Cooling the mechanical modes of an atomically-thin magnetic membrane

Davy Borowski, Quentin Fenoy 10/05/2022

At IPCMS with A. Gloppe, J. Wolff and J. Thoraval CNIS

Table of contents

- A. Context and introduction
- B. Method and objectives
- C. Results
- D. Conclusion

Introduction

General context

2016-2017 : Magnetic ordering in monolayer van der Waals materials

Lee et al, Nano letters (2016), Huang et al, Nature (2017)

Antiferromagnetic ordering in FePS₃

F. Kargar et al, ACS Nano (2020)

Approach developed by the team

PhD thesis of J. Wolff: Probe and control magnetic order in atomically thin suspended membranes

Structure by J. Wolff (2022)

Approach developed by the team

PhD thesis of J. Wolff: Probe and control magnetic order in atomically thin suspended membranes

Structure by J. Wolff (2022)

Experimental setup

Experimental setup

Sample in a cryostat (4K-300K) to probe its phase transition

Radiation pressure:

 $F_{\rm opt} \propto P_{\rm opt}^{\rm pump}$

Electrostatic force:

Membrane dynamics

Mechanical response

Mechanical susceptibility $\chi(\omega) = \frac{1}{M(\omega_0^2-\omega^2-i\Gamma\omega)}$

Displacement spectral density

Fluctuation-dissipation theorem:

$$S_z(\omega) = \frac{2k_BT}{\omega} \operatorname{Im}(\chi(\omega))$$

In our case with only thermal fluctuations (Brownian motion) :

$$S_z(\omega) = \frac{2\Gamma k_B T}{M((\omega_0^2 - \omega^2)^2 + \Gamma^2 \omega^2)}$$

Problem: low T...

Link between mechanical properties and magnetic order

J. Wolff (2022)

 \Rightarrow Need a fine control on χ to increase the resolution on frequency shift induced by a change of the magnetic configuration

ie: decrease the mechanical damping

Cold damping

Recent examples

L. Grossman, NewScientist (2016)

L. Magrini et al, Nature (2021)

 \Rightarrow Often used to cool mechanical modes \neq We want to decrease the damping : heat modes!

Concept of cold damping

Concept of cold damping

Implementation of cold damping

We add a feedback electronic circuit

$$rac{d}{dt}=i\omegapprox$$
 add 90°

Simplified electronic circuit

The lab-made electronic circuit

Electronic circuit by J. Thoraval (IPCMS)

Transfer function of the circuit

Expected results with cold damping

$$S_z(\omega) = \frac{2\Gamma k_B T}{M((\omega_0^2 - \omega^2)^2 + \Gamma^2 \omega^2)}$$

Expected results with cold damping

Results

First measurements with cold damping

Probe laser: 633 nm, temperature: 144K, electrostatic force

g=0 -79 Displacement spectral density (dBm) -80 -81 -82 -83 and the second states of the -84 -85 -86 19.50 19.75 20.00 20.25 20.50 20.75 21.00 21.25 21.50 Frequency (MHz)

Brownian motion of the membrane (g=0)

First measurements with cold damping

Probe laser: 633 nm, temperature: 144K, electrostatic force

phi1 -79 g=0 Displacement spectral density (dBm) -80 -81 -82 -83 -84 -85 -86 19.50 19.75 20.00 20.25 20.50 20.75 21.00 21.25 21.50 Frequency (MHz)

There is an amplification effect !

Let's tune the phase!

First measurements with cold damping

Probe laser: 633 nm, temperature: 144K, electrostatic force

There is an amplification effect !

Curves cannot be explained by our current model...

Model improvement

Measurement noise δz reinjected in the feedback loop

Effect of gain modification

Voltage ramp for the driven displacement

Not Brownian motion : we impose an external force

Membrane not electrically neutral

 $V_{\rm DC}^{\rm eff} \approx V_{\rm DC}^{\rm app} + 2 \ {\rm V}$

Effect of gain modification

Effect of gain modification

Another method to modify the gain: optical power of the probe laser

Limits of the method

Can not go higher

Conclusion

Conclusion and perspectives

- First measurements and results very encouraging
- Will enable to work on a more sophisticated electronic circuit :
 - Electronic control of gain/phase
 - Band pass frequency following the temperature dependency of f_0
- Long term : enable to study phase transition of more exotic 2D magnetic materials!

32

 $\Gamma_{\rm eff} \approx$

Appendices

Membrane

Gate: enables to apply electrostatic force

Spectral density for the system

How to read an "imshow"?

Measurement backgrounds

Amplified brownian map of the first mode

Voltage ramp with radiation pressure

Voltage ramp with electrostatic force (wider V range)

Phase inversion

Phase inversion

