Cosmological constraints from cosmic flows based on distance data

Guilhem Lavaux

(séminaire Action Dark Energy, January 11th 2022)

• <u>Context:</u>

- \circ Distance tracers, relation to H₀
- Biases in cosmic flows: homogeneous Malmquist, inhomogeneous Malmquist
- A warning on non-linearities
- Velocity field statistics
- A short history of distance surveys

• <u>Context:</u>

- Distance tracers, relation to H_0
- Biases in cosmic flows: homogeneous Malmquist, inhomogeneous Malmquist
- A warning on non-linearities
- Velocity field statistics
- A short history of distance surveys

<u>Cosmological information: derivation, tensions</u>

• <u>Context:</u>

- \circ Distance tracers, relation to H_o
- Biases in cosmic flows: homogeneous Malmquist, inhomogeneous Malmquist
- A warning on non-linearities
- Velocity field statistics
- A short history of distance surveys

<u>Cosmological information: derivation, tensions</u>

Modernization: the Bayesian inverse problem for velocity field

- Formulation
- Test on mock data
- Application to SNe & TF data.
- \circ ~ Updates on cosmology and the bulk flow

• <u>Context:</u>

- \circ Distance tracers, relation to H_o
- Biases in cosmic flows: homogeneous Malmquist, inhomogeneous Malmquist
- A warning on non-linearities
- Velocity field statistics
- A short history of distance surveys

<u>Cosmological information: derivation, tensions</u>

Modernization: the Bayesian inverse problem for velocity field

- Formulation
- Test on mock data
- Application to SNe & TF data.
- Updates on cosmology and the bulk flow

Conclusion & the way forward

Context

Study nearby cosmology / cosmography

- o observe supernovae, galaxies with Tully-Fisher relation, fundamental plane
- high sampling rate of galaxies in spectroscopic sample
- Tightly constraining f σ₈ (Hudson, Turnbull 2012; Boruah et al. 2020; ...)
- Dark Matter distribution
- Test anistropic Dark Energy:
 - Cf CONtroversial claims: (Colin+11, Rubin&Hayden 16, Raman+21)

Not H_o, but residuals

• First order:

 $cz = H_0d + v_r$

- If zero-point calibration unknown: $\tilde{H}\tilde{d} = H_0 d \times 10^{0.4 \ \Delta}$
- Get peculiar velocities even without zero point!

• Malmquist biases:

"Malmquist bias is not fundamentally related to a flux limit or any other selection criteria. It occurs because the true distance of a galaxy cannot be estimated from DI information alone, but requires knowledge of the actual line of sight density distribution as well." (Strauss & Willick 1995)

$$\begin{array}{c} \begin{array}{c} \text{Cosmic} \\ \text{distance} \end{array} P(r,\mu(d)) = \int\limits_{-\infty}^{\infty} \mathrm{d}\eta \int\limits_{-\infty}^{\infty} \mathrm{d}m \, P(r,m,\eta) \times \delta\left(m - [M(\eta) + \mu(d)]\right) \\ & \propto r^2 n(r) \frac{1}{\sqrt{2\pi} \, \sigma} \exp\left(-\frac{(\mu(r) - \mu(d))^2}{2\sigma^2}\right) \mathcal{S}(d) \, . \end{array} \end{array} \begin{array}{c} \begin{array}{c} \text{Estimated} \\ \text{distance} \end{array} \end{array}$$

• Homogeneous Malmquist bias:

• model the distribution as homogeneous and only a radial selection

$$\frac{n'}{n} \ll (d\sigma)^{-1} \qquad \Longrightarrow \qquad \langle r \rangle_{|d} = d \exp(\alpha \sigma^2)$$

- Inhomogeneous Malmquist bias:
 - includes galaxy clustering in the model, i.e. we may not neglect the radial derivative
 - tracers are staying **in** *large scale structures*

Strauss & Willick (1995)

Velocity from galaxy surveys: linear velocity model

Linear or non-linear ? Velocity field statistics

 θ more "nonlinear" than δ

 $\vec{\nabla}.\vec{v}=\theta$

Distance/Redshift data

• Tully-Fisher based samples:

- Mark III (Willick et al. 1996)
- O CF3 (Tully et al. 2013, 2016), CF4 (Kourkchi et al 2020, ApJ)
- 2MTF (Masters et al. 2006, Hong et al. 2019)
- SFI++ (Masters et al. 2006, Springob et al. 2007)
- Fundamental plane samples:
 - \circ 6dFv (Campbell et al. 2014, Magoulas et al.)
- Supernovae samples:
 - CfA (Hicken et al 2009), CSP-DR3 (Krisciunas et al. 2017), LiCk LOSS (Ganeshalingam et al. 2013), Foundation (Jones et al. 2019), ...
 - Future with ZTF, LSST

Tensions on cosmological parameters

Bulk flow

- Mean velocity within a sphere of radius R
- Function of $R \Rightarrow$ probe cosmology (Juszkiewiecz et al 1990)
- Very difficult to do with pure distances:
 - Attempted with **full-sky** spectroscopic surveys (PSCz, 2MRS)
 - However, needs fixing of the linear galaxy bias
 - Some early computations with only distance data
 - Results not necessarily consistents
- Two relevant quantities:
 - Amplitude
 - Mis-alignment angle

Probe cosmology w/ velocity spatial correlations!

V_{LG/LSS} from galaxy surveys

 $V_{LG/CMB}$ from CMB dipole

Early example of bulk flow from 2MRS spec sample

The question of convergence

More confusion: bulk flow from distance data only

More confusion: bulk flow from distance data only

Bulk flow: deeper sample & N-body checks

	β^*	$\chi^{2}/(D.O.F.)$
Forward Likelihood (LW)		
A1	0.440 ± 0.023	5
SFI++ Galaxy Groups	0.429 ± 0.022	5
SFI++ Field Galaxies	0.423 ± 0.045	5
All	0.431 ± 0.021	5.
Forward Likelihood (NW)	0.439 ± 0.020	5
Inverse VELMOD (LW)	0.387 ± 0.048	×
χ^2 (LW)	0.444 ± 0.026	2194/2899
χ^2 (NW)	0.442 ± 0.028	2200/2899

Constraints translated in S_8= $\sigma_8 (\Omega_m/0.3)^{0.55}$

Synthetic joint constraints on residuals and cosmology

New bulk flow measurement

1000

The Bayesian inverse problem

The concept

26

• POTENT: Reconstruction assuming a scalar potential (Bertschinger et al 1990)

$$\vec{v} = \vec{\nabla}\phi$$

- POTENT: Reconstruction assuming a scalar potential (Bertschinger et al 1990)
- Simple adaptive filters

$$v_r(\vec{r}) = \sum_i W(\vec{r} - \vec{x}_i)(cz_i - H_0d_i)$$

- POTENT: Reconstruction assuming a scalar potential (Bertschinger et al 1990)
- Simple adaptive filters
- Wiener reconstruction / Gaussian model (Zaroubi et al. 1999)

$$ec{v} = ec{
abla} \phi \qquad v_r(ec{r}) = \sum_i W(ec{r} - ec{x}_i)(cz_i - H_0d_i) \ \phi \sim \mathcal{G}(0, \mathbf{C})$$

- POTENT: Reconstruction assuming a scalar potential (Bertschinger et al 1990)
- Simple adaptive filters
- Wiener reconstruction / Gaussian model (Zaroubi et al. 1999)
- VIRBIUS: Gaussian model+Homogeneous Malmquist (Lavaux 2016)
- "VIRBIUS+": Gaussian model+Inhomogeneous Malmquist (Boruah et al. 2021)

Non-linear distance mapping

Why more developments?

- Systematics
- Data generation
- Cross-validation
- Composite data sets (clustering, lensing, ...)

Earlier application to data

Graziani et al. (2019)

A schematic view of the Bayesian model

Tests on mock catalog

- A suite of 2048³ / 2000 Mpc/h, pure N-body simulation
- Initial condition with MUSIC (Hahn et al....), Eisenstein & Hu power-spectrum
- Perturbations in Ω_m , Ω_b , H, σ_8 , ...
- First used in Lavaux (2016)
- Resolve halos with mass ~10^{12} $\rm M_{\odot}$
- Apply a selection to mimic 2MTF / SNe, add noise, and infer the fields

Test on mock data: global reliability (Tully-Fisher-like error)

Test on mock data: global reliability (Tully-Fisher-like error)

Inferred radial component of velocity field (IHM modeled)

Test on mock data: global reliability (SNe-like error)

Test on mock data: global reliability (SNe-like error)

Test on mock data: surprise "grouping" effect

- Including Inhomogeneous Malmquist Bias
 ⇒ additional benefits reduce noise
- Three tests:
 - self consistent mock catalog with homogeneous tracer distribution
 - halo mock catalog, <u>skipping</u> IHM modeling
 - halo mock catalog, <u>including</u> IHM modeling
- Compute RMS between
 - inferred velocity field
 - simulation velocity field
- Reduction of error budget with IHM model

Test on mock data: surprise "grouping" effect

• Example of distance probability with/without IHM model

Application to data

Application to 2MTF & Pantheon SNe: inferred fields

Sec. al

New bulk flow measurements: amplitude

New bulk flow measurements: amplitude

ACDM really explains data!

BULLER STATISTICS.

New bulk flow measurements: direction

Galactic coordinates

Cross-validation with Carrick+15 model

Field-field linear alignment

Field-field stochasticity

Conclusion

• Reviewed a short history of bulk flow & cosmo constraints

(a lot more, check Marc Davis, Adi Nusser, Mike Hudson, Roya Mohayaee, ...)

- Getting unbiased / concording results with distance catalogs
- Confirmation through 2 methods

• Future development:

- use nonlinear model of structure formations (see Prideaux-Ghee et al., in prep.)
- joint inference density reconstruction and flow reconstruction w/ BORG
- scale to LSST