Evaluation of the possible advantages and comparison of radioactive ion beams (RIB) for hadrontherapy by Monte Carlo simulation

Presented by Laurine SCHNELZAUER & Samuel VALENTIN under the supervision of M.VANSTALLE & E.TRAYKOV

Table of contents

- I. IntroductionII. Material & MethodsIII. Results
 - 1. Dose distribution
 - 2. Setup optimisation
 - 3. Gamma distribution

IV. Conclusion

Treatments:

- Surgery, old technic, localised tumour
- Chemotherapy, stops cell division
- Radiotherapy, X-Rays and possibly RIB

Usually combined

Radiotherapy: type of therapy using X-rays to treat cancer.

- More widely used (cheaper than hadrontherapy)
- Irradiation of healthy tissues

Hadrontherapy: type of therapy using energetic protons or heavy ions to treat cancer.

- Precise dose deposition
- Higher dose at the end of the path (Bragg Peak)
- Lower irradiation of healthy tissues

Proton therapy and carbon ion therapy - Heidelberg University Hospital

M. Krämer and al., Helium ions for radiotherapy? Physical and biological verifications of a novel treatment modality : Medical Physics, 43(4) :1995–2004, Mar. 2016. ISSN 00942405

M. Durante 2016, Nuclear physics in particle therapy: a review, Research Gate

- Find lighter ions with dose deposition close to ¹²C and lower the costs
- Renewed interest for RIB:
 - 1. Dose monitoring with secondary particles
 - 2. Therapeutic, dose enhancement in Bragg Peak (BP)

biomolecule – E. Traykov

GANIL experiment in 2023:

- Measurement of dose distribution
- Secondary particles generated by ⁸Li with tissue equivalent material (PMMA)

Main goals of the internship:

- 1. Comparison of the dose distribution for different ions
- 2. Determine the optimal setup for the experiment
- 3. Gamma distribution for dose monitoring

Material & Methods

- Plot $\Delta E_2 E \longrightarrow$ energy loss/full energy
- Plot $\Delta E_1 \Delta E_2 \longrightarrow$ energy loss/full energy, low energy particles

Identification of particles

Material & Methods

Geant4

Toolkit developed by CERN to create simulations for the passage of particles through matter:

- C++
- Uses different classes
- Monte Carlo

Changing the parameters:

- Physics
- Detectors configuration

Material & Methods

Results

Dose distribution

Comparing the BP of different ions:

• Not much statistics

⁸Li, ⁸He ¹²C, ⁴He, ¹H

- Good energy for same range:
 - Lise++ for first approximation
 - Simulate to increase precision

Graph of the range of a ⁸Li beam in water **1 Introduction 1 Introduction 1 Introduction 1 Introduction 1 Introduction** ⁸Li, (⁸He) PMMM ACCERTRESHIP (Strighter) (Strig

Results – Dose distribution

Water

6cm

Comparison of the BP for different ions:

• ⁸Li close to ¹²C

matter

 \rightarrow Decay products

Dose ! " #\$

Results – Dose distribution

Schematics of the simulated setup

Comparison between 0° and 5° configurations:

For the dE-dE for (5) and the dE-E (for 0 and 5).

 $\Delta E - E$

in the 5° configuration ∆ E (MeV) 09 ∆ E (MeV) 09 10⁵ 50 50 One "banana" \rightarrow one kind of particle 104 40 10³ = 30 10² 20 10 hat kind particle is it? 600 E (MeV) 600 E (MeV) 500 200 300 500 100 400 100 200 300 400

$\Delta E_2 - E$ between plastic and CeBr in the 5° configuration

Cut for different products:

True kinetic energy = energy of the particle when it is created Reconstructed energy = energy detected by the detector

Shift to lower reconstructed energies \rightarrow CeBr entrance window

Relevance of using two telescopes:

- Particles with low energies are stopped
- Particles with high energies go through both small detectors (back bend point)

Plot the dE-dE for (5) and the dE-E (for ΔE and E_{5}).

Tests with other beams:

Population only for ⁷Li not for ⁸He

 $^{7}\mathrm{Li} + \mathrm{p} \rightarrow 2\alpha$

lithium reaction

Gamma distribution

• Decay of ⁸He \rightarrow 981keV

$$^{8}_{2}\text{He}_{6} \rightarrow ^{8}_{3}\text{Li}_{5} + e^{-} + \bar{\nu}_{e}$$

• 511keV peak for every ion

Can we detect these gammas?

Gamma emitted for four different incident ions, left in decimal scale and right in log scale

Results – Gamma distribution

Results – Gamma distribution

- Plastic scintillators are sufficient, no need to use silicon detectors
- For ⁸He and ⁸Li \rightarrow high dose deposition in the BP
- The 981keV gamma peak of ⁸He is easily detectable \rightarrow dose monitoring with "prompt- γ " is possible
- Better detection of secondary products for ⁸He than for ⁸Li

How easy would it be to use ⁸He in the medical field? What would be the constraints?

Relative Biological Effectiveness (RBE)

$$RBE = rac{D_{X ext{-rays}}}{D_{Ion}}$$

where D_{X-rays} and D_{ion} are doses computed to kill the same amount of cells

Comparison of the BP for different ions:

Appendix

We can plot the Bragg peak using different widths each times giving very different results. Here we have 3 graphs plotting the dose deposition only for a section of the beam or for the whole width of the beam. The results are different and the approach we used here was the last one where only a small width is taken into account.

Appendix

Cut for different products:

Try another physics list to check the consistence of our results:

 $\Delta E - E$ between plastic and CeBr

Comparison of the gammas emitted using the BIC and INCL physics, top in decimal and bottom in log

Appendix