

Characterization of Single Crystalline FeV thin Films on GaAs Substrate by Ferromagnetic Resonance

Student Name - G.D.K. De Silva Supervisor - Matthieu Bailleul

Acquire experience of the Ferromagnetic Resonance (FMR) method and experimental setup.

Understand the magnetic state of Fe and FeV thin films (20 nm) grow on GaAs substrate.

Ferromagnetic Materials

aligned

 \triangleleft If an external magnetic field is applied, domains align to the magnetic field

Magnetization (M) - The density of magnetic moments in a magnetic material

$$
M = \frac{\sum m_i}{V}
$$

Saturation Magnetization (M_s) - maximum magnetic moment per unit volume for a magnetic material

Magnetic Energies

Zeeman Energy

The interaction of the magnetization M with an **external magnetic field** Hext.

Exchange Energy

Interaction Energy between **two Spins**

Demagnetizing Field Energy

This is given by the **dipolar interaction** between magnetic moments in the material. This interaction creates a field that opposes the magnetization.

Cubic Anisotropy Energy

Energy that depends on **orientation of the magnetization** with respect to the lattice symmetry direction of the material

$$
\vec{H}_{eff} = \vec{H}_{Ze} + \vec{H}_{Ex} + \vec{H}_{de} + \vec{H}_{ku}
$$

Magnetization Dynamics

Landau Lifshitz Gilbert equation

Ferromagnetic Resonance (FMR)

- Experimentally, the magnetization precession is driven by an external electromagnetic Wave (oscillating magnetic field)
- The Magnetic material absorbs energy from the microwave leading to the magnetization precession.
- The energy absorption will be maximum when: The frequency of the excitation wave $=$ resonance frequency of the magnetization.

Experimental Setup

$Fe_{1-x}V_x$ Thin Films (single Crystalline)

Grown by Molecular Beam Epitaxy (MBE)

Fe: FMR

Fe: SQUID (by Jerome Robert)

- Thickness = 20 nm is assumed for the calculation of M.
- **Expected** M_s : 2.15 T

$$
M_{S} = \frac{\sum m_{i}}{V}
$$

• Thickness smaller than expected? 17 nm

FeV (6% V): SQUID (by Jerome Robert)

- Thickness=20 nm is assumed for the calculation of M.
- **Expected Ms: 1.95 T [Devolder, Appl. Phys. Lett. 103, 242410 (2013)]**

$$
M_{S} = \frac{\sum m_{i}}{V}
$$

- 1) Thickness smaller than expected? 15 nm?
- 2) V concentration higher than targeted? $20 - 24\%$?

Room Temperature Van der Pauw measurements,

For Fe,

• Actual Thickness $= 15$ nm?

• Actual Thickness $= 9 \text{ nm}$?

=> Increased concentration of impurities. (Higher than 6%)

Conclusions

For Fe;

- 1. All measurements agree with an actual thickness < 20 nm.
- 2. Decrease of cubic anisotropy: An indication of impurities in the film?

For FeV;

- 1. In this case, a smaller thickness may not be the only explanation.
- 2. Measurements also suggest an M_s smaller than expected: \Rightarrow Larger concentration of V impurities.

 \dots **So this characterization gave clues to that the samples where not in the required condition. Therefore, the characterization continued to understand the origin of the problems**

 \triangle **Now we know the films are actually 17-18 nm thick, and the V concentration is higher than expected (9.5 – 12 %). Also there is some oxygen inside.**

 \diamond **By considering all these things, growth condition need to be checked and Al capping layer should be also improved.**

THANK YOU

Backups

MBE (Molecular Beam Epitaxy)

- MBE has evolved in to one of the most widely used techniques for producing epitaxial layers of metals, insulators and superconductors as well.
- \cdot it consists essentially of atoms or clusters of atoms, which are produced by heating up a solid source.
- They then migrate in an UHV environment and impinge on a hot substrate surface, where they can diffuse and eventually incorporate in to the growing film.

Application – Spin Wave Doppler Shift

$$
f + \delta f_{dop} \qquad \overrightarrow{m}(f) \qquad \frac{\partial \overrightarrow{M}}{\partial t} = -\gamma \mu_o \ \overrightarrow{M} \times \overrightarrow{H} - u \frac{d\overrightarrow{M}}{dx}
$$

- Two antennas on top of the sample, exiting with respective magnetic fields.
- \clubsuit in magnetic materials, there is an unbalance between spin up and spin down electron densities. (two current models)
- \cdot That create an effective magnetic moment.
- **❖** That effective magnetic moment interact with the spin waves and produce a frequency shift.
- \cdot This shift depends on sign of the current or propagation direction of the spin wave.
- ❖ This effect doesn't change the magnitude of the magnetization. Only modifies its frequency.

Spin Wave Modes

- They are thickness modes. Because of constrain thickness.
- Confinement of the magnetization oscillations leads to a discretization of the energy

levels of the spin waves (spin wave modes become distinguishable)

SQUID (superconducting quantum interference device)

- \cdot The most sensitive magnetic flux detector is the superconducting quantum interference device SQUID.
- Contains two Josephson junctions (insulators) between two super conducting Wires.
- Classically, current not conducting through this.
- \triangle But in quantum mechanical limit, there is a probability for tunneling.
- \cdot It depends on temperature and amount of magnetic moments.

Derivation of resonance frequency Equations

Van der Pauw Resistivity Measurement Method

 The van der Pauw method involves applying a current and measuring voltage using four small contacts on the perimeter of a flat, arbitrarily shaped sample of uniform thickness

 $* f_A$, $f_B = Geometrical Factors$ (Based on sample geometry) $(f_A = f_B = 1$ for perfect symmetry)

Plane Waves

$$
U(r,t) = Ae^{-\lambda}e^{i(k.x - \omega t)}
$$

Landau Lifshitz Equation

- There is no damping term
- ❖ Signal width is zero

$$
\frac{dM}{dt} = -\gamma M \times \mu_0 H_{eff}
$$

$$
\omega = \gamma \mu_0 (H_0 - M_s) \qquad \qquad \omega = \gamma \mu_0 \sqrt{H_0 (H_0)}
$$

Landau Lifshitz Gilbert equation

 The Damping term increase the width of the signal due to the dispersion of absorption.

$$
\frac{dM}{dt} = -\gamma M \times \mu_o H_{eff} + \alpha M \times \frac{dM}{dt}
$$

 $\overline{+M_{S}}$

Resonance Peaks

Fe : Linewidth

FeV : Linewidth

Fe: FMR

 $H_x = H_K$ 0.06 T -> 0.04 T $H_y = M_s + H_K - H_u - H_s$ 2.08 T -> 2.18 T $H_Z = M_s - H_K - Hu - H_s$ 2.05 T -> 1.96 T **Out Plane FMR: MgO -> GaAs In Plane :Second mode MgO -> GaAs**

 $H_K + H_{Ex}$ 0.61 T -> 0.89 T M_s + H_K - H_u - $2H_s$ + H_{Ex} 2.52 T -> 2.98 T

M_s- **H_K**- **Hu**- **2H_S** - **H**_{Ex} 1.38 T -> 1.05 T **Out Plane :Second mode MgO -> GaAs**

FeV: FMR **on MgO** on GaAs

