Unit testing to Improve the
ife of software developers
and scientists

SEBASTIEN VALAT — CPPM - MARSEILLES — 24/01/2022

.‘. 5 '
A

A little bit ¢

Think

o

Conclusion

How much mistakes costs later .. ¢

» Manhattan project, 1945, Hanford

» There was a nuclear reactor
» For plutonium production

» Takes water in
Cooled the reactor
»and dump the water out...

v

https://commons.wikimedia.org/wiki/File:Hanford_N_Reactor_adjusted.jog

Then there was wastes to handle...

» Easy and quick and cheap solution

» Make a hole,
» Dump everything in
» Cover with sand.

» Costs estimation.... ~12 mens,
» An excavator
» A truck

hitp://www.planetexperts.com/hard-lessons-in-the-us-environmental-protection-agency/

http://www.planetexperts.com/hard-lessons-in-the-us-environmental-protection-agency/

v

v

Then there was wastes to handle...

For liquids / muds....
Solution was to build 177 tanks
Store 710,000 m3

In the desert,
Dump wastes in
And cover with sand....

Now, 65 years later....

They now (2010) start to leak...

hittps://tlarremore.wordpress.com/2016/02/28/uncontrolled-spread-of-contamination-nuclear-waste-material-nanford-nuclear-
reservation-usa/

Toda: that's technical debt

Hanford Total (High-Range)
$677.0 billion

Costs (Billions $)

99 2104 5109 ,
Fiscal Year 2109 2114 449 i

See Appendix D for risk methodology and results.

Figure ES-2. Hanford Site Remaining Estimated Cleanup Costs (High-Range) by Fiscal Year
(includes both RL and ORP).

https://www.hanford.gov/files.cfm/2019 Hanford Lifecycle Report w-Transmittal Letter.pdf

https://www.hanford.gov/files.cfm/2019_Hanford_Lifecycle_Report_w-Transmittal_Letter.pdf

Came back to software....

Capers Jones, 1996

$16,000

Percentage
of Bugs

$250

$25 $100

Coding Unit Function System After
Test Test Test Release

Source: Applied Software Measurement, Capers Jones, 1996

m— %, Defects
introduced in
this phase

% Defects
found in
this phase

$ Cost to
repair defect
in this phase

2011 -ref

6/5 compa.
35 gov/mili.
13500 pro;.
24 countr.

Lets think you are a car engineer

,_A , | .\' — i
?" (@ \. /}_\é
Vel)
W
S \/ /A \-H

3085 EAD S21
\!
— b——“'/

https://commons.wikimedia.org/wiki/File:Manual_synchronized gearbox.jpg

» You work for Renault

» You want to build a car

» You are assigned to the gear box

https://commons.wikimedia.org/wiki/File:Manual_synchronized_gearbox.jpg

You make no fest...

» You designed, build.

» Sell the car directly to customer and see

» Would you by ?

Method 1 : manual test

» Way to test a new gear we added
» Make a Grenoble — Marsellle

Roman

Valenge
)

. / y : : M w:mtg nar

N "
s

Avignd
m .=

Method 2 : integration tests

» You build a prototype car and make a crash tests
» Every time you change a gear shape in the gear box

https://www.automobile-propre.com/crash-test-renault-zoe-securite/
http://pngimg.com/download/10020

http://www.thedetroitbureau.com/wp-content/uploads/2016/05/1IHS-Camaro-Crash-Test.jog

http://www.thedetroitbureau.com/wp-content/uploads/2016/05/IIHS-Camaro-Crash-Test.jpg
https://www.automobile-propre.com/crash-test-renault-zoe-securite/
http://pngimg.com/download/10020

Method 3 : unit test

e——

» You use a test bed wiea saaiea
cam SRS
$ P = .9 .;':‘
oo wm BUE
» Test only the gear box

» In controlled situation

» Can:
» putinfrared camera

» Probes to see temperature.

» Vibration measurement

https://www.techbriefs.com/component/content/article/tb/features/application-briefs/13978

https://www.techbriefs.com/component/content/article/tb/features/application-briefs/13978

Nofice the continuous fransition....

» There is unit test
» Test one gear

» A little bit more, still unit test
» Testtwo gears

Ny
"~ \\Tv
B ‘
N\ ke)
» A little bit more, integration tesf //) -
» Test the gear box / [

» In a caron atest bed.

https://www.indiamart.com/proddetail/automotive-spur-gear-19598784273.nhtml
https://en.wikipedia.org/wiki/Spiral bevel gear#/media/File:Gear-kegelzahnrad.svg

» End to end, now testin the car.

https://www.indiamart.com/proddetail/automotive-spur-gear-19598784273.html
https://en.wikipedia.org/wiki/Spiral_bevel_gear#/media/File:Gear-kegelzahnrad.svg

from unittest import TestCase

class TestParticle(TestCase):
] def test _move(self):
build a particle
particle = Particle(0)

test the initial position
self.assertEqual(particle.get x(), 9)

move
particle.move(10)

test the final position
self.assertEqual(particle.get x(), 10)

‘ ‘
_

A bit more advanced one

L m s el Pl

from unittest import TestCase

class TestParticle(TestCase):
def test collide(self):
build two particles
particlel = Particle(0,5, -1.5)
particle2 = Particle(-0,5, 1.5)

collide particules
dt = 1.0

collide = Physics.elastic_collide(particlel, particle2, dt)
self.assertTrue(collide)

Most unit test frameworks

checks relies on:

self.assertEqual(particlel.get vx(), 1.5)
self.assertEqual(particle2.get vx(), -1.5)

assert keywords,
sometimes also expect

sebv@sebv6:~/2022-01-unit-test$ pytest Particle.py

e e e T e e e te st ses Sio n sta rt S e e e e e e e

platform linux -- Python 3.9.7, pytest-6.2.5, py-1.11.0, pluggy-1.0.0

,; rootdir: /home/sebv/2022-01-unit-test

collected 2 items

Particle.py .. [100%]

e T i S S s S S O e e — —
—

= 2 passed 1n 0_025 === === === === = ==

Run example - fcilure

sebv@sebv6:~/2022-01-unit-test$ pytest Partlcle py

-———-—_—_ —_—— —— ———— test 5&5510" Starts -—-_,,—,———_—_— — == e —
platform linux -- Python 3.9.7, pytest-6.2.5, py-1.11.0, pluggy-1.0.0

rootdir: /home/sebv/2022-01-unit-test

collected 2 items

Particle.py F. [100%]

~ TestParticle.test collide

self = <Particle.TestParticle testMethod=test collide>

def test collide(self):
particlel = Particle(-0.5, 1.5)
particle2 = Particle(0.5, -1.5)
collide = Physics.elastic collide(particlel, particle2, 1)
self.assertTrue(collide)
> self.assertEqual(-1.5, particlel.get vx())
E AssertionError: -1.5 != -3.0

Particle.py:31: AssertionError

=== Short test summary info ===
FAILED Particle.py::TestParticle::test collide - AssertionError: -1.5 != -3.0

e s] falled, 1 passed in €.085 =————ee—ee-—ee——————e—se—ssse————

28/34
29/34
| 30/34
31/34
32/34
33/34

34/34

Start 28:
Test #28:
Start 29:
Test #29:
Start 30:
Test #30:
Start 31:
Test #31:
Start 32:
Test #32:
Start 33:
Test #33:
Start 34:
Test #34:

Total Test time (real) =

TestWorker
TestWorker
TestWorkerManager
TestWorkerManager
TestTaskIO
TestTaskIO
TestTaskScheduler
TestTaskScheduler
TestIORanges
TestIORanges
TestTaskRunner

TestTaskRunner ..
TestClientServer
TestClientServer

100% tests passed, 0 tests failed out of 34

9.42 sec

 sebv@sebv6:~/Projects/iocatcher/build$

exit

Passed

Passed

Passed

Passed

Passed

Passed

Passed

0.11

0.16

0.11

0.11

0.11

SE G

SEE

SEeC

SecC

SEE

S e

SEC

TDD: Test

oriven

» The strict approach:
» You write the tests

Development

» Implement until it valides the tests

» More realistic approach:

» Implement a function / class

» Implement the tests

» lterate to improve the implementation and API

When frying to push in tfeames....
[Infegration]

» Integration test

» Mostly everybody agree

» Not exactly on the way to do it....

» Seems easier at first look

» Most of the time it starts with dirty bash scripts.

» Quickly cost a lot
Eg. CEA MPC project, 10 000 MPI tests, 5000 fails...
One week to run everything

>
>
» Depressing
» Harder to debug
>

Nobody looked on results except me and another one

When trying to
[unit tests]

- B

—— teams....

» Unit tests _
> Required_
» We are
> Hard fo in

> Lots of g
¥ I

» Common fi
> “This one |

» “This one call many

» “I'm sure of this function, it is so simple™

First time | made unit tests

>

>

>

>

>

| was not convinced
» Butltried

Had the impression to loose my time

It was hard

| didn’t see the benefits

| already had most of my codes
» Painfull to unit test for weeks

That's also adeqguate 1ools
and ways tfo work

Day fo day methodology
discipline

» “This is a POC.... | will make my tests later” b B

» You will never do them later

» Because your design will not permit

» Because you will want to move to other stuff

» Nobody will be happy to write unit tests for ~4-8 weeks

» Your boss/commercial manager already sold it to clients....

» You already loosed half the benefits of unit tests
» Become a more or less useless cost

Benefits of unit test

» That's not only testing
» Develop outside the production env.
» It forces you to think your internal design

» Is aspec, also for internal APIs

» Open easy door for refactoring / rewriting

» New developers are more confident (you in 1 year or your interns...)

Codes possibles

Testable
--KISS--

Test a gas machine

» If your test become too complex :

» You are certainly
on the

.

» Stop, think and KISS

Keeping control on complexity

Refactoring

't is a valuable knowledge

» The knowledge of the internal concepts and API
» Unit tests document it

» Unit tests validate your patches do not break it

» Knowledge of corner cases encountered

» Tests keep track of them

» Can be very usefull to save your algorithms in case:
» Rewriting a new version from scratch

» Translating to another language

About performance

» Having a unit fe:

N
.

» Youhaveas

e 1
LSS

» YOUu Ccan exX

» Make dd; .'

- oy —

» On each distinct part of the c de

My feeling now

» Applied during all my PhD. + Post-docs
» For the last 12 years on 200 000 lines of codes (C++/Python/Go/Rust/JS)
» Very usefull and pleasant

» Permited to quicly reatched very interseting results

My fime rules

» Of course depend on language / objectives / complexity
» 2 weeks of coding
» Ok without unit test
» Start for longer
» Immediate unit test
» Extend after 2 weeks
» Take 1-2 weeks to refactor + unit test
» Before continuing progressing
» For ~1 year project
» Up to 1st month loosed with “slower” progress
» Largely compensated afterward

Unit te

ot
4

TEST(TestProject, loadContent fail minimum_required)
{
FileLines content;
content.push_back("[cdeps minimum required 2000.4.3]");

SpecFile file;
file.loadContent(content, "none.none™);

Options options;

Project project(&options);

EXPECT EXIT(project.loadSpec(file),

: :testing: :ExitedWithCode(1, "version is too o0ld");

About mocking

Class to test
‘:—;l“:" Bea <
ocked complex
object

Complex object

Dependency |

Dependency 2

A small example

flush() write (string)

B

write(string)

StorageBackendDB

> write()

> Connect() }

A small example

-
’ﬂ

e i

About mocking with a framework

import unittest
import mock

class TestObject:
def test flush(self):
build my hierarchy & mock the write function
mocked backend = DummyBackend()
mocked backend.write = mock.MagickMock(return_value=11)

create the cache
cache = Cache(mocked backend)

write & flush
cache.write("string data")
cache.flush()

check MockBackend.write was called
mocked backend.assert called with("string data")

Start in an existing soffware

i kel i el N
e 2

-
=i

e
L

» This will be hard at iq‘"

» Start from the quf.'

(
4
. e

» It will require refac enfs festable

Class to test g

o

Dependency | Complex object Dependency 2

Test automation

» Automatically run the tests
» when you push your code on your repo

» For example via Gitlab-CIl or Jenkins

&) Gitlab = Menu Search GitLab a o B @ Jenkins N > s ecicn g o

Jenkins WeatherAppwithte:

Ihcb-online-eb > @ Ihcb-dagpipe

3

|, Status

Pipeline WeatherAppwithtests
All 1,000+ Pending 0 Running 0 Finished 1,000+

Disable Project

Status Name Job Pipeline Duration Coverage

00:06:34

verbs #7838481 ¥ master -o- 128b136e #1532111 by @
& 1year ago

Stage View

Declarative: Unit Test and
@ Build History Tool Install Code Caverage

& 00:06:43
& 1year ago

Deploy to Prod

udp #7838480 ¥ master o 128b136e #1532111 by @

ind 45ms.
& 00:06:47

& 1 year ago

tep #7838479 v master -o- 128b136e #1532111 by @ o=

s 43ms 3min 48s
om a0

00:06:59
& 1year ago

132

libfabric #7838478 ¥ master -o- 128b136e #1532111 bye

Jun 16

3min 41s

00:06:28

#7838477 ¥ master o 128b136e #1532111 by @ & 1yearago
a

294ms
& 00:06:22

#7838476 ¥ master -o- 128b136e #1532111 byo 471 yenrago
e

4min 21s S 4min 31s

One remark about test automation

» This is relatively easy for unit tests

» But for integration tests: can be time consuming
» If have a large number of integration tests
» If the tests are complex to run

» Mostly an issue when the test environment change

» EQ:.in ateam | wasin, 2 PY (Person Year) consumed to move

One word on

» Not requirec

I‘
4 1

-{-‘i:
» The oo“

. <

1

=i

’.J‘; 1

» To ensure it is testal

" - &
= i
U

Some framework

Python unittest unitest.mock

C++ Google test Google mock
Catch?2 FakelT
Boost test library
cppunit

Google test
Criterion

bats

[native] mockall

[native] gomock

Conclusion

» Integration tests
» That's abs.

» 1I'm not say

.n.\
» Units festfing

» Even more performance
» Code spli

b, o

» Allow refactoring

Conclusion

» Forresearch you always want to test news algorithms
» Your also do not want to loose time in debugging

» Start KISS to get a clean working code, then complexify

» Agile methods

» Be able to quickly refactor
» Agile methods

» The testis
> If it fails =3
> Ifitis too

715

» Look it d
» With time you

vill lean e testable
» The good patterns are ¢ "

PhD. memory allocator

» Implement a parallel allocator

» Torun on Bull BCS & Teral100
» 16 processors (NUMA) => 128 cores

» Target application : Hera (~1M line of C++)

» ~1 year of base development with unit test

» On my workstation

Ph

D. memory allocator

Just got the malloc/free functions
Pass all the tests

Inject in all my KDE session
» Just one bug

First run in the application
» OK

Work on performance
» After two weeks => 2X gain on the app.

- 4

A satefy for QA guy

» Quality loss and 0

» Noticed not l' :'exigent guy !

¥
1
‘.

E

[}
© Q

()

-
L5
W

Q¢ ©)

In agile me’rh- o

I
5

» This is a comy
Ly
3

» You plane

.|

> OppOé II‘

> Thonkff'

» YOuU re

€. , Refactor with :
» You implement the new Only Integration tests 2

¢

