

The Hubble tension : a CMB perspective

Adrien La Posta IJClab

laposta@ijclab.in2p3.fr

Webinaire Action Dark Energy - 20/01/22

Temperature

Polarization E-modes

CMB standard ruler : size of the sound horizon at decoupling imprinted in the CMB radiation

CMB standard ruler : size of the sound horizon at decoupling imprinted in the CMB radiation

Now \mathcal{D}^*_A is known

$$heta_* = rac{r_s^*}{\mathcal{D}_A^*}$$

Systematics in the CMB

$$\delta T^{\text{obs}}(\hat{n}) = \mathcal{I}_T * \delta T^{\text{sky}}(\hat{n})$$
$$E^{\text{obs}}(\hat{n}) = \mathcal{I}_E * E^{\text{sky}}(\hat{n})$$

$$\mathcal{I}_T = \mathcal{F}_{\mathcal{T}} * c * B_T$$
$$\mathcal{I}_E = \mathcal{F}_E * c * c_E * B_E$$

$$\delta T^{\text{obs}}(\hat{n}) = \mathcal{I}_T * \delta T^{\text{sky}}(\hat{n})$$
$$E^{\text{obs}}(\hat{n}) = \mathcal{I}_E * E^{\text{sky}}(\hat{n})$$

• Finite angular resolution (beams)

$$\mathcal{I}_{T} = \mathcal{F}_{\mathcal{T}} * c * B_{T}$$
$$\mathcal{I}_{E} = \mathcal{F}_{E} * c * c_{E} * B_{E}$$
$$\mathsf{Temperature}_{(Polarization)}$$
beam

$$\delta T^{\text{obs}}(\hat{n}) = \mathcal{I}_T * \delta T^{\text{sky}}(\hat{n})$$
$$E^{\text{obs}}(\hat{n}) = \mathcal{I}_E * E^{\text{sky}}(\hat{n})$$

- Finite angular resolution (beams)
- Calibration

$$\mathcal{I}_T = \mathcal{F}_{\mathcal{T}} \ast c \ast B_T$$
$$\mathcal{I}_E = \mathcal{F}_E \ast c \ast c_E \ast B_E$$

Global calibration

$$\delta T^{\text{obs}}(\hat{n}) = \mathcal{I}_T * \delta T^{\text{sky}}(\hat{n})$$
$$E^{\text{obs}}(\hat{n}) = \mathcal{I}_E * E^{\text{sky}}(\hat{n})$$

- Finite angular resolution (beams)
- Calibration
- Polarization efficiency

$$\mathcal{I}_{T} = \mathcal{F}_{\mathcal{T}} * c * B_{T}$$
$$\mathcal{I}_{E} = \mathcal{F}_{E} * c * c_{E} * B_{E}$$
Polarization efficiency

$$\delta T^{\text{obs}}(\hat{n}) = \mathcal{I}_T * \delta T^{\text{sky}}(\hat{n})$$
$$E^{\text{obs}}(\hat{n}) = \mathcal{I}_E * E^{\text{sky}}(\hat{n})$$

- Finite angular resolution (beams)
- Calibration
- Polarization efficiency
- Transfer functions (map-making)

$$\delta T^{\text{obs}}(\hat{n}) = \mathcal{I}_T * \delta T^{\text{sky}}(\hat{n})$$
$$E^{\text{obs}}(\hat{n}) = \mathcal{I}_E * E^{\text{sky}}(\hat{n})$$

- Finite angular resolution (beams)
- Calibration
- Polarization efficiency
- Transfer functions (map-making)

These instrumental effects are multiplicative in harmonic space

$$C_{\ell}^{TT,\text{obs}} = (\mathcal{F}_{\ell}^{T})^{2} c^{2} (B_{\ell}^{T})^{2} C_{\ell}^{TT}$$

$$C_{\ell}^{EE,\text{obs}} = (\mathcal{F}_{\ell}^{E})^{2} c^{2} c_{E}^{2} (B_{\ell}^{E})^{2} C_{\ell}^{EE}$$

$$C_{\ell}^{TE,\text{obs}} = \mathcal{F}_{\ell}^{T} \mathcal{F}_{\ell}^{E} c^{2} c_{E} B_{\ell}^{T} B_{\ell}^{E} C_{\ell}^{EE}$$

 $\mathcal{R}_{\ell}^{TE} = \frac{\left\langle a_{\ell m}^{T} a_{\ell m}^{E*} \right\rangle}{\sqrt{\left\langle a_{\ell m}^{T} a_{\ell m}^{T*} \right\rangle \left\langle a_{\ell m}^{E} a_{\ell m}^{E*} \right\rangle}} = \frac{C_{\ell}^{TE}}{\sqrt{C_{\ell}^{TT} C_{\ell}^{EE}}}$

$$\mathcal{R}_{\ell}^{TE} = \frac{\left\langle a_{\ell m}^{T} a_{\ell m}^{E*} \right\rangle}{\sqrt{\left\langle a_{\ell m}^{T} a_{\ell m}^{T*} \right\rangle \left\langle a_{\ell m}^{E} a_{\ell m}^{E*} \right\rangle}} = \frac{C_{\ell}^{TE}}{\sqrt{C_{\ell}^{TT} C_{\ell}^{EE}}}$$

$$\mathcal{R}_{\ell}^{TE,\text{obs}} = \frac{\mathcal{F}_{\ell}^{T}\mathcal{F}_{\ell}^{E}c^{2}c_{E}B_{\ell}^{T}B_{\ell}^{E}C_{\ell}^{TE}}{\sqrt{(\mathcal{F}_{\ell}^{T})^{2}c^{2}(B_{\ell}^{T})^{2}C_{\ell}^{TT} \times (\mathcal{F}_{\ell}^{E})^{2}c^{2}c_{E}^{2}(B_{\ell}^{E})^{2}C_{\ell}^{EE}}}$$

$$\mathcal{R}_{\ell}^{TE} = \frac{\left\langle a_{\ell m}^{T} a_{\ell m}^{E*} \right\rangle}{\sqrt{\left\langle a_{\ell m}^{T} a_{\ell m}^{T*} \right\rangle \left\langle a_{\ell m}^{E} a_{\ell m}^{E*} \right\rangle}} = \frac{C_{\ell}^{TE}}{\sqrt{C_{\ell}^{TT} C_{\ell}^{EE}}}$$

$$\mathcal{R}_{\ell}^{TE,\text{obs}} = \frac{\mathcal{F}_{\ell}^{T} \mathcal{F}_{\ell}^{E} c^{2} c_{E} B_{\ell}^{T} B_{\ell}^{E} C_{\ell}^{TE}}{\sqrt{(\mathcal{F}_{\ell}^{T})^{2} c^{2} (B_{\ell}^{T})^{2} C_{\ell}^{TT} \times (\mathcal{F}_{\ell}^{E})^{2} c^{2} c_{E}^{2} (B_{\ell}^{E})^{2} C_{\ell}^{EE}}} = \mathcal{R}_{\ell}^{TE}$$

- The correlation coefficient is an observable insensitive to multiplicative biases
 - \rightarrow unbiased constraints on cosmological parameters

- The correlation coefficient is an observable insensitive to multiplicative biases
 - \rightarrow unbiased constraints on cosmological parameters

• Particularly sensitive to H₀

$$\ln \mathcal{L} \simeq -\frac{1}{2} \left(\Delta \mathcal{R}^{\rm vec} \right)^{\rm T} \Xi^{-1} \left(\Delta \mathcal{R}^{\rm vec} \right)$$

$$\ln \mathcal{L} \simeq -\frac{1}{2} \Delta \mathcal{R}^{\text{vec}} \mathbf{\Gamma} \mathbf{\Xi}^{-1} \left(\Delta \mathcal{R}^{\text{vec}} \right)$$
$$\Delta \mathcal{R}_{\ell}^{TE,\nu_1 \times \nu_2} = \hat{\mathcal{R}}_{\ell}^{TE,\nu_1 \times \nu_2} - \mathcal{R}_{\ell}^{TE,\nu_1 \times \nu_2,\text{model}}$$

$$\ln \mathcal{L} \simeq -\frac{1}{2} \left(\Delta \mathcal{R}^{\text{vec}} \right)^{\text{T}} \Xi^{-1} \left(\Delta \mathcal{R}^{\text{vec}} \right)$$

$$\Delta \mathcal{R}_{\ell}^{TE,\nu_{1}\times\nu_{2}} = \hat{\mathcal{R}}_{\ell}^{TE,\nu_{1}\times\nu_{2}} - \mathcal{R}_{\ell}^{TE,\nu_{1}\times\nu_{2},\text{model}}$$
Unbiased
estimator (data)

$$\ln \mathcal{L} \simeq -\frac{1}{2} \left(\Delta \mathcal{R}^{\text{vec}} \right)^{\text{T}} \Xi^{-1} \left(\Delta \mathcal{R}^{\text{vec}} \right)$$

Planck correlation coefficient

Cosmological results from R^{TE}

 $H_0 = 67.5 + - 1.3 [km/s/Mpc]$

La Posta+ 2021 [Phys. Rev. D 104, 023527]

Cosmological results from R^{TE}

3.3σ away from the latest SH0ES measurement

$$H_0 = 67.5 + - 1.3 [km/s/Mpc]$$

La Posta+ 2021 [Phys. Rev. D 104, 023527]
Hubble tension

Independent measurements of H₀ from the ground

16

Independent measurements of H_n from the ground

Atacama Cosmology Telescope

6m telescope in the Atacama desert (Chile ~5000m high)

ACT DR4 (Choi+ 2020, Aiola+ 2020)

data collected from 2013 to 2016

Cosmological analysis on ~5400 deg²

observed at 98 and 150 GHz

South Pole Telescope

10m primary mirror (South Pole ~2800m high)

SPT-3G results (Dutcher+ 2021)

4 month period in 2018

Cosmological analysis on ~1500 deg²

observed at 95, 150 and 220 GHz

CMB Power Spectra

Option 2

Instrumental systematic effect biasing the value of H₀ inferred from the CMB

Hard to shift the CMB inferred H_0 with a systematic effect :

- Independent measurements from Planck, ACT and SPT
- Constraint from the correlation coefficient, robust against multiplicative systematics

Option 1

Astrophysical biases affecting the local measurement of H₀

Option 2

Instrumental systematic effect biasing the value of H₀ inferred from the CMB

Physics beyond ΛCDM

Early-time modification to ΛCDM

Motivation : obtain a higher value of H_0 from the CMB

Early-time modification to ΛCDM

Motivation : obtain a higher value of H_0 from the CMB \longrightarrow lower \mathcal{D}_A^*

Early-time modification to ΛCDM

Motivation : obtain a higher value of H_0 from the CMB \longrightarrow lower \mathcal{D}_A^*

$$\theta_* = \frac{r_s^*}{D_A^*} \longrightarrow \text{ Decrease } r_s^* = \int_{z^*}^{\infty} \frac{dz}{H(z)} c_s(z) \\ \xrightarrow{3H_{\text{early}}^2(z)}{\frac{3H_{\text{early}}^2(z)}{8\pi G}} = \rho_r(z) + \rho_m(z)$$
observations

One proposed solution : Early Dark Energy

Motivation : obtain a higher value of H_0 from the CMB \longrightarrow lower \mathcal{D}_A^*

$$\theta_{*} = \frac{r_{s}^{*}}{D_{A}^{*}} \longrightarrow \text{Decrease } r_{s}^{*} = \int_{z^{*}}^{\infty} \frac{dz}{H(z)} c_{s}(z)$$

$$\underbrace{\frac{3H_{\text{early}}^{2}(z)}{8\pi G}}_{\text{Fixed by}} = \rho_{r}(z) + \rho_{m}(z) + \rho_{\text{EDE}}(z)$$
observations

The EDE component is described as a scalar field ϕ (Poulin+ 2019, Smith+ 2019)

Background evolution :
$$\ddot{\phi} + 3H\dot{\phi} + V'(\phi) = 0$$
 axion-like potential $V(\phi) = m^2 f^2 \left[1 - \cos\left(\frac{\phi}{f}\right)\right]^3$

The EDE component in described as a scalar field ϕ (Poulin+ 2019, Smith+ 2019)

Background evolution :
$$\ddot{\phi} + 3H\dot{\phi} + V'(\phi) = 0$$

$$V(\phi) = m^2 f^2 \left[1 - \cos\left(\frac{\phi}{f}\right)\right]^3$$

m : mass parameter

The EDE component in described as a scalar field ϕ (Poulin+ 2019, Smith+ 2019)

Background evolution :
$$\ddot{\phi} + 3H\dot{\phi} + V'(\phi) = 0$$

$$V(\phi) = m^2 f^2 \left[1 - \cos\left(\frac{\phi}{f}\right)\right]^3$$

m : mass parameter

f : decay constant

The EDE component in described as a scalar field ϕ (Poulin+ 2019, Smith+ 2019)

Background evolution :
$$\ddot{\phi} + 3H\dot{\phi} + V'(\phi) = 0$$

 $V(\phi) = m^2 f^2 \left[1 - \cos\left(\frac{\phi}{f}\right)\right]^3$

m : mass parameter

f : decay constant

 $\pmb{\varphi}_i$: initial field value

Early Dark Energy : frozen at early times

$$\ddot{\phi} + 3H\dot{\phi} + V'(\phi) = 0$$

The field is initially frozen due to Hubble friction (H >> m)

acts as dark energy (w= - 1)

Early Dark Energy : frozen at early times

$$\ddot{\phi} + 3H\dot{\phi} + V'(\phi) = 0$$

The field is initially frozen due to Hubble friction (H >> m)

acts as dark energy (w= - 1)

Early Dark Energy : phenomenological parametrization ²⁴

Constraints on EDE from Planck data

Constraints on EDE from Planck data

Results for a combination of Planck and SH0ES data

Poulin+ 2019, Smith+ 2019, Hill+ 2020

Additional constraints from ACTPol

Additional constraints from ACTPol

Additional constraints from ACTPol

- Planck data alone don't favor high f_{EDE} values (Hill+ 2020)
- Planck data in combination with SH0ES show a preference for non-zero f_{EDE} (Poulin+ 2019, Smith+ 2019)
- ACT data alone favors EDE over ACDM (Hill+...La Posta+... 2021)

- Planck data alone don't favor high f_{EDE} values (Hill+ 2020)
- Planck data in combination with SH0ES show a preference for non-zero f_{EDE} (Poulin+ 2019, Smith+ 2019)
- ACT data alone favors EDE over ACDM (Hill+...La Posta+... 2021)

→ Motivates an analysis of EDE with public SPT-3G data

New results from SPT-3G public data

La Posta+ 2021 [arXiv:2112.10754]

New results from SPT-3G public data

We tighten the constraint on f_{EDE} when we combine SPT3G and Planck TT (ℓ <650) or when we add LSS probes

La Posta+ 2021 [arXiv:2112.10754]

Combining with SH0ES constraint

$$\Delta \chi^2_{\rm SPT-3G} = -6.3$$

improvement of the fit to SPT-3G data (with respect to ΛCDM)

Conclusions

Conclusions

Option 2 : Systematics in CMB data

- 3 independent measurements of H₀
- Constraint from the correlation coefficient : insensitive to multiplicative systematic effects

It's hard to solve the Hubble tension with systematics in CMB data

Conclusions

Option 3 : Beyond ACDM physics - Early Dark Energy

- Planck data alone do not favor high f_{EDE} values
- Planck + SH0ES show a preference for f_{EDE} ~ 10%
- ACT DR4 data favors EDE over ΛCDM (with f_{EDE}~ 10%)
- SPT-3G is not as constraining as ACT and Planck : but sees some degree of EDE when combined with SH0ES

Extra-slides

ACTPol cosmology

Aiola+ 2020

SPT-3G cosmology

Results for a combination of Planck and SH0ES data

CAMB/CLASS EDE models

Impact of the z_c prior

La Posta+ 2021 [arXiv:2112.10754]

Combining with other CMB datasets

