Search for CPV in $B \rightarrow D^* \mu \bar{\nu_{\mu}}$ at LHCb

Vlad Dedu

Aix Marseille Univ, CNRS/IN2P3, CPPM, IPhU, Marseille, France

IPhU days 10.02.2022

Vlad Dedu (CPPM)

CPV in B \rightarrow D^{*} $\mu \bar{\nu_{\mu}}$

Introduction - Semileptonic B decays

Flavour Changing Charged Currents

- Tree level transitions: $b
 ightarrow c \ell
 u$
- $\bullet \sim 10\%$ of B-decays are semileptonic
- Experimental challenge: neutrinos in the final state

Introduction - Motivation

- Couplings of (e, μ, τ) should be identical in SM (LFU)
- b-anomalies (deviations from SM predictions) in $\underline{b} \rightarrow c\ell\nu$ transitions: hints of NP
- R(D), $R(D^*)$ can be explained by different NP models

Introduction - CPV in $b \rightarrow c \ell \nu$ decays

- We take a different approach \rightarrow sensitive to same NP as R(D), $R(D^*)$, but with different set of systematic uncertainties
- This project: Search for CPV in $B \rightarrow D^* \mu \nu$, first analysis of direct CPV in a semileptonic decay.
- No CPV in SM in SL decays \rightarrow theoretically clean probe of NP.
- Sensitive to effects that could fake CP asymmetry

- Although NP should couple more to τ due to larger mass, same NP may affect μ . Start with μ instead of τ channel: more statistics, easier analysis (τ reconstruction is difficult).
- Can still provide meaningful constraints for NP and distinguish between NP models.

Introduction - NP Effective Hamiltonian

• Effective field theory for $b
ightarrow c \ell \overline{
u}$ decays

$$\begin{aligned} \mathcal{H}_{eff} &= \mathcal{H}_{eff}^{NP} + \mathcal{H}_{eff}^{SM} = \frac{G_F V_{cb}}{\sqrt{2}} \left(\sum_i g_i \mathcal{O}_i + \mathcal{O}_L \right) \\ \mathcal{O}_S &= \overline{c} b \ \ell (1 - \gamma_5) \nu \\ \mathcal{O}_P &= \overline{c} \gamma_5 b \ \ell (1 - \gamma_5) \nu \\ \mathcal{O}_L &= \overline{c} \gamma^\mu (1 - \gamma_5) b \ \ell \gamma_\mu (1 - \gamma_5) \nu \\ \mathcal{O}_R &= \overline{c} \gamma^\mu (1 + \gamma_5) b \ \ell \gamma_\mu (1 - \gamma_5) \nu \\ \mathcal{O}_T &= \overline{c} \sigma^{\mu\nu} (1 - \gamma_5) b \ \ell \sigma_{\mu\nu} (1 - \gamma_5) \nu \end{aligned}$$

•
$$SM : g_S = g_P = g_L = g_R = g_T = 0; \ \mathcal{H}_{eff}^{SM} \propto \mathcal{O}_L$$

• Couplings g_L , g_R , g_S , g_P , g_T can be complex.

Helicity angles

- $B^0 \rightarrow D^* (\rightarrow D^0 \pi) \mu \bar{\nu_{\mu}}$ differential decay rate is function of 4 kinematic parameters: 3 helicity angles ($\theta_{\ell}, \theta_D, \chi$) and q^2
- χ is angle between the two decay planes

Parity- and CP-violation

Angular distribution of $B \to D^* \mu \nu$ can contain terms $\propto \sin \chi$.

Asymmetries in nr of evts with sin $\chi > 0$ ($\chi \in [-\pi, 0]$) and sin $\chi < 0$ ($\chi \in [0, \pi]$)

Simplified view \rightarrow counting events:

$$B^{0}: a = \frac{N(\sin\chi > 0) - N(\sin\chi < 0)}{N(\sin\chi > 0) + N(\sin\chi < 0)} \qquad a_{P} = \frac{1}{2}(a - \overline{a})$$
$$\overline{B}^{0}: \overline{a} = \frac{\overline{N}(\sin\chi > 0) - \overline{N}(\sin\chi < 0)}{\overline{N}(\sin\chi > 0) + \overline{N}(\sin\chi < 0)} \qquad a_{CP} = \frac{1}{2}(a + \overline{a})$$

Distinguish between P- and CP-violation by looking at both B^0 and \overline{B}^0 Both P and CP asymmetries can be nonzero

Triple products

Coefficient	Coupling	Angular function
$\operatorname{Im}(\mathcal{A}_{\perp}\mathcal{A}_{0}^{*})$	$Im[(1+g_L+g_R)(1+g_L-g_R)^*]$	$-\sqrt{2}\sin 2 heta_\ell\sin 2 heta^*\sin\chi$
$\operatorname{Im}(\mathcal{A}_{\parallel}\mathcal{A}_{\perp}^{*})$	$Im[(1+g_L-g_R)(1+g_L+g_R)^*]$	$2\sin^2 heta_\ell\sin^2 heta^*\sin2\chi$
$\operatorname{Im}(\mathcal{A}_{SP}\mathcal{A}^*_{\perp,T})$	$Im(g_P g_T^*)$	$-8\sqrt{2}\sin heta_\ell\sin2 heta^*\sin\chi$
$\operatorname{Im}(\mathcal{A}_{0}\mathcal{A}_{\parallel}^{*})$	$Im[(1+g_L-g_R)(1+g_L+g_R)^*]$	$-2\sqrt{2}\sin heta_\ell\sin2 heta^*\sin\chi$

- Parity Violation \rightarrow if amplitudes (A_i, A_j) have different strong but same weak phase (can appear in SM).
- <u>CP-violation</u> \rightarrow if amplitudes (A_i, A_j) have different weak but same strong phase (can appear only in NP).

Plan to measure these terms in data \rightarrow constrain g_R, g_T, g_P NP couplings

Binned CPV fit

- We reconstruct all angles, how do we measure CPV ?
- Deal with $\cos \theta_{\ell}$ and $\cos \theta_D$ as 2D binned histograms and weigh them by $\sin \chi$ and $\sin 2\chi$ to measure asymmetry
- 2 sets of observables: P-asymmetries and CP-asymmetries

- \bullet Simulation generated with SM \rightarrow inject NP
- Estimate asymmetry effect in SM and NP

• Plan to perform 2D binned template fit of these asymmetries in data, with NP templates from NP reweighted simulation.

CP asymmetries (SM MC)

MC sample size \sim 2x the expected dataset of Run 2.

No CPV as expected (no NP \rightarrow no weak phases).

P asymmetries (SM MC)

MC sample size \sim 2x the expected dataset of Run 2.

No PV either (all formfactors are real \rightarrow no strong phases)

CP asymmetries: adding right-handed current

The same MC reweighted with RH current NP, $g_R = 0.3i$

Specific pattern in both up-down and quadratic asymmetry terms.

CP asymmetries: interference of tensor and pseudoscalar

SM MC reweighted with combination of P and T NP, $g_P g_T^* = 0.1i$

LHCb detector

• b-hadrons produced in pairs $(b\overline{b})$ in the same forward cone

• Excellent vertex finding, momentum resolution, PID

Vlad Dedu (CPPM)

CPV in B $\rightarrow D^* \mu \bar{\nu_{\mu}}$

Neutrino reconstruction

- ν is not visible in the detector
- Kinematic reconstruction of $B(\nu)$ from decay topology (very precise vertexing from VELO)
- Run full refit of the decay tree including all possible kinematic information (including missing ν) and all possible correlations
- Improve precision in reconstructing quantities of interest $(\theta_{\ell}, \theta_D, \chi, q^2)$

Angle resolutions before and after refit

Systematic uncertainties

We would need to control any systematics that could introduce non-zero $\sin\chi$ terms

Non-zero sin χ terms: what does it practically mean?

- sin $\chi = +1$: ν flies "up" wrt. observable $D^0\pi^+\mu^-$ plane (\uparrow).
- sin $\chi = -1$: ν flies "down" (\downarrow)
- Term $\propto \sin \chi$: up-down asymmetry $(N_{\uparrow} N_{\downarrow})/N_{tot}$.

 ν direction is reconstructed from topology of PV and secondary vertices.

- ν "up" \Leftrightarrow PV "below" $D^0\pi^+\mu^-$ plane
- ν "down" \Leftrightarrow PV "above" $D^0\pi^+\mu^-$ plane

What experimental effects can introduce non-zero "PV below-above" asymmetry?

- CPV in backgrounds
- Vertex Locator misalignment
- Asymmetry of tracking efficiency

Preliminary 2D fit - background estimation

 $\bullet\,$ Squared missing invariant mass due to ν

- q^2 invariant mass of the (μ, ν) combination
- MC needs corrections (PID, trigger, kinematics) + external bkg constraints in the fit to adjust templates
- Sample purity about 80%
- Background yields needed to assign systematics for CPV in bkgs

Vertex Locator misalignment

- ullet Displacements of the two halves wrt each other can introduce bias in χ
- Expect T_y and R_x to show largest source of bias
- We are looking for 'twists' in the decay rate, 'twisted' detector can give fake CPV

CP asymmetries: misalignment of VELO halves (y shift)

SM MC, track parameters (±5 μm displacement, $\times 5$ larger than alignment precision) \rightarrow displace tracks by hand as if Vertex Locator is misaligned

"Up-down asymmetry", $w \propto \sin \chi$:

Different pattern from "true" CPV, can be included in the fit.

Vlad Dedu (CPPM)

CPV in B $\rightarrow D^* \mu \bar{\nu_{\mu}}$

Conclusions and outlook

Conclusions:

- $B \rightarrow D^* \mu \nu$: direct CPV from angular distribution.
- \bullet Sensitivity to ${\it CPV}$ \to a few % with stat error \sim 0.1%
- Angle reconstruction from decay topology and 10-20% improvement with kinematic refit
- Systematic uncertainties CPV in backgrounds, detector misalignments

Outlook:

- Perform 2D binned template fit for *P* and *CP*-asymmetries
- Estimate all systematics: CPV in backgrounds and non-uniform detector efficiencies