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Objectives 

Theoretical understanding of experimental results using a semi-
classical theory.

Study and understand electronic transport in graphene.

Compare electronic transport in graphene and in semiconductor 
heterostructure by studying the transmission. 
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I — Experimental motivations

5Image source : Left : B. Brun, Phys. Rev. B 100 (2019). Right : M. Topinka, Physics Today 56 (2003).

Imaging electron flow

What is Scanning Gate Microscopy ?

Source
Drain

Change of conductance with tip position



I — Experimental motivations

6Image source : Left : M. Topinka, Physics Today 56 (2003). Right : C. Pöltl, Phys. Rev. B 94 (2016).  

2D motion of electrons Current density 

SGM in semiconductor heterostructures  



I — Experimental motivations

7Image source : B. Brun, Phys. Rev. B 100 (2019).

Quantum simulations yet no semi-classical model for the motion

SGM in graphene

tip position
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II — Electronic transport in graphene

9Image source : Wikipedia, by Alexander AlUS 

What is graphene ?

2D material : monolayer of Carbon atoms

Unveiled in 2004 for the first time



II — Electronic transport in graphene

10Image source : Fig. 8.1, Graphene Nanoelectronics, E. McCann

Honeycomb lattice : not a Bravais lattice

Two atoms per cell

What is graphene ?
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E± = ± vF | ⃗p |
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Massless Dirac fermions

vF ≃
c
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Linear dispersion relation near  and K K′ 
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E± = ± vF | ⃗p |

Linear dispersion relation near  and K K′ 

Massless Dirac fermions

vF ≃
c

300

E± = ± c2 | ⃗p |2 + m2c4

Pseudo-relativistic

KK′ 

K′ K

E ≠
| ⃗p |2

2m

II — Electronic transport in graphene
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Conduction band

Valence band

Fermi level

Dirac point

n-type filling p-type filling

E± = ± vF | ⃗p |

II — Electronic transport in graphene
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E

E

E
V0

V0

E

E

Behavior of electrons at a potential barrier : npn junction

II — Electronic transport in graphene
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E

E

E
V0

V0

E

E

Klein tunneling
Behavior of electrons at a potential barrier : npn junction

II — Electronic transport in graphene
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Veselago lensing for other angles
Snell-Descartes law

n1 sin(θ1) = n2 sin(θ2)

V0
E

II — Electronic transport in graphene
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Veselago lensing for other angles
Snell-Descartes law with negative refractive index

n1 sin(θ1) = n2 sin(θ2) n2 = (E − V0)

V0
E

II — Electronic transport in graphene
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III — Classical method
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Trajectories : Newton’s equations
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III — Classical method
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Image pour comprendre notre set-up qui simule un set-up expo de 

Studying transmission of electrons

Monte Carlo generation of initial conditions

Trajectories : Iterative procedure  Runge-Kutta method→



III — Classical method
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Conductance is linked to transmission
Use of semiclassical transmission formula

Transmission =
number of electrons in drain
number of electrons in total

G ∝
2e2

h
T



III — Classical method
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Perturbation by a Lorentzian potential

Play with ,  and ut wt ⃗rt

V( ⃗r ) =
utE0

w2
t + | ⃗r − ⃗rt |

2
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IV — Results
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Smooth potential step in a squared cavity of length L

V0V0 = Einit

I II III



Relative error :  
over the 

trajectories
≈ 0.1 %

IV — Results
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Smooth potential step in a squared cavity of length 

Classical trajectories of the electrons

x /L

y/L

L

V0V0 = Einit



Classically 
forbidden zone
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Smooth potential step in a squared cavity of length 

Classical trajectories of the electrons

x /L

y/L

L

V0V0 = Einit



Classically forbidden zone

IV — Results

29x /L

y/L

V0 d ⃗r
dt

= vF
⃗p

| ⃗p |
sgn(E − U( ⃗r ))

V0 < Einit

V0

No Klein tunneling 



IV — Results
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Challenge : 
Trapped trajectories Spherical cavity 

Solution : 
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Transmission in a spherical cavity as a function of the tip strength

Transmission in a spherical cavity
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Transmission in a spherical cavity as a function of the tip strength

Transmission in a spherical cavity
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Transmission in a spherical cavity as a function of the tip strength

Fluctuations

Transmission in a spherical cavity
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Transmission in a spherical cavity as a function of the tip strength

Transmission in a spherical cavity
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Transmission in a spherical cavity as a function of the tip strength

Transmission in a spherical cavity
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Transmission in a spherical cavity as a function of the tip strength

Transmission in a spherical cavity
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Comparison with semiconductor heterostructures

Graphene GaAs
Transmission in a spherical cavity as a function of the tip strength

Image source : Right : C. Pöltl, Phys. Rev. B 94 (2016).  
,
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V — Conclusion and outlook
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SGM : imaging electron flow

Interesting aspects of graphene : 
linear dispersion relation

Classical trajectories of electrons in graphene : 
similarities with semiconductor 
heterostrucutres

What have we seen ?

Transmission in a spherical cavity as a function of the tip strength

Image source : Top : M. Topinka, Physics Today 56 (2003).



V — Outlook and beyond
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Quantum simulation

More advanced semi-classical theory to 
explain Veselago lensing

Geometry impact

SGM map

What is next ?
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Tight binding

Only take  orbitalspz

Ψ±( ⃗k , ⃗r ) = c±,AΦA( ⃗k , ⃗r ) + c±,BΦB( ⃗k , ⃗r ) E±( ⃗k ) =
⟨Ψ± |H |Ψ±⟩

⟨Ψ± |Ψ±⟩
Secular equation

det(H − E±S) = 0 Si,j = ⟨Φi |Φj⟩
i, j = A, B

S = (
1 s0 f( ⃗k )

s0 f( ⃗k ) 1 )
E± =

γ0s0 f 2(k) + ε2p ± f(k)(γ0 + s0ε2p)
(1 − s2

0 f 2(k))

 : energy of  orbitalsε2p 2pz

 : coupling between A and B (hopping)γ0

 : overlap between AA or BBs0



Appendix

42

Explanation of Klein tunneling and Veselago lensing

Conduction band

Valence band

Pseudo spin up : atoms A

Pseudo spin down : atoms B

CB : ⃗σ ∥ ⃗p

VB : ⃗σ ∦ ⃗p
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Explanation of Klein tunneling and Veselago lensing

Pseudo spin conservation 

For  : no retrodiffusion : Klein tunnelling θt = π

[Ĥ, ̂σ] = 0

V0

E

k
kt

kr

θtϕ

ϕ

π − ϕ

E E − V0
x

y
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Why can’t we explain np junctions classically ?

Tunneling only possible if px = py = 0

px

py
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Scaling in the numerical scheme

Length of the cavity : L

Energy first transverse mode : E0 = ℏvFπ/L

Our simulation : L = 1 μm

Our simulation :  corresponding to E0 ≈ 5 meV T ≈ 60 K
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Gaussian and Lorentzian


