Characterization of a Water-silicone Multi-phasic Foam

Lucas Saccucci

Under the supervision of Aurélie Hourlier-Fargette At the Institute Charles Sadron

Subject Presentation

Model :

PHYSICAL REVIEW LETTERS : Capillary Flow of Oil in a Single Foam Microchannel (Keyvan Piroird and Elise Lorenceau)

Solutions

S1 :	S2 :		Water	Glycerol	J-Lube	Fairy	DBP
• 500 mL of water	Pustefix (commercial						
• 1.5 mL of glycerol	bubble solution)	S3	400 g	100 g	5.3 g	5 g	Ø
• 22.5 mL of Fairy							
• 5.3 g of J-Lube		S4	400 g	100 g	5.3 g	5 g	0.615 g
S7 :							
• 500 g TPG		S5	250 g	250 g	5.3 g	5 g	Ø
• 10 g DBP							
		S6	250 g	250 g	5.3 g	5 g	0.615 g

First tests

• Evolution of the Plateau's border

S3 :

S5 :

First tests 2

• Ajunction of the blue dyed oil

Difficulties

• Stability vs Mass

• Precision of the micropipette

• What are we measuring ?

Other tests :

Vertical measures + fluorescent dye

• Original article :

Elasticity of a soap film junction, F. Elias,

E. Janiaud, J.-C. Bacri, et al

• Modified equation

$$\epsilon(z) = 2(R_0 + (R_e - R_0)e^{\frac{-z}{L}} + a_0 z)$$

Relevant parameters

$$\epsilon(z) = 2(R_0 + (R_e - R_0)e^{\frac{-z}{L}} + a_0 z)$$

• R₀ : highly depending on the geometry

• L : should not vary significantly

• a₀ : linear correction

• R_e : depend on the flow rate

Detailed protocol

- Take a video of the Plateau's border at different flow rate (Q=200, 400, 600, 800, 1000 μL/min)
- When the flow is stationary, take a horizontal slice at different distances of the cannula
- Use the full width at half maximum of the intensity for the thinkness of the oil.
- Use a python program for the fit

Results

For a small viscosity (V100), Re follows a law close to the $R_e \sim Q^{\frac{1}{4}}$ of the article

(power 0.2 and power 0.16 repectively for the DI = 0.61 and 1.36 mm)

For the larger viscosity (V1000), it follow a totally different law

(power -0.57 and power -0.03 repectively)

Critics

• Not enough measurements (high incertitudes)

• Hysteresis and Oscillations

• The « a₀ » parameter