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Objectives

s Acquire experience of the Ferromagnetic Resonance (FMR) method and

experimental setup.

*» Understand the magnetic state of Fe and FeV thin films (20 nm) grow on

GaAs substrate.
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Ferromagnetic Materials
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Magnetization (M) - The density of magnetic moments in a
magnetic material
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¢ If no magnetic field is applied, Each
Domain align in different directions

M

¢ If an external magnetic field is
applied, domains align to the

Y Saturation Magnetization (M) - maximum magnetic
magnetic field

moment per unit volume for
a magnetic material 02



Magnetic Energies

s Zeeman Energy

The interaction of the magnetization M with an external
magnetic field Hext.

“ Exchange Energy

Interaction Energy between two Spins

* Demagnetizing Field Energy

This is given by the dipolar interaction between magnetic moments in the
material. This interaction creates a field that opposes the magnetization.

Energy that depends on orientation of the magnetization with respect

to the lattice symmetry direction of the material

HoHerr = Vijer
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Magnetization Dynamics

Landau Lifshitz Gilbert equation

Heff dM M wH o+ M X dM
s olle a "1
A MxdM/dt dt )\/ Hotles ’j \ dt

-~
-
-*

MXHegr | Y

Steady State Dissipation
Precession Damping

f= 280 [(Hy + Hy)(Ho + Hy)
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“ Applying a transversal alternating magnetic
field H,- will drive the precession of
magnetization M.

¢ At equilibrium, magnetization will
align with Effective magnetic field.

--------
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Ferromagnetic Resonance (FMR)

% Experimentally, the magnetization precession is driven by an external electromagnetic Wave g
(oscillating magnetic field) §‘\
84
s The Magnetic material absorbs energy from the microwave leading to the magnetization precession. g |
(@)
172]
¢+ The energy absorption will be maximum when: ® l f zr (Ho)
The frequency of the excitation wave = resonance frequency of the magnetization. resonance 0
condition
f = fres(Hop)

= Hyc

L& N E

Ground line

Coplanar Waveguide

Coplanar Waveguide (inside the Copper Box) with a thin film on it.
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Experimental Setup
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Fe{_,V. Thin Films (single Crystalline)

Grown by Molecular Beam Epitaxy (MBE)

by Matthias Kronseder

Films under study

by David Halley (IPCMS)

MgO

Fe1«Vx 20nm

MgO  40nm

MgO substrate

Reference Films
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frequency [GHZ]

Fe:

MLy
=2 [Hy + H)(Hy + Hy) | | =222 (Ho — Hy)
2
(In Plane) (Out Plane)
30
on MgO on GaAs
25 - (Reference) | (Measured)
H, — Hg[T] 0.06 0.04
20~ / | H, —» Megs [T] 2.07 2.07 -
1 / e FMR: onGaAs : Y
15 - / =« FMR: onMgO - Hy, Hz=> Hx[T] 0.55 0.85* 1
'/,‘ O 1st. onGaAs « Equal effective magnetization and increased
10 = 1st: onMgO i exchange field* suggest a thickness smaller than
' e expected: 16 nm
S —T * [ < T © [ Tgf & ! '
0.0 0.2 0.4 0.6 0.8 2.2 2.4 2.6 1
applied magnetic field [T] Hex @ 3102
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Fe: SQU'D (by Jerome Robert)

—i#— Fe

rl—l-'l-l-l-I-l-l-l-l

J oM, =1.85T
E—E—E—E—E—E—a—u-=E—01

Thickness =20 nm is assumed for
the calculation of M.
Expected M. 2.15T

Thickness smaller than expected?

17 nm

Ms
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FeV: FMR
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154 / & FMR: onMgO
// O 1st: onGaAs
10 4 1st. onMgO
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applied magnetic field [T]

1k

=22 (Hy + H)(Hy + H,) | | =57 (Ho — Hy)

(In Plane) (Out Plane)

on MgO on GaAs
(Reference) | (Measured)

H, — Hk [T] 0.06 0.03
H,, —> Megs [T] 1.99 1.48 4,
{Hy, Hz=>H_,[T] 0.53 0.85* T

Smaller effective magnetization and
increased exchange field* suggest:
» Lower Ms.(Saturation Magnetization)
« Or/And thickness smaller than
expected: 16 nm

Hex a Mstz
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m (X 10~ *emu)

FeV (6% V)Z SQU | D (by Jerome Robert)

1.0 -
0.8 - —o— Fe -0-0-0-0-0-0-0-0-8
06- —— FeV (6% V) E-E-B-B-E-E-E-E-E-N
0.4
0.2 - / -
0.0 A —
' i
0.2 -
0.4 -
-0.6 B
. E-E-E-E-E-E-E-E-E-m UoMg; =1.44T
> M S poMg =1.85T
-1.0 =
T I | | |
-2 1 0 1 5
poH [T]

 Thickness=20 nm is assumed for the
calculation of M.

« ExpectedMs:1.95T
[Devolder, Appl. Phys. Lett. 103, 242410 (2013)]

_umy
v

M;

1) Thickness smaller than expected?
15 nm?

2) 'V concentration higher than targeted?
20-24%"7?
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Resistivity

Room Temperature Van der Pauw measurements,

For Fe,
MgO GaAs :
° = 2
(Reference) (Measured) Actual Thickness = 15 nm *
MC211111C_e4 11.4 - 133 16.4 »
For FeV (6%)
m resistivity [pQ cm] - « Actual Thickness =9 nm ?
MgO GaAs
(Reference) (Measured) => |ncreased concentration of
Impurities. (Higher than 6%)
MC211116A_al 25 542 N
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Conclusions

For Fe;

1. All measurements agree with an actual thickness < 20 nm.

2. Decrease of cubic anisotropy: An indication of impurities in the film?

For FeV;

1. Inthis case, a smaller thickness may not be the only explanation.

2. Measurements also suggest an M, smaller than expected:
= Larger concentration of V impurities.

+¢* So this characterization gave clues to that the samples where not in the required
condition. Therefore, the characterization continued to understand the origin of the

problems
**Now we know the films are actually 17-18 nm thick, and the V concentration is higher

than expected (9.5 — 12 %). Also there is some oxygen inside.
*** By considering all these things, growth condition need to be checked and Al capping

layer should be also improved.
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MBE (Molecular Beam Epitaxy)

+* MBE has evolved in to one of the most widely used
techniques for producing epitaxial layers of metals,
insulators and superconductors as well.

¢ it consists essentially of atoms or clusters of atoms, which
are produced by heating up a solid source.

** They then migrate in an UHV environment and impinge on a
hot substrate surface, where they can diffuse and eventually
incorporate in to the growing film.

RV RHEED

RHEED gun A
- Chamber ‘LA screen
E tnatvn




Application — Spin Wave Doppler Shift

irf(f)

** Two antennas on top of the sample,
exiting with respective magnetic
fields.

%* in magnetic materials, there is an
unbalance between spin up and spin
down electron densities. (two current
models)

** That create an effective magnetic
moment.

< +J, ( By Jose Solano ) ¢ That effective magnetic moment
interact with the spin waves and
produce a frequency shift.

** This shift depends on sign of the
current or propagation direction of
the spin wave.

¢ This effect doesn’t change the
magnitude of the magnetization. Only
modifies its frequency.




Spin Wave Modes

W M)
b

\ 4

** They are thickness modes. Because of constrain thickness.
s Confinement of the magnetization oscillations leads to a discretization of the energy

levels of the spin waves (spin wave modes become distinguishable)



SQUID (superconducting quantum interference device)

** The most sensitive magnetic flux detector is the
superconducting quantum interference device SQUID.

+* Contains two Josephson junctions (insulators) between two
super conducting Wires.

+%* Classically, current not conducting through this.

** But in quantum mechanical limit, there is a probability for
tunneling.

+* It depends on temperature and amount of magnetic
moments.




Derivation of resonance frequency Equations

dM e s .
= = —YM X poH o5f ‘ Landau Lifshitz equation
A h = __177)1 = ( x )T?L
Ak YoM \l1@W Wy
Ho wy = yio(Ho + (N — N;)My) wy = Yo (Ho + (Ny = N, )My)
w = [wyw, Kittel Formula
_ 15
Wres = V.UO{[(HO + (Nx - NZ)MS))/:uO(HO + (Ny - NZ)MS)]}
Out Plane In Plane
I e
Ny=N, =0 N,=1 N, =N, =0 N,=1

w = ypo(Ho — M) w = yug Ho(Hy + My)




Van der Pauw Resistivity Measurement Method

+** The van der Pauw method involves applying a current and measuring voltage using four small contacts on the
perimeter of a flat, arbitrarily shaped sample of uniform thickness

—( —(Ve
4 1 2 1 2 1 2 1 2
l 3 4 3 @FD 4 3 @ 4 3 ¢ 4 3 @?
- —-
—()—
1 2 1 2 1 2 1 2
Van-der-Pauw ¢> dD
4 3 4 3 4 3 4 3
—(V2)— (-
T V1 —=Vo+V3-V)) m (Vs — Vg + Vy — Vg) _patpp

* fa,fs = Geometrical Factors (Based on sample geometry)
(fa =fg=1 for perfect symmetry)



Plane Waves
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o) Amplitude —»

U(T‘, t) — Aei(k.x — wt)

U(r,t) = Acos(k.x — wt) + iAsin(k.x — wt)

U(T, t) — Ae—)lei(k.x — wt)




Landau Lifshitz Equation
** There is no damping term

+» Signal width is zero

dM

dt

—— =—"YM X ﬂoHeff

w = yuo(Hy — M)

Landau Lifshitz Gilbert equation

** The Damping term increase the width of the signal due to the

dispersion of absorption.

w = VMO\/HO(HO + M)

dM
E = —)’M X ﬂoHeff + aM X

dM

dt
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Resonance Peaks
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HoAH [MT]

Fe : Linewidth

14 4

12 -

10 +

/ ©  onMgO

1 N 1 N 1 N 1 N | N | N | N | N |

7
o

o o o° .
0% 6 0

a=0.0017

a =0.004 -

© onGaAs

1 N 1 N 1 N 1 N 1 N | N | N | N |

5 10 15 20 25 30 35 40 45 50
frequency [GHZ]

M 7 MgO -> GaAs

S

| / / o« 0004 -> 0.001?
AH, -0.5mT-> 9mT

I N I N I N 1 N I N I N I N 1 N | N I

2 4 6 8 10 12 14 16 18 20

frequency [GHZ]
MgO

0.002 -> 0.002

-> GaAs

1.2mT-> 0.3 mT

MSI
a
"

22



FeV : Linewidth
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frequency [GHZ]

B TN T

Y[GHz.T™'] 29.1 28.6
Hg [T] 0.06 0.04 ~L
Mgy [T] 2.07 2.07 -
H,,[T] 0.55 0.85% 0
He,+ Hg [T] 0.67 0.91 0
WY 4
30 s In Plane FMR: MgO -> GaAs
y 4
g . y ] H, = Hi 006 T-> 0.04T
‘ H,= Mg+ Hg- Hu- Hg 208 T-> 2.18T
y,
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1 7
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FeV: FMR

Hg [T]

Meff [T]

He, [T]

29.2
0.06
1.99
0.53

29.3
0.03
1.48
0.85*

S oo | onGans |
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In Plane FMR: MgO -> GaAs

Hy 0.06 T-> 003 T
M.+ Hg- Hu-Hg  202T-> 157 T
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25 - s ..--" e Out Plane FMR: MgO -> GaAs

' / . M,- Hgk-Hu—Hg  196T -> 1397
20 - 7 &

. / " e FMR: onGaAs In Plane :Second mode MgO -> GaAs
154 / & ;

1/ / ’ ’:“’:'R- OSMA?O _ Hy+Hg, 059 T-> 0.89T
10t/ SL. ONbGaAs / M.+ Hg- Hu- 2Hg +Hg,  239T-> 295T

1/ 1st: onMgO / N

. ., | oOut Plane :Second mode MgO -> GaAs
9 — T T T T T T T T " // T T T T T 1
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