Identification and annotation of numerical simulations of galaxy collisions.

Proto-cluster from TNG50 simulation.

By Pierre

Galois

Supervised by Pierre-Alain Duc

Université de Strasbourg

Introduction

- <u>Galaxy</u>: stars, gas, dust, dark matter
- Two main families: spiral and elliptical
- Diversity of morphologies and internal properties

https://en.wikipedia.org/wiki/File:Hubble-Vaucouleurs.png

Introduction

- Tend to interact, collide and merge
- Source of the observed diversity
- Gravitational interaction:
 - Deformation of galaxies
 - Apparition of tidal debris

NASA/ESA

Introduction

- <u>Tidal debris</u>: directly linked to galaxies history
- <u>Problem</u>:
 - Faint and extended
 - Low contrast
 - \square Hard to observe
- Each image of galaxy must be characterized by hand: long process

Arp 87, NASA/ESA

Annotation and previous works

- Development of an annotation tool
- Intuitive and visual annotation
- <u>Goal</u>:
 - Identify, highlight and label tidal structures on galaxy images
 - Extract properties of this debris
- Large number of annotations already performed

Goals of the project

- Annotate images from simulation
- Interest of simulation:
 - Understand plurality of observations
 - Constrain models of galaxy evolution
- Adapt and characterize a sample of simulated galaxies, annotate them and extract properties of tidal debris

Characterization

- <u>Our initial sample</u>: 136 galaxies
- <u>First step</u>: check if our sample is consistent with observed galaxies
- <u>Visual inspection</u>:
 - Realistic aspect
 - Mainly spirals
 - Some very large galaxies

Characterization and scale relations

- <u>Scale relation</u>: link a "size" properties (radius, mass, etc...) to an other property
- Empirical relation.
- <u>Our sample</u>: consistent with this relation

Characterization

- <u>Advantages</u>:
 - Realistic aspects
 - Realistic shapes
 - Scale relations

- <u>Counterparts</u>:
 - Large number of spiral galaxies
 - Small FOV

• <u>Physical properties</u>: consistent with observations

Preparation of the images

- <u>Annotation tool</u>: support only a specific extension ⇒Need to convert raw images.
- Adapt to look like real images ⇒ Find optimal parameters.
- We kept 53 images from the 136.

Preparation of the images

Annotation and preliminary results

- Highlight main galactic components and tidal features:
 - Brightest part
 - Halo
 - Tails/plumes
- Allow access to their main properties:
 - Area
 - Size
 - Surface brightness
- Quantitative analysing of tidal debris

Annotation and preliminary results

Conclusion and future prospects

- <u>Heart of the project</u>:
 - Characterize a sample of simulated galaxies
 - Annotation
 - Extraction of informations
- Properties of tidal debris
 Redraw the history of the galaxy

Conclusion and future prospects

- <u>Next steps</u>:
 - Better sample, much representative
 - Annotate more galaxies
 - Compare with annotations from real images
- <u>Final goals</u>: machine learning and automatization of the process

Annexe: Scale relations

Annexe: The Illustris TNG simulations

Illustris TNG

- Cosmological simulations of galaxies formation
- Hydrodynamical simulation
- 18 simulations
- Different size of simulated universe
- TNG50: 51,7³ Mpc

Annexe: Substructures of a galaxy.

- Different sub-structures:
 - Main galaxy
 - Stellar halo
 - Dark matter halo
- Components:
 - Dark matters
 - Stars
 - Gas
 - Dust

Annexe: optimization of conversion

• <u>Conversion</u>:

$y = \log_{10}(\alpha (x-\beta) + \sqrt{\alpha^2 (x-\beta)^2 + 1}), \alpha, \beta \in \mathbb{R}$

- Contrast and dynamics of images
- <u>Here</u>: α=10, β=0
- Adapt the brightness threshold of the images

No threshold	33 mag·arsec ²	29.5 mag · arsec ²	27 mag·arsec ²	25 mag·arsec ²
No threshold	33 mag · arsec ²	29.5 mag · arsec ²	27 mag·arsec ²	25 mag · arsec ²
No threshold	33 mag · arsec ²	29.5 mag · arsec ²	27 mag·arsec ²	25 mag · arsec ²

Annexe: Glitch and artefacts

Example of differents between SB and stellar mass maps.

20