Study of deformed nuclei around ⁶⁸Ni in a mean field self-consistent approach

BAKRI Benjamin, HARTWEG Tom,

Supervisor : Sieja Kamila

May 6, 2022

Table of Contents

- 1 Introduction
- **2** Problematic
- 3 Methodology
- **4** Deformation
- **5** Results
- 6 Conclusions
- 7 Appendix

HF study of Island of Inversion

HF study of Island of Inversion

Introduction

Nuclear physic

Study of nuclei : Proton and Neutron bound state

Binding Energy :=
$$\mathbf{BE}(\mathbf{Z}, \mathbf{N}) := (M_{nuclear}(Z, N) - Nm_n - Zm_p)c^2$$

 $m_n = \text{mass of the neutron } m_p = \text{mass of the proton}$

P&i

HF study of Island of Inversion

Theory of the Nuclei: a many body problem

Description of nuclei : a theoretical challenge

• Quantum many-body problem (A ≈ 100)

HF study of Island of Inversion

Problematic Methodology Deformation

Results

Conclusions

Appendix

Theory of the Nuclei: a many body problem

Description of nuclei : a theoretical challenge

- Quantum many-body problem (A ≈ 100)
- Interaction between nuclei \rightarrow residues of the interactions between quarks

HF study of Island of Inversion

Theory of the Nuclei: a many body problem

P&i

HF study of Island of Inversion

Description of nuclei : a theoretical challenge

- Quantum many-body problem (A ≈ 100)
- Interaction between nuclei \rightarrow residues of the interactions between quarks

It needs simplifications

Macroscopic model : Liquid Drop

Semi-empirical macroscopic model:

$$BE(Z, N) = a_v A^{1/3} - a_s A^{2/3} - a_c \frac{Z^2 e^2 A^{-1/3}}{4\pi\epsilon_0} - \frac{1}{2} a_a \frac{(N-Z)^2}{A} + \delta(N, Z) \quad (1)$$

HF study of Island of Inversion

Two neutron separation

HF study of Island of Inversion

Introduction Problematic Methodology Deformation Results Conclusions Appendix

$$\mathbf{S_{2N}(N, Z)} := \\ BE(Z, N-2) - BE(Z, N)$$

$$\frac{\mathrm{d}}{\mathrm{d}N}(S_{2N})\approx$$

How much less bonded is the new neutron pair with respect to the last one

Experimental values

P&i

HF study of Island of Inversion

Shell Model

P&i

HF study of Island of Inversion

- Single particle behaviour in Wood-Saxon potential
- Spin-orbit coupling
- Emergence of all magic numbers

HF study of Island of Inversion

ntroduction

Problematic

Island of Inversion

P&i

HF study of Island of Inversion

Other experimental evidence

P&i

HF study of Island of Inversion

roblematic

Methodology

Deformation

Results

Conclusions

Appendix

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

HF study of Island of Inversion

Introduction

Problematic

Methodology

Deformation

Results

Conclusion

Appendix

Methodology

Hartree-Fock Method

Variational principle: $\{\phi_{\alpha}(\vec{r})\}$ form a Slater determinant

$$\begin{aligned} \forall \phi_i^*(\vec{r}) \in \{\phi_\alpha^*(\vec{r})\} :\\ \frac{\partial}{\partial \phi_i^*(\vec{r})} \left\{ E(C) - \sum_\alpha \epsilon_\alpha \int d\tau_1 |\phi_\alpha(\vec{r_1})|^2 \right\} = 0 \end{aligned}$$

Mean field equations:

 $T\phi_{i}(\vec{r}) + \left\{\sum_{\alpha} \int d\tau_{1}\phi_{\alpha}^{*}(\vec{r_{1}})V(\vec{r}\vec{r_{1}})\phi_{\alpha}(\vec{r_{1}})\right\}\phi_{i}(\vec{r})$ $- \int d\tau_{1}\left\{\sum_{\alpha} \phi_{\alpha}^{*}(\vec{r_{1}})V(\vec{r}\vec{r_{1}})\phi_{\alpha}(\vec{r})\right\}\phi_{i}(\vec{r_{1}}) = \epsilon_{i}\phi_{i}(\vec{r})$

HF study of Island of Inversion

Introduction

Problematic

Methodology

Deformation

Results

Conclusions

Appendix

Hartree Fock Method

Skyrme forces

Modelisation of the two body interaction :

$$\begin{split} V_{sky}(1,2) &= & t_0(1+x_0P^{\sigma})\delta(\vec{r_1}-\vec{r_2}) \\ &+ & \frac{1}{2}t_1(1+x_1P^{\sigma})\left[\delta(\vec{r_1}-\vec{r_2})\mathbf{k}^2 + \mathbf{k}'^2\delta(\vec{r_1}-\vec{r_2})\right] \\ &+ & t_2(1+x_2P^{\sigma})\mathbf{k}'\delta(\vec{r_{12}})\mathbf{k} \\ &+ & iW_0(\vec{\sigma_1}+\vec{\sigma_2})\cdot\mathbf{k}'\times\delta(\vec{r_1}-\vec{r_2})\mathbf{k} \\ &+ & \frac{1}{6}t_3(1+x_3P^{\sigma})\rho^{\gamma}{}_{00}(\frac{\vec{r_1}+\vec{r_2}}{2})\delta(\vec{r_1}-\vec{r_2}) \end{split}$$

HF study of Island of Inversion

roblematic lethodology Peformation

Results

Conclusions

Appendix

BCS Theory (BARDEEN, COOPER, SCHRIEFFER)

Interaction :

- pair coupling
- short range
- between particles of equal in norm and opposed spin

HF study of Island of Inversion

HF study of Island of Inversion

ntroduction Problematic

Deformation

Results

Conclusion

Appendix

Deformation

deformation of the nuclei

spherical

• Wood-Saxon + spin-orbit :
spherical solutions
• Hartree-Fock + Skyrme +
BCS : Allow deformed nuclei
$$Q_{20} < 0$$

$$Q_{20} = 0$$

$$\hat{Q}_{20} = \sqrt{\frac{16\pi}{5}} (2\hat{z}^2 - \hat{x}^2 - \hat{y}^2) \qquad \beta_p = \frac{\sqrt{5\pi}}{3} \frac{Q_{20}(\rho_e)}{ZeR_0^2}$$

HF study of Island of Inversion

Introduction Problematic Methodology Deformation Results

Conclusions

Appendix

▲□▶▲舂▶▲≧▶▲≧▶ 볼 ∽��♡ 20/36

Results

Process

*Many-body matrix element <u>diagonalisation</u> (EIDEN, EPHTDA) 100 1D-25 *Residual interaction 0	Island of Inversion
*K/pi 0 1 0 1	Introduction
Mixing parameter (HF,HTDA) 4D-1 5D-1	Problematic
	Methodology
uprions *Initial potential from (0: <u>Calcul</u> (Woods-Saxon), 1: file <u>HFfields</u> .in) 0	Deformation
*Limitations for one pair transfers	Results
*Matrix calculation (0: do, 1: don't) 0	Conclusions
*PN coupling included (0: not, 1: do) 0	Appendix
Converged condition 5D-6 1D-2 1D-2	
Do simplex (1: Yes, 0: No) 0	
· · · · · · · · · · · · · · · · · · ·	

HF study of Island of Inversion

Binding Energy

RMS (in MeV) for the different Skyrme forces:

Ζ	SIII	SKM*	SLY4	LD
24	2.40	6.58	0.37	4.81
26	2.72	4.60	0.55	3.69
28	2.60	3.15	1.04	2.83

HF study of Island of Inversion

Introduction Problematic Methodology Deformation Results Conclusions

Appendix

two neutron separation

Experimental 2 Neutrons Separation

HF study of Island of Inversion

deformation


```
P&i
```

HF study of Island of Inversion

comparison with other calculations

SHELL : Ref [3]

□ ▶ ◀ 🗇 ▶ ◀ 🖻 ▶ ◀ 🖻 ▶ 🖻 🔊 ९ ୯ 25/36

constrained calculations (SIII)

P&i

6/36

< □ > < @ > < ≧ > < ≧ >

HF study of Island of Inversion

Introduction Problematic Methodology Deformation Results Conclusions

Appendix

Conclusions

Summary

- Problematic :
 - Liquid drop and shell models struggles in some area of the nuclear chart
 - Island of inversion around ^{68}Ni
- What we did :
 - Study Cr,Fe and Ni around N=40 using Hartree-Fock calculations
 - Creation of an environment in C++ in order to produce results
- What we found :
 - Some features of the Cr,Fe and Ni isotopes lines can be explained with predicted deformations
 - $\bullet\,$ Predicted sphericity of Ni points toward double magicity of $^{68}\mathrm{Ni}$

HF study of Island of Inversion

Beyond

HF study of Island of Inversion

Introduction Problematic Methodology Deformation Results Conclusions Appendix

Figure: (Color online) PNVAP potential energy surfaces as a function of the (β_2 , γ) deformation parameters for the even-mass 100-130 Cd isotopes. The results are obtained with the Gogny-D1S interaction within the SCCM approach.

0 0.2

0.4

0.4 0.6 B2 6

0.2 0.4 B 0.6 (MeV

0.2 0.4 Ro (MeV)

0.2 0.4 0.6 Ba

0.2

0.4 0.6 B2 0 0.2 0.4 0.6 B2

0.2 0.4 Bo

PNVAP

References I

- M. Mougeot, "Nuclear Collectivity Studied through High-precision Mass Measurements of Neutron-rich Argon and Chromium Isotopes," Jan 2019. Presented 30 Nov 2018.
- [2] S. Naimi, Onsets of nuclear deformation from measurments with the ISOLTRAP mass spectrometer. Theses, Université Paris-Diderot - Paris VII, Oct. 2010.
- [3] S. M. Lenzi, F. Nowacki, A. Poves, and K. Sieja, "Island of inversion around ⁶⁴Cr," *Phys. Rev. C*, vol. 82, p. 054301, Nov 2010.
- [4] D. of Education Open Textbook Pilot Project, "Fermi energy and fermi surface," 2021.
- [5] Wikipedia, "Semi-empirical-mass-formula," 2022.

HF study of Island of Inversion

- [6] A. A. Al-Sammarraie, "Potentials radial dependence, square well v sq ., harmonic oscillator v ho , and woods-saxon potential v ws," 2022.
- [7] M. Hjorth-Jensen, "Course2manybodymethods," 2015.
- [8] O. Delaune, Technique de la cinématique inverse pour l'étude des rendements isotopiques des fragments de fission aux énergies GANIL. Theses, Université de Caen, Oct. 2012.
- [9] M. Siciliano, J. Valiente-Dobón, A. Goasduff, T. Rodríguez, D. Bazzacco, G. Benzoni, T. Braunroth, N. Cieplicka-Oryńczak, E. Clement, F. Crespi, G. de France, M. Doncel, S. Erturk, C. Fransen, A. Gadea, G. Georgiev, A. Goldkuhle, U. Jakobsson, G. Jaworski, and D. Testov, "Lifetime measurements in the even-even ¹⁰²⁻¹⁰⁸cd isotopes," 01 2021.

ГС

HF study of Island of Inversion

HF study of Island of Inversion

Introduction Problematic Methodology Deformation Results Conclusions

Appendix

Skyrme forces

HF study of Island of Inversion

$$\begin{split} V_{sky}(1,2) &= & t_0(1+x_0P^{\sigma})\delta(\vec{r_1}-\vec{r_2}) \\ &+ & \frac{1}{2}t_1(1+x_1P^{\sigma})\left[\delta(\vec{r_1}-\vec{r_2})\mathbf{k}^2 + \mathbf{k}'^2\delta(\vec{r_1}-\vec{r_2})\right] \\ &+ & t_2(1+x_2P^{\sigma})\mathbf{k}'\delta(\vec{r_{12}})\mathbf{k} \\ &+ & iW_0(\vec{\sigma_1}+\vec{\sigma_2})\cdot\mathbf{k}'\times\delta(\vec{r_1}-\vec{r_2})\mathbf{k} \\ &+ & \frac{1}{6}t_3(1+x_3P^{\sigma})\rho^{\gamma}{}_{00}(\frac{\vec{r_1}+\vec{r_2}}{2})\delta(\vec{r_1}-\vec{r_2}) \end{split}$$

$${\bf k}=\frac{1}{2i}(\vec{\nabla}_1-\vec{\nabla}_2)$$
 ; ${\bf k}'={\bf k}$ acting on the left ; $P^\sigma=\frac{1}{2}(1+\vec{\sigma_1}\vec{\sigma_2})$

Skyrme parameters

	SIII [<u>4</u>]		SkM* [21]		•	SLy4 [22]	
t ₀	-1128	•	75	-2645	•	0	-2488
t_1	395		0	410	•	0	486
<i>t</i> ₂	-95		0	-135	•	0	-546
t ₃	14000	•	0	15595	•	0	13777
<i>x</i> ₀	0	•	45	0	•	09	0
<i>x</i> ₁	0		0	0	•	0	-0
<i>x</i> ₂	0	•	0	0	•	0	-1
<i>x</i> ₃	1		0	0		0	1
γ	1		0	1	•	6	1
W_0	130	•	0	120	•	0	123

P&i

HF study of Island of Inversion

> croduction oblematic ethodology eformation esults onclusions

Appendix

constrained calculations (SIII)

P&i

<<p><□>

BCS equation

Figure: Comparison: without BCS (left); with BCS (right)

P&i

HF study of Island of Inversion