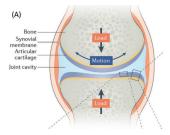
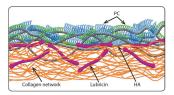
Physical mechanism of lubrication by lipid layers

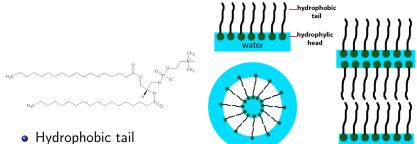
Gianni Zanardelli, Yulia Fok

10 mai 2022


Université					
		de Strasbourg			



《曰》 《聞》 《臣》 《臣》 三臣


Context : Lubrication in an articulation

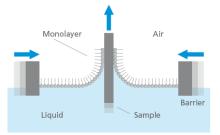
- Complex system
- Good lubrication (friction coefficient < 0.01 in a human hip joint with a pressure of 20 atm)
- What is the impact of the phospholipids on the lubrication?

Lipids

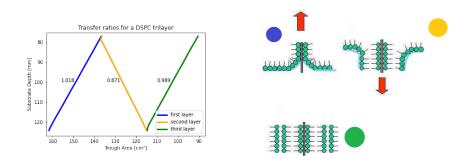
- Hydrophilic head

Figure – 3 examples of configurations : monolayer, vesicle, trilayer

Table of Contents


Interactions and potentials

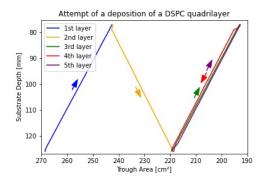
The Langmuir-Blodgett trough



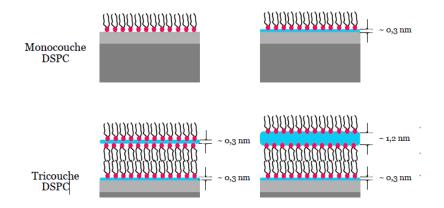
A 10

• The surface pressure :

$$\Pi = \gamma_0 - \gamma$$


Some depositions

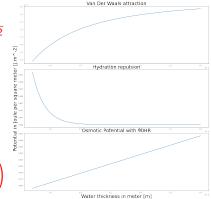
 $Transfer ratio = \frac{Surface of the trough removed}{Area of the substrate dipped}$


▲ 御 ▶ ▲ 国

Some depositions

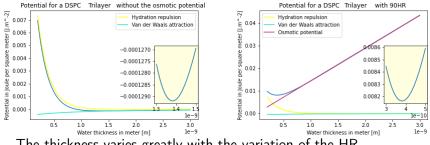
DSPC lipids do not hold more than 3 layers : 4th dip removes the last layer

Comparison of the thickness of water layer with a variation of humidity


Interactions considered :

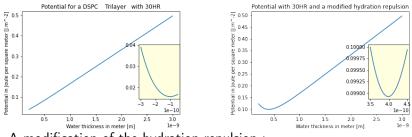
• Van Der Waals :

$$U_{VDW}(z) = \frac{H}{12\pi(z+2z_{head})^2}$$


- Hydration repulsion :
 - $U_{hydra}(z) = Phz_h e^{\frac{-z}{z_h}}$
- Osmotic potential :

$$U_{osmo}(z) = -z \frac{RT}{V_m} \log \left(\frac{HR}{100} \right)$$

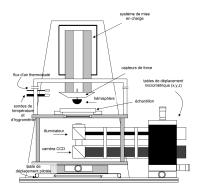
日 ▶ ▲ □


Searching for the thickness of the water layer with the minimum of the potential

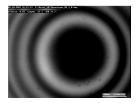
The thickness varies greatly with the variation of the HR

A 10

A limit to this model and a simple way to try to correct it



A modification of the hydration repulsion :


$$Unew_{hydra}(z) = P_h z_h e^{\frac{-z}{z_h}} e^{\frac{z^*}{z_h}}$$

Micro-Visio Scratch

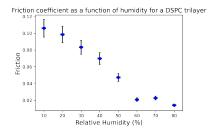
Sensors are measuring : the normal force F_n , and the tangential force F_t .

Contact surface S

ъ

< 4 → < Ξ

Friction measurements

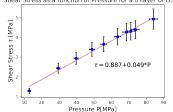

We can measure friction :

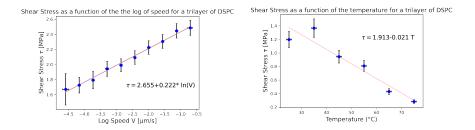
$$\mu = \frac{F_t}{F_n}$$

DSPC lipids greatly enhance the lubrication : We rub the glass hemisphere on the sample

Sample :	Glass	Trilayer
Friction μ	0.87	0.08

And we can observe change depending on different properties :




Shear Stress measurements

Shear Stress
$$\tau = \frac{F_t}{S}$$

Dependence of τ on :

- Speed
- Pressure
- Temperature

Shear Stress as a function of Pressure for a trilayer of DSPC

(ロ) (部) (E) (E) 크

Eyring model (1935)

$$\begin{aligned} \tau &= \tau_0 + \alpha P \\ \tau &= \tau_0' - \beta T \\ \tau &= \tau_0'' + \theta \ln V \end{aligned}$$

Eyring model :

$$au = rac{kT}{\phi} \ln\left(rac{V}{V_0}
ight) + rac{1}{\phi} \left(Q + P\Omega
ight)$$

with Q - activation energy; ϕ , Ω - activation volumes and P, T, V - pressure, temperature and velocity respectively, τ - shear stress

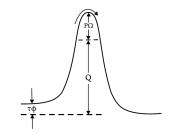


Figure – Potential barrier in the Eyring model

Eyring Model

As we have more equations than variables :

$$\phi = \frac{kT}{\theta}$$

$$\phi = -\frac{k}{\beta} \ln \left(\frac{V}{V_0} \right)$$

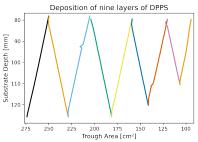
$$\Omega = lpha \phi$$
 , $Q = au_0'' \phi - P \Omega$

Reminder :

 $\tau = \tau_0 + \alpha P$ $\tau = \tau'_0 - \beta T$ $\tau = \tau''_0 + \theta \ln V$

・ 同 ト ・ ヨ ト ・ ヨ

	Method 1	Method 2	Li Fu	T. Mukhina
$\phi [\mathrm{nm}^3]$	18.63 ± 25.47	9.32 ± 1.00	8.6	17±1
$\Omega [nm^3]$	0.91 ± 0.31	0.45 ± 0.07	0.35	0.7±0.06
<i>Q</i> [kJ]	35.63 ± 24.84	17.82 ± 1.91	37	19±2.4


Conclusion

- We studied DSPC trilayer shear properties with factors -Velocity, Humidity, Pressure and Temperature, replicating experiments performed by Li Fu (PhD) and Tetiana Mukhina (intern).
- We looked at the Eyring model microscopical model for macroscopic events
- We tried to compute a relation between humidity and the water thickness inbetween layers.

- A - E - M

To go further

• We could look at DPPS layers. DPPS lipids have charged heads allowing more layers

- FRAPP (Fluorescence Recovery After Patterned Photobleaching) to better understand molecular vibrations and velocities
- Finding a better model for the thickness of the water layer.