
Unit testing to improve the 

life of software developers 

and scientists

SÉBASTIEN VALAT – CPPM - MARSEILLES – 24/01/2022

1



Disclamer

 I see unit testing as a progress path

 We cannot apply all in on week… 

2



Plan

1. A little bit of philosophy & motivation

2. Thinking about testing methods

3. A word on my own experience, feelings

4. Benefits

5. Some words about practice

6. Conclusion

3



A little bit of philosophy

& motivation

4



How much mistakes costs later .. ?

 Manhattan project, 1945, Hanford

 There was a nuclear reactor

 For plutonium production

 Takes water in

 Cooled the reactor

 ….and dump the water out…

https://commons.wikimedia.org/wiki/File:Hanford_N_Reactor_adjusted.jpg

5



Then there was wastes to handle… 6

▶Easy and quick and cheap solution

▶Make a hole,

▶Dump everything in

▶Cover with sand.

▶Costs estimation…. ~12 mens, 

▶An excavator

▶A truck 

http://www.planetexperts.com/hard-lessons-in-the-us-environmental-protection-agency/

http://www.planetexperts.com/hard-lessons-in-the-us-environmental-protection-agency/


Then there was wastes to handle…

 For liquids / muds….

 Solution was to build 177 tanks

 Store 710,000 m3

 In the desert,

 Dump wastes in

 And cover with sand….

 Now, 65 years later….

 They now (2010) start to leak…

7

https://tlarremore.wordpress.com/2016/02/28/uncontrolled-spread-of-contamination-nuclear-waste-material-hanford-nuclear-
reservation-usa/



Toda: that’s technical debt 8

https://www.hanford.gov/files.cfm/2019_Hanford_Lifecycle_Report_w-Transmittal_Letter.pdf

https://pixabay.com/photos/cat-redhead-striped-funny-posture-3602557/

Cleanup until 2090

And estimated 
~300-600 billions $.

https://www.hanford.gov/files.cfm/2019_Hanford_Lifecycle_Report_w-Transmittal_Letter.pdf


Came back to software…. 9

Source: Applied Software Measurement, Capers Jones, 1996

Capers Jones, 1996

2011 - ref

675 compa.

35 gov/mili.

13500 proj.

24 countr.



Thinking about testing

10



Lets think you are a car engineer

 You work for Renault

 You want to build a car

 You are assigned to the gear box

https://commons.wikimedia.org/wiki/File:Manual_synchronized_gearbox.jpg

11

https://commons.wikimedia.org/wiki/File:Manual_synchronized_gearbox.jpg


You make no test…

 You designed, build.

 Sell the car directly to customer and see

 Would you by ?

12



Method 1 : manual test

 Way to test a new gear we added

 Make a Grenoble – Marseille

13



Method 2 : integration tests

 You build a prototype car and make a crash tests

 Every time you change a gear shape in the gear box

14

http://www.thedetroitbureau.com/wp-content/uploads/2016/05/IIHS-Camaro-Crash-Test.jpg
https://www.automobile-propre.com/crash-test-renault-zoe-securite/
http://pngimg.com/download/10020

http://www.thedetroitbureau.com/wp-content/uploads/2016/05/IIHS-Camaro-Crash-Test.jpg
https://www.automobile-propre.com/crash-test-renault-zoe-securite/
http://pngimg.com/download/10020


Method 3 : unit test

 You use a test bed

 Test only the gear box 

 In controlled situation

 Can:

 put infrared camera

 Probes to see temperature.

 Vibration measurement

15

https://www.techbriefs.com/component/content/article/tb/features/application-briefs/13978

https://www.techbriefs.com/component/content/article/tb/features/application-briefs/13978


Notice the continuous transition….

 There is unit test

 Test one gear

 A little bit more, still unit test

 Test two gears

 …

 A little bit more, integration test

 Test the gear box

 In a car on a test bed.

 End to end, now test in the car.

16

https://www.indiamart.com/proddetail/automotive-spur-gear-19598784273.html
https://en.wikipedia.org/wiki/Spiral_bevel_gear#/media/File:Gear-kegelzahnrad.svg

https://www.indiamart.com/proddetail/automotive-spur-gear-19598784273.html
https://en.wikipedia.org/wiki/Spiral_bevel_gear#/media/File:Gear-kegelzahnrad.svg


What is a unit test in python ?

 Example extracted from one of my projects

17

from unittest import TestCase

class TestParticle(TestCase):
def test_move(self):

# build a particle
particle = Particle(0)

# test the initial position
self.assertEqual(particle.get_x(), 0)

# move
particle.move(10)

# test the final position
self.assertEqual(particle.get_x(), 10)



A bit more advanced one 18

from unittest import TestCase

class TestParticle(TestCase):
def test_collide(self):

# build two particles
particle1 = Particle( 0,5, -1.5)
particle2 = Particle(-0,5,  1.5)

# collide particules
dt = 1.0
collide = Physics.elastic_collide(particle1, particle2, dt)
self.assertTrue(collide)

# checks
self.assertEqual(particle1.get_vx(), 1.5)
self.assertEqual(particle2.get_vx(), -1.5)

Most unit test frameworks

relies on:

assert keywords,

sometimes also expect



Run example - OK 19



Run example - failure 20



A realistic case 21



TDD: Test Driven Development

 The strict approach:

 You write the tests

 Implement until it valides the tests

 More realistic approach:

 Implement a function / class

 Implement the tests

 Iterate to improve the implementation and API

22



Some word on my own 

experience, feelings

23



When trying to push in teams…. 

[integration]

 Integration test

 Mostly everybody agree

 Not exactly on the way to do it….

 Seems easier at first look

 Most of the time it starts with dirty bash scripts.

 Quickly cost a lot 

 Eg. CEA MPC project, 10 000 MPI tests, …. 5000 fails…

 One week to run everything

 Depressing

 Harder to debug

 Nobody looked on results except me and another one

24



When trying to push in teams…. 

[unit tests]

 Unit tests

 Required an investment

 We are slower to start

 Hard to introduce in pre-existing software

 Lots of gain on long term

 Common first kill :

 “This one is too hard to test”

 “This one call many others”

 “I’m sure of this function, it is so simple”

25



First time I made unit tests

 I was not convinced

 But I tried

 Had the impression to loose my time

 It was hard

 I didn’t see the benefits

 I already had most of my codes

 Painfull to unit test for weeks

26



That’s also adequate tools 

and ways to work

27



Day to day methodology : 

discipline

 “This is a POC…. I will make my tests later”

 You will never do them later

 Because your design will not permit

 Because you will want to move to other stuff

 Nobody will be happy to write unit tests for ~4-8 weeks

 Your boss/commercial manager already sold it to clients….

 You already loosed half the benefits of unit tests

 Become a more or less useless cost

28



Benefits

29



Benefits of unit test

 That’s not only testing

 Develop outside the production env.

 It forces you to think your internal design

 Is a spec, also for internal APIs

 Open easy door for refactoring / rewriting

 New developers are more confident (you in 1 year or your interns…)

30



31

Codes possibles

P
o
s
s
ib

le

D
o
a
b
le

T
e
s
ta

b
le

--K
IS

S
--

https://pixabay.com/fr/illustrations/codage-heroes-personnages-2771135/



Test a gas machine 

 If your test become too complex

 You are certainly

on the wrong way

 Stop, think and KISS

32

morning_not_kiss()



Keeping control on complexity 33

Refactoring

Time

C
o

m
p

le
x
it
y



It is a valuable knowledge

 The knowledge of the internal concepts and API

 Unit tests document it

 Unit tests validate your patches do not break it

 Knowledge of corner cases encountered

 Tests keep track of them

 Can be very usefull to save your algorithms in case:

 Rewriting a new version from scratch

 Translating to another language

34



About performance

 Having a unit test means:

 You have a short example to use each part of your code

 You can extract it in a simple file

 Make advanced performance measurement

 On each distinct part of the code

35



My feeling now

 Applied during all my PhD. + Post-docs

 For the last 12 years on 200 000 lines of codes (C++/Python/Go/Rust/JS)

 Very usefull and pleasant

 Permited to quicly reatched very interseting results

36



Some words about practice

37



My time rules

 Of course depend on language / objectives / complexity

 2 weeks of coding

 Ok without unit test

 Start for longer

 Immediate unit test

 Extend after 2 weeks

 Take 1-2 weeks to refactor + unit test

 Before continuing progressing

 For ~1 year project

 Up to 1st month loosed with “slower” progress

 Largely compensated afterward

38



Unit tests should stay simple

 Example extracted from one of my projects

39

TEST(TestProject, loadContent_fail_minimum_required)
{

FileLines content;
content.push_back("[cdeps_minimum_required 2000.4.3]");

SpecFile file;
file.loadContent(content,"none.none");

Options options;
Project project(&options);
EXPECT_EXIT(project.loadSpec(file),

::testing::ExitedWithCode(1, "version is too old");
}



About mocking 40

Class to test

Dependency 1 Complex object Dependency 2

Mocked complex

object



A small example 41

Cache

StorageBackendDB

write(string)

Connect()

write()

write(string)

flush()



A small example 42

Cache

StorageBackendS3

write(string)

Connect()

write()

write(string)

flush()

StorageBackendMock



About mocking with a framework 43

import unittest
import mock

class TestObject:
def test_flush(self):

# build my hierarchy & mock the write function
mocked_backend = DummyBackend()
mocked_backend.write = mock.MagickMock(return_value=11)

# create the cache
cache = Cache(mocked_backend)

# write & flush
cache.write("string data")
cache.flush()

# check MockBackend.write was called
mocked_backend.assert_called_with("string data")



Start in an existing software

 This will be hard at to cover all

 Start from the leaf class / functions up to the top

 It will require refactoring to make the middle elements testable

44

Class to test

Dependency 1 Complex object Dependency 2



Test automation 45

 Automatically run the tests

 when you push your code on your repo

 For example via Gitlab-CI or Jenkins



One remark about test automation

 This is relatively easy for unit tests

 But for integration tests: can be time consuming

 If have a large number of integration tests

 If the tests are complex to run

 Mostly an issue when the test environment change

 Eg: in a team I was in, 2 PY (Person Year) consumed to move

46



One word on coverage

 Not required to stricly cover every cases at start

 The point is: at least one test for every components

 To ensure it is testable

47



Some framework 48

Language Test framework Mocking

Python unittest unitest.mock

C++ Google test

Catch2

Boost test library

cppunit

…

Google mock

FakeIT

C Google test

Criterion

Bash bats

Rust [native] mockall

Go [native] gomock



Conclusion

49



Conclusion

 Integration tests looks easier at start

 That’s absolutely wrong on long term

 I‘m not saying you should not do any

 Units testing costs at the beginning but quickly win on long term

 Even more true to target performance

 Code splitted in boxes

 Allow refactoring

50



Conclusion

 For research you always want to test news algorithms

 Your also do not want to loose time in debugging

 Start KISS to get a clean working code, then complexify

 Agile methods

 Be able to quickly refactor

 Agile methods

51



Conclusion

 The test is like a teacher

 If it fails => you need to fix

 If it is too complex => wrong way

 Look it as a progress path

 With time you will learn how to split your code to be testable

 The good patterns are domain specific

52



THANKS

53



BACKUP

54



PhD. memory allocator

 Implement a parallel allocator

 To run on Bull BCS & Tera100

 16 processors (NUMA) => 128 cores

 Target application : Hera (~1M line of C++)

 ~1 year of base development with unit test 

 On my workstation

55



PhD. memory allocator

 Just got the malloc/free functions

 Pass all the tests

 Inject in all my KDE session

 Just one bug

 First run in the application

 OK

 Work on performance

 After two weeks => 2X gain on the app.

56



A safety for QA guy

 Quality loss and rush warnings. 

 Noticed not via a human channel through the quality exigent guy !

57



In agile methods

 This is a component for agile method

 You plane for short term

 Opposite to long term planning of V model

 Thanks to unit tests, for a new feature:

 You refactor to prepare

 You implement the new feature

58

Refactor with :

Only Integration tests ? 

No tests ?


