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Canonical Quantisation

Canonical quantisation is a procedure that gets us from the classical
Hamiltonian description of a system to a quantum mechanical one.

The Poisson bracket structure of classical mechanics morphs into the
commutation relations between operators.

xi − generalised coordinate
pi − generalised momentum
{xi , xj} = 0, {pi , pj} = 0
{xi , pj} = δij

H = H (q⃗, p⃗; t)

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi

canonical−−−−−−−→
quantisation

x̂i − position operator
p̂i − momentum operator
[x̂i , x̂j ] = 0, [p̂i , p̂j ] = 0
[x̂i , p̂j ] = iδij

Ĥ = hamiltonian operator

i
d |ψ⟩
dt

= Ĥ|ψ⟩
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Quantum fields I

Quantisation of fields
In field theory we do the same, but starting from the classical field ϕi (x⃗)
and its momentum conjugate πi (x⃗) = ∂L

∂ϕ̇i
.

Hamiltonian operator

The quantum states obey the same Schrodinger equation i d |ψ⟩dt = Ĥ|ψ⟩ but
with the hamiltonian H =

∫
d3x H, where the hamiltonian density H is

obtained by a Legendre transform of the Lagrangian density
H = πi (x) ϕ̇i (x)− L (ϕ, ∂µϕ).

The quantum state |ψ⟩
In QFT the notation |ψ⟩ hides even more than in quantum mechanics, it
depends of every possible configuration of the field ϕ.
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Quantum fields II

Quantum Field
A quantum field is thus an operator valued function of space obeying the
commutation relations:[

ϕ̂i (x⃗) , ϕ̂j (y⃗)
]
=
[
π̂i (x⃗) , π̂j (y⃗)

]
= 0[

ϕ̂i (x⃗) , π̂
j (y⃗)

]
= iδji δ

(3) (x⃗ − y⃗) .
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Free fields I

Classical Klein-Gordon equation
The simplest classical relativistic free theory for a real scalar field ϕ (x⃗ , t) is
given by the Klein-Gordon equation ∂µ∂µϕ+m2ϕ = 0. The most general
solution is a linear superposition of independent simple harmonic oscillators
at each point p⃗ in impulsion space ϕ (p⃗, t) = F (ϕ (x⃗ , t)).

Quantising the solution using a and a† operators
When quantising the fields we will have an infinity of quantum harmonic
oscillators at each point in momentum space. Recalling the solution to the
harmonic oscillator in terms of destruction and creation operators we get:

ϕ (x⃗) =

∫
d3p

(2π)3
1

2ωp⃗

[
ap⃗e

i p⃗·x⃗ + a†p⃗e
−i p⃗·x⃗

]
π (x⃗) =

∫
d3p

(2π)3
(−i)

√
ωp⃗

2

[
ap⃗e

i p⃗·x⃗ − a†p⃗e
−i p⃗·x⃗

]
.
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Free fields II

Free Field Quantum Hamiltonian
By substituting the ϕ and π field operators with their above expressions in
the classical Klein-Gordon hamiltonian we obtain:

H =

∫
d3p

(2π)3
ωp⃗

[
a†p⃗ap⃗ +

1
2
(2π)3 δ3 (0)

]
.

The Vacuum
We define the vacuum |0⟩ by saying it is annihilated by all ap⃗:

ap⃗ |0⟩ = 0,∀p⃗
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Free fields III

Vacuum Energy
Applying H to the vacuum allows us to find its energy:

E0 =

∫
d3p

1
2
ωp⃗δ

(3) (0) = ∞.

There are two divergences:
infra-red divergence at large distances arising in δ(3) (0). It can be
remedied by putting the theory in a finite box.
ultra-violet divergence at high frequencies arise due to the |p⃗| → ∞
integral limits. This is because we assumed the theory is valid up to
arbitrary energies, which is absurd. We can do a hight momentum
cutoff. Alternatively, in this case, normal ordering leads to E0 = 0.
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Adding interactions I

Units
We are working with natural units c = ℏ = 1.
Since [c] = LT−1 = [ℏ] = L2MT−1 = 0 all dimensionful quantities can be
written in terms of a single mass/energy scale.
We denote [X ] = Malpha by [X ] ≡ α.

Lagrangian
Consider the general Lagrangian density with ϕ a scalar field in d
dimensional space:

L =
1
2
∂µϕ∂

µϕ− 1
2
m2ϕ2 −

∑
n≥3

λn
n!
ϕn.

Given [S ] = [ℏ] = 0 we have:
[L] = d , [∂µ] = 1, [ϕ] = 1, [m] = 1, [λn] = d − n.
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Adding interactions II

When are corrections small?
The dimensionless parameter is λnEn−d with E the relevant energy scale of
the problem. As such, in our 4 dimensional space, corrections are small
when λn ≪ E 4−n:

n = 3 terms are small at high energy E ≫ λ3 and big at low energy
when E ≪ λ3

n = 4 terms have dimensionless coupling constant [λ4] = 0
n ≥ 5 terms are big at high energy E ≫ λ3 and small at low energy
when E ≪ λ3

Most everyday physics happens at low energy (as far as particle physics is
concerned) so that n ≥ 5 terms are not important. Furthermore, parity
symmetry (x → −x) will also suppress n = 3 terms in the Lagrangian,
when it is relevant.
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Path Integral in Quantum Mechanics

Propagator
The path integral formulation places the propagator at the center of
quantum mechanics and expresses it as a functional integral over paths:

⟨xf | e−
i
ℏ Ĥt |xi ⟩ =

(
N−1∏
k=1

∫
dxk

)
N∏
j=1

∫
dpj
2πℏ

e
i
ℏ∆t

∑N
l=1

(
pl

xl−xl−1
∆t

−H(xl ,pl )
)

=

∫ x(tf )=xf

x(ti )=xi

D[x ]e
i
ℏ
∫ tf
ti

dτ pv−H =

∫ x(tf )=xf

x(ti )=xi

D[x ]e
i
ℏS[x]

Wave Function
Using the propagator we can calculate wave functions:

ψ (x , t) = ⟨x | e−
i
ℏ Ĥt |ψi ⟩ =

∫
dxi ⟨x | e−

i
ℏ Ĥt |xi ⟩ ⟨xi |ψi ⟩
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Path Integral in QFT I

Free Propagator
Asking what is the probability to find a particle at point x (in 4D
spacetime) after it has been prepared at point y leads us (as before) to the
free (vacuum) propagator:

⟨0|ϕ (x)ϕ (y) |0⟩ =
∫

d3p

(2π)3
1

2ωp⃗
e−ip·(x−y).

By imposing that the ϕ operators are time ordered we obtain the Feynman
propagator which can be written as:

∆F (x) =

∫
d4p

(2π)4
ie−ip·x

p2 −m2 + iϵ
.
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Path Integral in QFT II

Field Sources
The language of boundary conditions used before (i.e. x(ti ) = xi ) is no
longer appropriate in field theory where particles are created, interact and
destroyed. As such what we are interested in most of the time is the
vacuum-to-vacuum transition amplitude in the presence of a source
(denoted Z ). The source J (x) is represented by modifying the Lagrangian:

L −→ L+ J (x)ϕ(x).

Generating Functional for Scalar Fields
By substituting Dx → Dϕ we can define the vacuum-to-vacuum transition
amplitude within the path integral approach:

Z [J] =

∫
Dϕ exp

{
i

∫
d4
[
L (ϕ) + J (x)ϕ (x) +

i

2
ϵϕ2
]}

.
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Monte Carlo Path Integration I

A QFT on a lattice
In lattice field theory we discretise the number of field degrees of freedom
to a finite lattice in d dimensions with Nd sites: ϕ (x) → [ϕ] = {ϕn}, with
n taken to be the index of a lattice site.

Expectation Values
Using the generating functional we can write the time-ordered vacuum
expectation value of a functional F as:

⟨F ⟩ =
∫
Dϕ F [ϕ]e iS[ϕ]∫
Dϕ e iS[ϕ]

≈ Z−1
∫ Nd∏

j=1

dϕje
−S[ϕ]F [ϕ]

where we used the Wick rotation to go to Euclidian path integrals in
imaginary time.
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Monte Carlo Path Integration II

Sample Average
Due to the immense number of integration variables the only numerical
approach available is Monte Carlo simulation. The numerical task is to
generate samples consisting of a large number of field lattice configurations
{ϕn} that follow the distribution e−S[ϕ]. For a sample with γ
configurations the average of F would then be:

Ā =
1
γ

γ∑
n=1

A[ϕn].
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Monte Carlo Path Integration III

Lattice Action
The expression we obtain for the action of a scalar d-dimensional field
theory is:

S [ϕ] =

∫
ddx

(
1
2
∂µ∂

µϕ+ U(ϕ)

)
→

Nd∑
n=1

[
1
2

∑
µ

(ϕn+µ − ϕn)
2 + U (ϕ)

]

where µ signifies sum over sites neighboring site n. Note also that the
expression on the right is adimensional and must be multiplied by a
dimensional constant for physical interpretation.
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Monte Carlo Path Integration IV

Metropolis Algorithm
Starting from some field configuration update each site as follows:

1 Generate some new value of the field ϕn at site n using a random
number.

2 Calculate the lattice action difference ∆S
3 Keep or discard the change as follows:

if ∆S > 1 keep it
if ∆S < 1 keep it with probability ∆S .

4 Go to the next site
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A ϕ4 real scalar theory

Lagrangian
Consider a real scalar field theory with Lagrangian:

L =
1
2
∂µ∂

µϕ+m2ϕ+ gϕ4

on a 2D lattice.

Numerical Simulation
For the study of this particular theory I wrote a computer program in
python that implemented the Metropolis algorithm previously discussed. In
order to verify that the results make sense I compared the value of

〈
ϕ2〉

given by the simulation with a result obtained from perturbation theory by
numerical integration.
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⟨ϕ⟩ for a 40x40 lattice

Figure: The average value of the field configuration as the simulation progresses.
As expected the value hovers around 0. m2 = 2 g = 1
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〈
ϕ2
〉

for a 40x40 lattice

Figure: The average value of the field squared per configuration as the simulation
progresses. The exact result is

〈
ϕ2
〉
= 0.60, it is to be compared with the

theoretical calculated value of
〈
ϕ2
〉
th
≈ 0.3 The difference is a factor of 2.

m2 = 2 g = 1
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Phase Structure I

Field Theory and Statistical Physics
The Wick Rotation establishes a link between the canonical ensemble
statistical physics (Z =

∑
eβH ) and field theory (Z =

∫
Dϕe iS). Because

in the path integral formulation the operators disappear completely there is
an equivalence between a quantum field theory in d spacial dimensions
and a classical statistical system in d + 1 spacial dimensions.

Connection to Landau Theory
Landau Theory is a generic recipe for the study of phase transitions:

1 Define an order parameter ψ
2 Assume a free energy functional F̃ = F0 (T ) + FL (T , ψ)

3 Construct FL (ψ) as an analytic function of ψ obeying all symmetries
of the system.
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Phase Structure II

Link to Paramagnetism
The numerical calculations done via the path integral amount to
calculating the exact functional integral from the Landau expansion of a
paramagnetic system. Studying the relation between ⟨ϕ⟩ and the
Lagrangian parameters g and m2 informs us about phase structure.
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Phase Structure III

Figure: The horizontal and vertical axes represent m2 and g parameters
respectively. The size and color encode the value of ⟨ϕ⟩. We can see a transition
from a symmetric phase on the right to a broken phase on the left.
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Conclusion

The Monte Carlo path integration is a unique tool that allows us to
explore quantum field theories in a non perturbative way.
There is a profound link between Quantum Field Theory and
Statistical Physics via the Path Integral.
Time and computational constrains resulted in the exploration of only
the simplest quantum field theory possible.
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Questions
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