Semiclassical theory of Scanning Gate Microscopy for massless Dirac fermions

Presented by Pierre Guichard and Florian Maurer

Tutored by : — Guillaume Weick — Dietmar Weinmann

Objectives

Theoretical understanding of experimental results using a semiclassical theory.

Study and understand electronic transport in graphene.

Compare electronic transport in graphene and in semiconductor heterostructure by studying the transmission.

Outline

- I. Experimental motivations
- **II.** Electronic transport in graphene
- **III.** Classical method
- IV. Results
- V. Conclusion and outlook

- I. Experimental motivations
- II. Electronic transport in graphene
- **III.** Classical method
- IV. Results
- V. Conclusion and outlook

I — Experimental motivations
 What is Scanning Gate Microscopy ?

Imaging electron flow

Change of conductance with tip position

 $1 \, \mu m$

I — Experimental motivations
 SGM in semiconductor heterostructures

2D motion of electrons

Current density

Experimental motivations SGM in graphene

Quantum simulations yet no semi-classical model for the motion

- I. Experimental motivations
- II. Electronic transport in graphene
- **III.** Classical method
- IV. Results
- V. Conclusion and outlook

II — Electronic transport in graphene What is graphene ?

Unveiled in 2004 for the first time

2D material : monolayer of Carbon atoms

II — Electronic transport in grapheneWhat is graphene ?

Honeycomb lattice : not a Bravais lattice

Two atoms per cell

Linear dispersion relation near K and K'

$$E_{\pm} = \pm v_{\rm F} |\overrightarrow{p}|$$

Massless Dirac fermions

 $v_{\rm F} \simeq \frac{c}{300}$ Pseudo-relativistic

• Linear dispersion relation near K and K'

$$E \neq \frac{|\vec{p}|^2}{2m} \qquad \qquad E_{\pm} = \pm v_{\rm F} |\vec{p}| \qquad \qquad v_{\rm F} \simeq \frac{c}{300}$$

Massless Dirac fermions Pseudo-relativistic

Linear dispersion relation near K and K'

$$E \neq \frac{|\vec{p}|^{2}}{2m} \qquad \qquad E_{\pm} = \pm v_{\mathrm{F}} |\vec{p}| \qquad \qquad v_{\mathrm{F}} \simeq \frac{c}{300}$$
Massless Dirac fermions Pseudo-relativistic
$$E_{\pm} = \pm \sqrt{c^{2} |\vec{p}|^{2} + m^{2}c^{4}}$$

3

$$E_{\pm} = \pm v_{\mathrm{F}} |\overrightarrow{p}|$$

Behavior of electrons at a potential barrier : npn junction

Behavior of electrons at a potential barrier : npn junction
 Klein tunneling

Veselago lensing for other angles
 Snell-Descartes law

 $n_1 \sin(\theta_1) = n_2 \sin(\theta_2)$

Veselago lensing for other angles

Snell-Descartes law with negative refractive index

$$n_1 \sin(\theta_1) = n_2 \sin(\theta_2)$$

 $n_2 = (E - V_0)$

- I. Experimental motivations
- **II.** Electronic transport in graphene
- **III. Classical method**
- **IV. Results**
- V. Conclusion and outlook

Trajectories : Newton's equations

$$\frac{d\vec{p}}{dt} = -\vec{\nabla}(V(\vec{r}))$$
$$\frac{d\vec{r}}{dt} = v_{\rm F} \frac{\vec{p}}{|\vec{p}|} \operatorname{sgn}(E - V(\vec{r}))$$

• $v_{\rm F}$ is constant

╉

+

E

╉

E

 V_0

Trajectories : Newton's equations

$$\frac{\mathrm{d}\vec{p}}{\mathrm{d}t} = -\vec{\nabla}(V(\vec{r}))$$
$$\frac{\mathrm{d}\vec{r}}{\mathrm{d}t} = v_{\mathrm{F}}\frac{\vec{p}}{|\vec{p}|}\mathrm{sgn}(E - V(\vec{r}))$$

• $v_{\rm F}$ is constant

╋

Monte Carlo generation of initial conditions

- Trajectories : Iterative procedure → Runge-Kutta method
- Studying transmission of electrons

Conductance is linked to transmission
 Use of semiclassical transmission formula

 $G \propto \frac{2e^2}{h}T$

Transmission = $\frac{\text{number of electrons in drain}}{\text{number of electrons in total}}$

Perturbation by a Lorentzian potential

- I. Experimental motivations
- **II.** Electronic transport in graphene
- **III.** Classical method
- **IV. Results**
- V. Conclusion and outlook

• Smooth potential step in a squared cavity of length L

 Smooth potential step in a squared cavity of length L Classical trajectories of the electrons
 $V_0 = E_{\text{init}}$

Relative error : $\approx 0.1 \%$ over the trajectories

 \blacksquare Smooth potential step in a squared cavity of length LClassical trajectories of the electrons V_0 • $V_0 = E_{\text{init}}$ 1.00 theory numerical 0.50 0.25 y/L0.00 -0.25 -0.50 -0.75 -1.00-0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 -1.001.00

x/L

No Klein tunneling

Classically forbidden zone

 $V_0 < E_{\text{init}}$

Challenge : Trapped trajectories

Solution :Spherical cavity

1.0

Transmission in a spherical cavity

Transmission in a spherical cavity

Transmission in a spherical cavity

IV — Results Transmission in a spherical cavity

Histogram of counts at a given $u_t = 0.8$

Graphene Transmission in a spherical cavity as a function of the tip strength

IV — Results

GaAs

Comparison with semiconductor heterostructures

- I. Experimental motivations
- **II.** Electronic transport in graphene
- **III.** Classical method
- **IV. Results**
- V. Conclusion and outlook

V — Conclusion and outlook

What have we seen ?

SGM : imaging electron flow

Interesting aspects of graphene : linear dispersion relation

 Classical trajectories of electrons in graphene : similarities with semiconductor heterostrucutres

39

V — Outlook and beyond

What is next ?

- More advanced semi-classical theory to explain Veselago lensing
- Geometry impact
- SGM map
- Quantum simulation

Tight binding

• Only take p_z orbitals

$$\Psi_{\pm}(\overrightarrow{k}, \overrightarrow{r}) = c_{\pm,A} \Phi_{A}(\overrightarrow{k}, \overrightarrow{r}) + c_{\pm,B} \Phi_{B}(\overrightarrow{k}, \overrightarrow{r})$$

Secular equation

$$E_{\pm}(\vec{k}) = \frac{\langle \Psi_{\pm} | H | \Psi_{\pm} \rangle}{\langle \Psi_{\pm} | \Psi_{\pm} \rangle}$$

$$\det(H - E_{\pm}S) = 0 \qquad S = \begin{pmatrix} 1 & s_0 f(\vec{k}) \\ s_0 f(\vec{k}) & 1 \end{pmatrix} \qquad S_{i,j} = \langle \Phi_i | \Phi_j \rangle_{i,j = A,B}$$

$$E_{\pm} = \frac{\gamma_0 s_0 f^2(k) + \varepsilon_{2p} \pm f(k)(\gamma_0 + s_0 \varepsilon_{2p})}{(1 - s_0^2 f^2(k))}$$

 ε_{2p} : energy of $2p_z$ orbitals γ_0 : coupling between A and B (hopping) s_0 : overlap between AA or BB

Explanation of Klein tunneling and Veselago lensing

Pseudo spin up : atoms A

Pseudo spin down : atoms B

 $\mathsf{CB}:\overrightarrow{\sigma}\parallel\overrightarrow{p}$

For $\theta_t = \pi$: no retrodiffusion : Klein tunnelling

■ Why can't we explain np junctions classically ?

Tunneling only possible if $p_x = p_y = 0$

Scaling in the numerical scheme

• Length of the cavity : L

• Our simulation : $L = 1 \ \mu m$

- Energy first transverse mode : $E_0 = \hbar v_F \pi / L$
 - Our simulation : $E_0 \approx 5 \text{ meV}$ corresponding to $T \approx 60 \text{ K}$

Gaussian and Lorentzian

