
Unit testing to improve the

life of software developers

and scientists

SÉBASTIEN VALAT – CPPM - MARSEILLES – 24/01/2022

1

Disclamer

 I see unit testing as a progress path

 We cannot apply all in on week…

2

Plan

1. A little bit of philosophy & motivation

2. Thinking about testing methods

3. A word on my own experience, feelings

4. Benefits

5. Some words about practice

6. Conclusion

3

A little bit of philosophy

& motivation

4

How much mistakes costs later .. ?

 Manhattan project, 1945, Hanford

 There was a nuclear reactor

 For plutonium production

 Takes water in

 Cooled the reactor

 ….and dump the water out…

https://commons.wikimedia.org/wiki/File:Hanford_N_Reactor_adjusted.jpg

5

Then there was wastes to handle… 6

▶Easy and quick and cheap solution

▶Make a hole,

▶Dump everything in

▶Cover with sand.

▶Costs estimation…. ~12 mens,

▶An excavator

▶A truck

http://www.planetexperts.com/hard-lessons-in-the-us-environmental-protection-agency/

http://www.planetexperts.com/hard-lessons-in-the-us-environmental-protection-agency/

Then there was wastes to handle…

 For liquids / muds….

 Solution was to build 177 tanks

 Store 710,000 m3

 In the desert,

 Dump wastes in

 And cover with sand….

 Now, 65 years later….

 They now (2010) start to leak…

7

https://tlarremore.wordpress.com/2016/02/28/uncontrolled-spread-of-contamination-nuclear-waste-material-hanford-nuclear-
reservation-usa/

Toda: that’s technical debt 8

https://www.hanford.gov/files.cfm/2019_Hanford_Lifecycle_Report_w-Transmittal_Letter.pdf

https://pixabay.com/photos/cat-redhead-striped-funny-posture-3602557/

Cleanup until 2090

And estimated
~300-600 billions $.

https://www.hanford.gov/files.cfm/2019_Hanford_Lifecycle_Report_w-Transmittal_Letter.pdf

Came back to software…. 9

Source: Applied Software Measurement, Capers Jones, 1996

Capers Jones, 1996

2011 - ref

675 compa.

35 gov/mili.

13500 proj.

24 countr.

Thinking about testing

10

Lets think you are a car engineer

 You work for Renault

 You want to build a car

 You are assigned to the gear box

https://commons.wikimedia.org/wiki/File:Manual_synchronized_gearbox.jpg

11

https://commons.wikimedia.org/wiki/File:Manual_synchronized_gearbox.jpg

You make no test…

 You designed, build.

 Sell the car directly to customer and see

 Would you by ?

12

Method 1 : manual test

 Way to test a new gear we added

 Make a Grenoble – Marseille

13

Method 2 : integration tests

 You build a prototype car and make a crash tests

 Every time you change a gear shape in the gear box

14

http://www.thedetroitbureau.com/wp-content/uploads/2016/05/IIHS-Camaro-Crash-Test.jpg
https://www.automobile-propre.com/crash-test-renault-zoe-securite/
http://pngimg.com/download/10020

http://www.thedetroitbureau.com/wp-content/uploads/2016/05/IIHS-Camaro-Crash-Test.jpg
https://www.automobile-propre.com/crash-test-renault-zoe-securite/
http://pngimg.com/download/10020

Method 3 : unit test

 You use a test bed

 Test only the gear box

 In controlled situation

 Can:

 put infrared camera

 Probes to see temperature.

 Vibration measurement

15

https://www.techbriefs.com/component/content/article/tb/features/application-briefs/13978

https://www.techbriefs.com/component/content/article/tb/features/application-briefs/13978

Notice the continuous transition….

 There is unit test

 Test one gear

 A little bit more, still unit test

 Test two gears

 …

 A little bit more, integration test

 Test the gear box

 In a car on a test bed.

 End to end, now test in the car.

16

https://www.indiamart.com/proddetail/automotive-spur-gear-19598784273.html
https://en.wikipedia.org/wiki/Spiral_bevel_gear#/media/File:Gear-kegelzahnrad.svg

https://www.indiamart.com/proddetail/automotive-spur-gear-19598784273.html
https://en.wikipedia.org/wiki/Spiral_bevel_gear#/media/File:Gear-kegelzahnrad.svg

What is a unit test in python ?

 Example extracted from one of my projects

17

from unittest import TestCase

class TestParticle(TestCase):
def test_move(self):

build a particle
particle = Particle(0)

test the initial position
self.assertEqual(particle.get_x(), 0)

move
particle.move(10)

test the final position
self.assertEqual(particle.get_x(), 10)

A bit more advanced one 18

from unittest import TestCase

class TestParticle(TestCase):
def test_collide(self):

build two particles
particle1 = Particle(0,5, -1.5)
particle2 = Particle(-0,5, 1.5)

collide particules
dt = 1.0
collide = Physics.elastic_collide(particle1, particle2, dt)
self.assertTrue(collide)

checks
self.assertEqual(particle1.get_vx(), 1.5)
self.assertEqual(particle2.get_vx(), -1.5)

Most unit test frameworks

relies on:

assert keywords,

sometimes also expect

Run example - OK 19

Run example - failure 20

A realistic case 21

TDD: Test Driven Development

 The strict approach:

 You write the tests

 Implement until it valides the tests

 More realistic approach:

 Implement a function / class

 Implement the tests

 Iterate to improve the implementation and API

22

Some word on my own

experience, feelings

23

When trying to push in teams….

[integration]

 Integration test

 Mostly everybody agree

 Not exactly on the way to do it….

 Seems easier at first look

 Most of the time it starts with dirty bash scripts.

 Quickly cost a lot

 Eg. CEA MPC project, 10 000 MPI tests, …. 5000 fails…

 One week to run everything

 Depressing

 Harder to debug

 Nobody looked on results except me and another one

24

When trying to push in teams….

[unit tests]

 Unit tests

 Required an investment

 We are slower to start

 Hard to introduce in pre-existing software

 Lots of gain on long term

 Common first kill :

 “This one is too hard to test”

 “This one call many others”

 “I’m sure of this function, it is so simple”

25

First time I made unit tests

 I was not convinced

 But I tried

 Had the impression to loose my time

 It was hard

 I didn’t see the benefits

 I already had most of my codes

 Painfull to unit test for weeks

26

That’s also adequate tools

and ways to work

27

Day to day methodology :

discipline

 “This is a POC…. I will make my tests later”

 You will never do them later

 Because your design will not permit

 Because you will want to move to other stuff

 Nobody will be happy to write unit tests for ~4-8 weeks

 Your boss/commercial manager already sold it to clients….

 You already loosed half the benefits of unit tests

 Become a more or less useless cost

28

Benefits

29

Benefits of unit test

 That’s not only testing

 Develop outside the production env.

 It forces you to think your internal design

 Is a spec, also for internal APIs

 Open easy door for refactoring / rewriting

 New developers are more confident (you in 1 year or your interns…)

30

31

Codes possibles

P
o
s
s
ib

le

D
o
a
b
le

T
e
s
ta

b
le

--K
IS

S
--

https://pixabay.com/fr/illustrations/codage-heroes-personnages-2771135/

Test a gas machine

 If your test become too complex

 You are certainly

on the wrong way

 Stop, think and KISS

32

morning_not_kiss()

Keeping control on complexity 33

Refactoring

Time

C
o

m
p

le
x
it
y

It is a valuable knowledge

 The knowledge of the internal concepts and API

 Unit tests document it

 Unit tests validate your patches do not break it

 Knowledge of corner cases encountered

 Tests keep track of them

 Can be very usefull to save your algorithms in case:

 Rewriting a new version from scratch

 Translating to another language

34

About performance

 Having a unit test means:

 You have a short example to use each part of your code

 You can extract it in a simple file

 Make advanced performance measurement

 On each distinct part of the code

35

My feeling now

 Applied during all my PhD. + Post-docs

 For the last 12 years on 200 000 lines of codes (C++/Python/Go/Rust/JS)

 Very usefull and pleasant

 Permited to quicly reatched very interseting results

36

Some words about practice

37

My time rules

 Of course depend on language / objectives / complexity

 2 weeks of coding

 Ok without unit test

 Start for longer

 Immediate unit test

 Extend after 2 weeks

 Take 1-2 weeks to refactor + unit test

 Before continuing progressing

 For ~1 year project

 Up to 1st month loosed with “slower” progress

 Largely compensated afterward

38

Unit tests should stay simple

 Example extracted from one of my projects

39

TEST(TestProject, loadContent_fail_minimum_required)
{

FileLines content;
content.push_back("[cdeps_minimum_required 2000.4.3]");

SpecFile file;
file.loadContent(content,"none.none");

Options options;
Project project(&options);
EXPECT_EXIT(project.loadSpec(file),

::testing::ExitedWithCode(1, "version is too old");
}

About mocking 40

Class to test

Dependency 1 Complex object Dependency 2

Mocked complex

object

A small example 41

Cache

StorageBackendDB

write(string)

Connect()

write()

write(string)

flush()

A small example 42

Cache

StorageBackendS3

write(string)

Connect()

write()

write(string)

flush()

StorageBackendMock

About mocking with a framework 43

import unittest
import mock

class TestObject:
def test_flush(self):

build my hierarchy & mock the write function
mocked_backend = DummyBackend()
mocked_backend.write = mock.MagickMock(return_value=11)

create the cache
cache = Cache(mocked_backend)

write & flush
cache.write("string data")
cache.flush()

check MockBackend.write was called
mocked_backend.assert_called_with("string data")

Start in an existing software

 This will be hard at to cover all

 Start from the leaf class / functions up to the top

 It will require refactoring to make the middle elements testable

44

Class to test

Dependency 1 Complex object Dependency 2

Test automation 45

 Automatically run the tests

 when you push your code on your repo

 For example via Gitlab-CI or Jenkins

One remark about test automation

 This is relatively easy for unit tests

 But for integration tests: can be time consuming

 If have a large number of integration tests

 If the tests are complex to run

 Mostly an issue when the test environment change

 Eg: in a team I was in, 2 PY (Person Year) consumed to move

46

One word on coverage

 Not required to stricly cover every cases at start

 The point is: at least one test for every components

 To ensure it is testable

47

Some framework 48

Language Test framework Mocking

Python unittest unitest.mock

C++ Google test

Catch2

Boost test library

cppunit

…

Google mock

FakeIT

C Google test

Criterion

Bash bats

Rust [native] mockall

Go [native] gomock

Conclusion

49

Conclusion

 Integration tests looks easier at start

 That’s absolutely wrong on long term

 I‘m not saying you should not do any

 Units testing costs at the beginning but quickly win on long term

 Even more true to target performance

 Code splitted in boxes

 Allow refactoring

50

Conclusion

 For research you always want to test news algorithms

 Your also do not want to loose time in debugging

 Start KISS to get a clean working code, then complexify

 Agile methods

 Be able to quickly refactor

 Agile methods

51

Conclusion

 The test is like a teacher

 If it fails => you need to fix

 If it is too complex => wrong way

 Look it as a progress path

 With time you will learn how to split your code to be testable

 The good patterns are domain specific

52

THANKS

53

BACKUP

54

PhD. memory allocator

 Implement a parallel allocator

 To run on Bull BCS & Tera100

 16 processors (NUMA) => 128 cores

 Target application : Hera (~1M line of C++)

 ~1 year of base development with unit test

 On my workstation

55

PhD. memory allocator

 Just got the malloc/free functions

 Pass all the tests

 Inject in all my KDE session

 Just one bug

 First run in the application

 OK

 Work on performance

 After two weeks => 2X gain on the app.

56

A safety for QA guy

 Quality loss and rush warnings.

 Noticed not via a human channel through the quality exigent guy !

57

In agile methods

 This is a component for agile method

 You plane for short term

 Opposite to long term planning of V model

 Thanks to unit tests, for a new feature:

 You refactor to prepare

 You implement the new feature

58

Refactor with :

Only Integration tests ?

No tests ?

