

de Strasbourg

Nuclear Fusion of Carbon in Stars : The Reaction Channel with Neutron Emission

Purified Gamma Spectra from Gamma-Particle Coincidences

Guillaume Harmant

Supervisor : Ph. D. Marcel Heine

Summary

Introduction

- STELLA Experiment
- Experimental Coincidences Investigation
- Simulation Study
- Q values and cross section calculation

Conclusion

Bibliography

What is nucleosynthesis?

 \rightarrow Nucleosynthesis corresponds to the synthesis of atomic nuclei

What is nucleosynthesis?

 \rightarrow Nucleosynthesis corresponds to the synthesis of atomic nuclei

p + n	\rightarrow	D + γ
D + n	\rightarrow	³ Η + γ
D+p	\rightarrow	3 He + γ
D + D	\rightarrow	³ H + p
D + D	\rightarrow	³ He + n
D + D	\rightarrow	⁴ He + γ
³ H + p	\rightarrow	⁴ He + γ
³ He + n	\rightarrow	³ H + p
³ He + n	\rightarrow	4 He + γ
³ H + D	\rightarrow	⁴ He + n
³ He + D	\rightarrow	⁴ He + p
³ He + ³ He	\rightarrow	⁴ He + 2p
⁴ He + D	\rightarrow	⁶ Li + γ
⁴ He + ³ H	\rightarrow	⁷ Li + γ
⁴ He + ³ He	\rightarrow	⁷ Be + γ
⁶ Li + n	\rightarrow	⁷ Li + γ
⁶ Li + p	\rightarrow	⁷ Be + γ
⁷ Li + p	\rightarrow	4 He + 4 He + γ
⁷ Be + n	\rightarrow	⁷ Li + p
⁷ Be + e ⁻	\rightarrow	$^{7}Li + \gamma$

Two types

Primordial Nucleosynthesis

- First minutes after the Big Bang
- H, D, He, Li
- $T_{universe} \approx 10^9 \, \mathrm{K}$

What is nucleosynthesis?

 \rightarrow Nucleosynthesis corresponds to the synthesis of atomic nuclei

p + n	\rightarrow	D + γ
D + n	\rightarrow	³ Η + γ
D + p	\rightarrow	3 He + γ
D + D	\rightarrow	³ H + p
D + D	\rightarrow	³ He + n
D + D	\rightarrow	⁴ He + γ
³ H + p	\rightarrow	⁴ He + γ
³ He + n	\rightarrow	³ H + p
³ He + n	\rightarrow	4 He + γ
³ H + D	\rightarrow	⁴ He + n
³ He + D	\rightarrow	⁴ He + p
³ He + ³ He	\rightarrow	⁴ He + 2p
⁴ He + D	\rightarrow	⁶ Li + γ
⁴ He + ³ H	\rightarrow	⁷ Li + γ
⁴ He + ³ He	\rightarrow	⁷ Be + γ
⁶ Li + n	\rightarrow	$^{7}Li + \gamma$
⁶ Li + p	\rightarrow	$^{7}Be + \gamma$
⁷ Li + p	\rightarrow	4 He + 4 He + γ
⁷ Be + n	\rightarrow	⁷ Li + p
⁷ Be + e ⁻	\rightarrow	$^{7}Li + \gamma$

Two types

Primordial Nucleosynthesis

- First minutes after the Big Bang -
- H, D, He, Li
- $T_{universe} \approx 10^9 \, \text{K}$

Stellar Nucleosynthesis

- $H \rightarrow Fe$
- Explosion phase : heavier elements -

Phase 1 : Hydrogen burning

Courtesy Planétarium de Strasbourg

Phase 1 : Hydrogen burning

Courtesy Planétarium de Strasbourg

Phase 2 : Helium burning

Courtesy Planétarium de Strasbourg

Phase 1 : Hydrogen burning

Courtesy Planétarium de Strasbourg

Phase 2 : Helium burning

Phase 3 : Carbon burning

1

$${}^{2}C + {}^{12}C \rightarrow {}^{23}Na + p + \gamma ~(\approx 440 \text{ keV})$$
$${}^{23}Mg + n + \gamma ~(\approx 451 \text{ keV})$$
$${}^{20}Ne + \alpha + \gamma$$

Experimental interests : $E_{rel} \approx 2.5 \text{ MeV}$ $T_{fusion} \approx 0.8*10^9 \text{ K}$

Courtesy Planétarium de Strasbourg

Phase 1 : Hydrogen burning

Phase 2 : Helium burning

Phase 3 : Carbon burning

1

$${}^{2}C + {}^{12}C \rightarrow {}^{23}Na + p + \gamma ~(\approx 440 \text{ keV})$$
$${}^{23}Mg + n + \gamma ~(\approx 451 \text{ keV})$$
$${}^{20}Ne + \alpha + \gamma$$

Experimental interests : $E_{rel} \approx 2.5 \text{ MeV}$ $T_{fusion} \approx 0.8*10^9 \text{ K}$

Courtesy Planétarium de Strasbourg

Courtesy Planétarium de Strasbourg

The Tunnel Effect in Nuclear Fusion Reaction

Phase 1 : Hydrogen burning

Phase 2 : Helium burning

Phase 3 : Carbon burning

1

0.5

$${}^{2}C + {}^{12}C \rightarrow {}^{23}Na + p + \gamma ~(\approx 440 \text{ keV})$$
$${}^{23}Mg + n + \gamma ~(\approx 451 \text{ keV})$$
$${}^{20}Ne + \alpha + \gamma$$

Experimental interests : $E_{rel} \approx 2.5 \text{ MeV}$ $T_{fusion} \approx 0.8*10^9 \text{ K}$

Courtesy Planétarium de Strasbourg

Courtesy Planétarium de Strasbourg

The Tunnel Effect in Nuclear Fusion Reaction

Phase 1 : Hydrogen burning

Phase 2 : Helium burning

Phase 3 : Carbon burning

$${}^{2}C + {}^{12}C \rightarrow {}^{23}Na + p + \gamma ~(\approx 440 \text{ keV})$$
$${}^{23}Mg + n + \gamma ~(\approx 451 \text{ keV})$$
$${}^{20}Ne + \alpha + \gamma$$

 $\begin{array}{l} \mbox{Experimental interests}: E_{rel} \approx 2.5 \mbox{ MeV} \\ T_{fusion} \approx 0.8*10^9 \mbox{ K} \end{array}$

Courtesy Planétarium de Strasbourg

Courtesy Planétarium de Strasbourg

The Tunnel Effect in Nuclear Fusion Reaction

STELLA Experiment

LaBr₃ detectors

Mechanical design

Support of rotating target

Silicium detectors S3B & S3F

STELLA Experiment

LaBr₃ detectors

Beam of Carbon

Mechanical design

Support of rotating target

Silicium detectors S3B & S3F

High vaccum chamber $\approx 10^{-8}$ mbar

Carbon target position

STELLA Experiment

Position of STELLA Experiment

Beam of Carbon

Support of rotating target

Silicium detectors S3B & S3F

Mechanical design

Andromede accelerator (Orsay)

High vaccum chamber $\approx 10^{-8}$ mbar

Carbon target position

14

39855

0.9203

0.488

15

 $^{12}C + ^{12}C \rightarrow ^{23}Na + p + \gamma (p_1 \approx 440 \text{ keV})$ $^{23}Mg + n + \gamma (n_1 \approx 451 \text{ keV})$ 20 Ne + α + γ

¹²C + ¹²C \rightarrow ²³Na + p + γ (p₁ \approx 440 keV) ²³Mg + n + γ (n₁ \approx 451 keV) ²⁰Ne + α + γ

Without Condition : Background +
$${}^{12}C + {}^{12}C \rightarrow {}^{23}Na + p + \gamma, {}^{23}Mg + n + \gamma, {}^{20}Ne + \alpha + \gamma$$

Parameter	value	error
p0: offset	$9.67141e{+}04$	Fixed
p1 : slope	-1.18451e+01	Fixed
p2 : adjustment	$4.96340\mathrm{e}{+02}$	Fixed

Parameter	value	error
p3 : Amplitude	$1.09765\mathrm{e}{+03}$	$1.69832e{+}01$
p4 : Mean	4.41182e-01	1.86849e-04
p5 : Sigma	1.19319e-02	1.99909e-04

Parameter	value	error
p6 : Amplitude	$4.66247 \mathrm{e}{+02}$	$1.34583e{+}01$
p7 : Mean	5.10846e-01	3.52587e-04
p8 : Sigma	1.23562e-02	4.18475e-04

All : Background Parameters

All : γ - Left Peak Parameters

All : γ - 511 keV Parameters

With S3B Particles Coincidences : ${}^{12}C \rightarrow {}^{23}Na + p_i + \gamma_1$; i = 1...12

Parameter	value	error
p0: offset	-1.06682e+01	$3.13372e{+}00$
p1:slope	$6.70941\mathrm{e}{+00}$	$1.26434e{+}00$

S3B	: Background	Parameters
-----	--------------	------------

Parameter	value	error
p2 : Amplitude	$4.27163e{+}01$	$2.48262e{+}00$
p3 : Mean	4.39838e-01	5.08864e-04
p4 : Sigma	1.00803e-02	4.56043e-04

S3B : γ - 440 keV Parameters

With S3B Particles Coincidences : ${}^{12}C \rightarrow {}^{23}Na + p_i + \gamma_1$; i = 1...12

Parameter	value	error
p0: offset	-1.06682e+01	$3.13372e{+}00$
p1 : slope	$6.70941\mathrm{e}{+00}$	$1.26434\mathrm{e}{+00}$

S3B	: Background	Parameters
-----	--------------	------------

Parameter	value	error
p2 : Amplitude	$4.27163e{+}01$	$2.48262e{+}00$
p3 : Mean	4.39838e-01	5.08864e-04
p4 : Sigma	1.00803e-02	4.56043e-04

S3B : γ - 440 keV Parameters

Parameter	value	error
p0 : Amplitude	$7.80923e{+}00$	$1.09126e{+}00$
p1 : Mean	4.39454e-01	1.12699e-03
p2 : Sigma	1.03548e-02	1.15976e-03

p1 : γ - 440 keV Parameters

→ Differences between All-parameters and coincidence spectra parameters : $\mu_{\gamma-All} > \mu_{\gamma-S3B,p1}$ $\sigma_{\gamma-All} > \sigma_{\gamma-S3B,p1}$

→ The data are shifted to the right : larger mean and sigma due to the additional contribution of the possible neutron (440 keV : $p_1 + 451 \text{ keV} : n_1$)

Study of the impact of statistical fluctuations

Study of the impact of statistical fluctuations

Study of the impact of statistical fluctuations

 $\label{eq:shared_states} \begin{array}{l} \Delta \mu : 0.20 \ keV < 0.64 \ keV \\ \Delta \sigma : 0.11 \ keV < 1.20 \ keV \end{array}$

→ Statistical fluctuations are not the cause of the energy shift and widening

Study of the impact of statistical fluctuations

$\label{eq:phi} \begin{array}{l} \Delta \mu : 0.20 \ keV < 0.64 \ keV \\ \Delta \sigma : 0.11 \ keV < 1.20 \ keV \end{array}$

σ,

σγ

S3B

All

→ Statistical fluctuations are not the cause of the energy shift and widening

 \rightarrow We can now look for the neutron contribution in the first peak

Study of the impact of statistical fluctuations

S3B

All

p1

S3B

p1

All

 $\label{eq:shared_linear_states} \begin{array}{l} \Delta \mu : 0.20 \ keV < 0.64 \ keV \\ \Delta \sigma : 0.11 \ keV < 1.20 \ keV \end{array}$

→ Statistical fluctuations are not the cause of the energy shift and widening

 \rightarrow We can now look for the neutron contribution in the first peak

→ Normalisation : Same statistical relevance

$$I_{gaus} = \int_{-\infty}^{+\infty} A \exp\left(-\frac{1}{2} \frac{(x-\mu)^2}{\sigma}\right) \mathrm{d}x$$

With A : Amplitude, μ : Mean and σ : Sigma

 $I_{gaus} = 32830$: Left peak $I_{gaus} = 14435$: Right peak $I_{bgd} = \int_{a}^{b} (O \exp(Sx) + A) \, \mathrm{d}x$

With O : Offset, S : Slope and A : Adjustment With a and b : interval normalisation

Study of the neutrons contribution

<u>Idea</u> : Reproduce total spectrum with proton gated parameters, to find the contribution of the neutron in the left peak

Q values and cross section calculation

Q values and cross section calculation

$$\sigma(\Sigma \sigma_i, 5.5 \text{ MeV}) = N_R \frac{1}{\frac{N_T}{A}} \frac{1}{N_P} \frac{1}{\epsilon} \frac{1}{\Delta t} = 1.7 \text{ mbarn}$$

- N_R : Number of reactions
- $N_{T/A}$: Number of targets per surface
- N_P : Number of particles in the beam
- : Efficiency of gamma ray detection in LaBr₃
- : Data acquisition time

Q values and cross section calculation

Conclusion

- \rightarrow Characterization of experimental γ -spectra : All + Coincidences
- \rightarrow Mismatch of peak parameters μ and σ
- \rightarrow Simulation study for statistical relevance $\Delta\mu$ and $\Delta\sigma$
- → Simulation to reproduce full γ -spectra with gated parameters : First evidence of the 14.5 % ± 0.5 % neutron proportion in the ¹²C + ¹²C fusion reaction chain in this dataset
- \rightarrow Calculation of cross-section + comparison with literature : near-matching result 1.7 mbarn > 1.6 mbarn
- \rightarrow ROOT scripts : experimental data + simulation
- \rightarrow Gnuplot : display
- \rightarrow Modelisation of experimental data
- \rightarrow Mathematica calculations
- \rightarrow Model too simple : simulation
- \rightarrow Analyse all 30 detectors of STELLA
- \rightarrow Study to be further developed for possible publication
- \rightarrow Choose an energy with only allows population of the n₁ level

Bibliography

[1]: ROOT CERN WebSite [online], Data Analysis Framework, 2021, https://root.cern/

[2] : National Nuclear Data Center WebSite [online], Interactive Chart of Nuclides, <u>https://www.nndc.bnl.gov/</u>

[3] : Marcel Heine, Private Communication, Nuclei : Exotics and Stars

[4]: G. Fruet, S. Courtin et al., Advances in the Direct Study of Carbon Burning in Massive Stars, Physical Review Letters, 124, 192701 (2020)

[5] : B. Bucher, X. D. Tang *et al.*, First Direct Measurement of ¹²C(¹²C,n)²³Mg at Stellar Energies, Physical Review Letters, 114, 251102 (2015)

[6] : B. Bucher, X. Fang *et al.*, Searching for low-energy resonances in the ${}^{12}C({}^{12}C,n){}^{23}Mg$ reaction cross section relevant for s-process nucleosynthesis, Journal of Physics : Conference Series 420 (2013) 012141

[7] : T. Spillane *et al.*, ¹²C + ¹²C Fusion Reactions near the Gamow Energy, Physical Review Letters, 98, 122501 (2007)

[8] : Picture : Laboratoire de physique corpusculaire de Caen WebSite [online], <u>https://www.lpc-caen.in2p3.fr/grand-public-apprendre/des-noyaux-a-la-carte/</u>

[9] : Picture : Cosmin Deaconu, Coursework for Physics [online], Stanford University, 2008, http://large.stanford.edu/courses/2008/ph204/deaconu1/