rates of interesting events inside the TPC per decay of the source located in the tubes

- Rates \in [1.2 e-5, 6.2 e-4] evts/ decay
- Asking for 1e3 pure ER SS in the photoelectric peak, it leads to ≈ 1 week of ER calibration

events	⁵⁷ Co	¹³³ Ba	²² Na	¹³⁷ Cs	⁶⁰ Co
	6.2 e-4	1.1 e-4	3.7 e-4	4.0 e-5	1.0 e-4
n	8.4 e-5	2.6 e-5	1.6 e-4	1.2 e-5	5.2 e-5

Simulation of the response to neutron sources exposure

- NR : can be background (neutrons) or signal (WIMPs)
- MeV neutrons)

Gold plated events	AmBe	AmC	DD
Side	1.1 e-3	6.4 e-4	6.5 e-4
Bottom	6.5 e-4	6.1 e-4	6.4 e-4

NR calibration = really at stake

g4ds : use of three radioactive sources of neutrons: AmBe, AmC, DD gun (monochromatic source of 2.45

Impact of the tubes on the detector

The preparation of the TPC calibration was the main goal of the simulation work. Yet, as the presence of the pipes can have a negative impact on the rest of the detector, simulations were performed in order to check how much impact the tubes have

Veto's Light Collection Efficiency (LCE)

- Tubes can absorb the light emitted by the argon when scintillating: this could lower the veto LCE
- Simulations were performed in order to test different optical boundaries so as to minimize the loss of LCE
- Best solution = reflector-wrapped titanium tubes : 4% LCE. 1% loss compared with thecase without pipes

Current work: phenomenology

- Parameters at stake : $v_0, v_c, v_{esc}, \rho_0$ & f(v)
- Changing these parameters will affect the exclusion limits
- Goal: assess astrophysical uncertainties on DS-20k exclusion limit

Current main admitted model **SHM = Standard Halo Model**

- SHM: the velocity distribution is $3 |\overrightarrow{v}|^2$ Maxwellian = $\frac{1}{2\pi v_0^2} exp$
- SHM : $v_0 = 220 + 50 50 km/s$

 $v_c = \frac{220}{-20} \frac{+60}{-20} km/s$

 $v_{esc} = 544 + 54 km/s$

Ranges of fiducial values

 $\rho_0 = 0.3 + 0.2 - 0.03 GeV/cm^3 = 8 \cdot 10^{-3} M_{\odot}/pc^{-3}$

Goal: assess astrophysical uncertainties on DS-20k exclusion limit

Simulations of the calibration in the previous geometry of DS20k

Hardware work on the mock up at **CPPM:**

- Tests at room temperature and cold
- Strain deformation vs temperature + data analysis

- TPC calibration strategy
- Minimization of the guide tube system *impact* on the other parts of DS20k

- Writing of an internal note presenting the simulation results
- 7 oral reports to the collaboration

Using AI to help signal reconstruction and optimize signal/background rejection

Back-up

Hardware work: mock up

- Mock up built at CPPM to check if the system is doable (cold resistance, circulation of rope inside the pipes, foresee the calibration time, motors monitoring precision ...)
- U-shape tube, made with stainless steel
- Measure of strain vs temperature in order to study the lengthening of the pipe when cooling down
 - Room temperature
 - Heat
 - Cold tests (LN₂)

Expected behaviour: equation of the form: $y = a + bT^+cT^2 + dT^3 + eT^4$ if T > T_{low} **Y** = cste if **T** < T_{low} $T_{low} = 23K$

15

300

Current design of the mock up On the CPPM platform

Structure holding the motors

Motors which will drive the rope

Stainless steel pipes U-shaped inside the tank (+ rope inside)

Insulated tank which will contain LN₂

Institut Physique de l'Univers

Glove box mockup

Simulation of the response to neutron sources exposure (NR)

Gold plated events	AmBe	AmC	DD
Side	1.1 e-3	6.4 e-4	6.5 e-4
Bottom	6.5 e-4	6.1 e-4	6.4 e-4

NR calibration = really at stake

Perform

Gd wall is thiner

calibration where the

the

- Rates \approx 1-6 e-4 evts/decay
- Asking for 1e4 pure NR SS, it leads to \approx 1 month of NR calibration

Some tricks could fasten the calibration

Rates multiplied

Here : Rates multiplied by ≈ 2

Current main admitted model

SHM: the velocity distribution is $=2\pi v_{c}^{2}exp$. Maxwellian = – $2v_0^2$

•
$$v_0 = 220^{+50}_{-50} km/s$$
, $v_c = 220^{+60}_{-20} km/s$
 $v_{esc} = 544^{+54}_{-41} km/s$
 $\rho_0 = 0.3^{+0.2}_{-0.03} GeV/c^2/cm^3$
More best-fit
mean value
ranges than
uncertainties

- Changing these parameters will affect the exclusion limits -> bandwidth
- Goal: find the exclusion limits with astrophysical parameter within their uncertainty and for different plausible velocity distributions

alue

Current main admitted model SHM

SHM: the velocity distribution is $=2\pi v_{c}^{2}exp$ Maxwellian = –

•
$$v_0 = 220^{+50}_{-50} km/s$$
, $v_c = 220^{+60}_{-20} km/s$
 $v_{esc} = 544^{+54}_{-41} km/s$
 $\rho_0 = 0.3^{+0.2}_{-0.03} GeV/c^2/cm^3$
More best-fit
mean value
ranges than
uncertainties

- nties Changing these parameters will affect the exclusion limits -> bandwidth
- Goal: find the exclusion limits with astrophysical parameter within their uncertainty and for different plausible velocity distributions

nan