

Inter-diffusion of solvent into glassy polymer films: An example for disorder and fluctuations in non-equilibrium statistical mechanics

K. Edarzi, J. Baschnagel, O. Benzerara

Strasbourg University – Institut Charles Sadron

May 10, 2022

[Inter-diffusion of solvent into glassy polymer films: An example for disorder and fluctuations in non-equilibrium statistical mechanics](#page-13-0) May 10, 2022 1/ 14

Table of contents

- [Introduction](#page-2-0)
- [MD simulations](#page-3-0)
- [Lennard-Jones potential](#page-4-0)
- [Concentration profiles](#page-5-0)
- [Fick's Law](#page-6-0)
- [Diffusivity expression](#page-7-0)
- [Scaled solvent concentration profiles](#page-8-0)
- [Diffusion coefficient](#page-9-0)
- [Theoretical approach for concentration](#page-10-0)
- [Conclusion](#page-11-0)
- [Appendix](#page-12-0)
- [References](#page-13-0)

Using the continuity equation of flux :

$$
\frac{\partial c(z,t)}{\partial t} = -\frac{\partial J(z,t)}{\partial z} \tag{1}
$$

c : Concentration in units of mass per unit volume

J : Flux of matter defined as the amount of substance per unit area per unit time

Fick's first law :

$$
J(z,t) = -D\frac{\partial c}{\partial z} \tag{2}
$$

D : Diffusion coefficient in units of area per unit time

MD simulations

Molecular Dynamics (MD) simulate classical motion of particles in time.

We consider a Canonical ensemble (NVT).

Here we used the LAMMPS software.

It can be understood as a "virtual experiment".

 $\tau_{li} \sim 1$ ps

Figure – MD simulation of the inter-diffusion of solvent into polymer film

Lennard-Jones potential

Lennard-Jones potential :

$$
U_{ij}(r) = 4\epsilon_{ij} \left[\left(\frac{\sigma}{r_{ij}} \right)^{12} - \left(\frac{\sigma}{r_{ij}} \right)^{6} \right]
$$

 ϵ_{ij} : well depth of two particles i and j σ : distance at which the intermolecular potential is zero $r_{ij} = |\vec{\mathsf{r}}_i - \vec{\mathsf{r}}_j|$: distance between both particles

In the following, (*i*, *j*) refer to *p* for polymer and *s* for solvent.

Concentration profiles

Figure – Solvent and polymer concentration profiles as a function of time for different cases of polymer-polymer and $_{S_{\rm A}O_{\rm R}CO}$ solvent-polymer interactions. Values of ϵ inspired by J. Chem. Phys. 121, 7513 (2004).

Fick's first law :

$$
J(z,t) = -D(c)\frac{\partial c}{\partial z} \tag{3}
$$

 $D(c)$: Diffusivity assumed to depend only on (z, t) via solvent concentration $c(z, t)$

Diffusion equation for inter-diffusion of solvent into polymer film :

$$
\frac{\partial c}{\partial t} = \frac{\partial}{\partial z} \left[D(c) \frac{\partial c}{\partial z} \right]
$$
 (4)

From which we see that :

$$
t \sim z^2 \Leftrightarrow z \sim \sqrt{t}
$$

Diffusivity expression

Using Boltzmann transformation of Eq. (3) :

$$
u = \frac{z}{\sqrt{t}} \implies \frac{\partial u}{\partial z} = \frac{1}{\sqrt{t}} \implies \frac{\partial}{\partial z} = \frac{1}{\sqrt{t}} \frac{\partial}{\partial u}
$$
(5)

$$
\implies \frac{\partial u}{\partial t} = -\frac{1}{2} \frac{z}{t^{3/2}} \implies \frac{\partial}{\partial t} = -\frac{u}{2t} \frac{\partial}{\partial u}
$$
(6)

u : Scaling variable

Putting (4) and (5) into diffusion equation gives :

$$
D(c) = -\frac{1}{2} \left[\left(\frac{dc'}{du} \right) \right]_c^{-1} \int_0^c u(c')dc'
$$
 (7)

where $c = c(u)$. By inversion, we get $u = u(c)$.

Scaled solvent concentration profiles

In order to follow the theory, we shifted the positions to set the 0 position to the inter-diffusion interface.

Figure – Solvent concentration profiles as a function of the scaling variable for different cases of polymer-polymer and solvent-polymer interactions

The diffusivity calculated numerically using Eq.6 :

$$
D(c) = -\frac{1}{2}\left[\left(\frac{dc'}{du}\right)\right]_c^{-1} \int_0^c u(c')dc'
$$

Figure – Diffusivity as a function of solvent concentration for different cases of polymer-polymer and solvent-polymer interactions

Theoretical approach for concentration

For constant diffusion coefficient, we can represent the concentration profiles using :

$$
c(z,t) = \frac{c_0}{2} \left[1 + erf\left(\frac{z}{2\sqrt{Dt}}\right) \right] \quad \left\{ \begin{array}{l} c(z=0,t) = \frac{c_0}{2} \\ c(z \rightarrow \infty, t) = c_0 \end{array} \right.
$$

erf () : Error function *D* : Mean value of diffusion coefficient

Figure – Diffusivity as a function of solvent concentration Figure – Numerical and theoretical concentration profiles

We used molecular dynamics method to simulate the inter-diffusion of solvent into polymer film, with collected data, we managed to evaluate diffusivity using Fick's law.

Diffusion coefficient has different behavior according to the chosen parameters.

As a further step, we can try to find some suitable theoretical approaches for concentration in cases where polymer-polymer and solvent-polymer interactions are : $(1.33\epsilon, 1.33\epsilon)$ and $(2.0\epsilon, 2.0\epsilon)$

Conclusion

Here so-called *(reduced)* Lennard-Jones units have been introduced:

- All lengths are measured in units of $\sigma: r^* = r/\sigma$.
- All energies are measured in units of ε : $U_{\text{LJ}}^* = U_{\text{LJ}}/\varepsilon$.
- Temperature (T): With the Boltzmann constant k_B temperature is measured in units of: $T^* = T/(\varepsilon/k_B) = k_B T/\varepsilon.$
- Particle number density (ρ): ρ is measured in units of $1/\sigma^3$: $\rho^* = \rho/(1/\sigma^3) = \rho \sigma^3$.

References

- J. Chem. Phys. 121, 7513 (2004)
- J. Phys. D : Appl. Phys., Vol. 9, 1976. Printed in Great Britain. 0197

Primer of Diffusion Problems book by R. Ghez (Wiley, 1988)